JPH0978167A - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy

Info

Publication number
JPH0978167A
JPH0978167A JP8105089A JP10508996A JPH0978167A JP H0978167 A JPH0978167 A JP H0978167A JP 8105089 A JP8105089 A JP 8105089A JP 10508996 A JP10508996 A JP 10508996A JP H0978167 A JPH0978167 A JP H0978167A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
reaction product
hydrogen storage
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8105089A
Other languages
Japanese (ja)
Inventor
Shinichiro Kakehashi
伸一郎 梯
Kiichi Komada
紀一 駒田
Mitsugi Matsumoto
貢 松本
Yoshitaka Tamao
良孝 玉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP8105089A priority Critical patent/JPH0978167A/en
Priority to US08/678,048 priority patent/US5885378A/en
Priority to DE69601605T priority patent/DE69601605T2/en
Priority to EP96111138A priority patent/EP0753590B1/en
Priority to CN96112266A priority patent/CN1149769A/en
Priority to KR1019960028234A priority patent/KR970072537A/en
Publication of JPH0978167A publication Critical patent/JPH0978167A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the hydrogen absorption/discharge rates and initial activation by using an Ni-Zr alloy contg. Ti, Mn, V, La and Ce and allowing specified dispersed phases and cracks to exist in the matrix phases of a Zr-Ni-Mn alloy. SOLUTION: An Ni-Zr alloy contg., by weight, 25 to 45% Zr, 1 to 12% Ti, 10 to 20% Mn, 2 to 12% V, 0.5 to 5% La and/or Ce and 0.01 to 0.2% hydrogen, and the balance Ni (>=25%) is melted and cast. The obtd. ingot is subjected to homogeneous heat treatment to form into a structure in which the dispersed phases of the La (Ce)-Ni alloy are present along the grain boundaries of the matrix phases of the Zr-Ni-Mn alloy. Successively, it is subjected to hydrogeneration treatment under the conditions of holding to a prescribed temp. in the range of 400 to 700 deg.C for prescribed time in a hydrogen atmosphere and thereafter executing cooling to form into hydrogen reaction product phases essentially consisting of La (Ce) hydrides and the La (Ce)-Ni alloy, and furthermore, numberless cracks in which the above hydrogen reaction product phases are exposed to the inside face are generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、水素吸収および
放出速度がきわめて速く、かつ例えば電池の電極などと
して実用に供するに際してはすぐれた初期活性化を発揮
する水素吸蔵合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy having an extremely high hydrogen absorption and desorption rate and exhibiting excellent initial activation when used practically as an electrode of a battery, for example.

【0002】[0002]

【従来の技術】従来、一般に水素吸蔵合金として数多く
のものが提案され、最近では1994年11月6〜11
日に富士吉田市で開催された「金属−水素システムの基
礎と応用に関する国際シンポジウム」で水素吸蔵合金が
発表されている。この水素吸蔵合金は、重量%で(以
下、%は重量%を示す)、Zr:22.1〜25.5
%、 Ti:11.6〜13.4%、Mn:23.7
〜24.6%、 Cr:22.4〜23.3%、L
a:7.5%以下、を含有し、残りがNiと不可避不純
物からなる成分組成を有し、かつ図3に代表組織が概略
組織拡大模写図で例示される通り、Zr−Ni−Mn系
合金の素地相と、この素地相の結晶粒界にそって分布す
るLa−Ni系合金の分散相の2相組織を有するもので
ある。また、上記従来水素吸蔵合金は、La−Ni系合
金の分散相がこれのもつ触媒作用で雰囲気の水素分子
(H2 )を水素原子(H)に解離すると共に、解離した
水素原子をZr−Ni−Mn系合金の素地相に比して一
段と速い速度で吸収し、したがってZr−Ni−Mn系
合金の素地相の水素原子の吸収は主として前記La−N
i系合金の分散相を介して行われる水素吸収機能をも
ち、また水素放出はこの逆の機能によるものであること
も知られている。さらに、上記従来水素吸蔵合金は、上
記組成のNi基合金溶湯を調製し、インゴットに鋳造
し、インゴットを真空または不活性ガスの非酸化性雰囲
気中、950〜1050℃の範囲内の所定温度に所定時
間保持の条件で均質化熱処理を施すことによって製造さ
れるものである。一般に、水素吸蔵合金を、例えば電池
の電極に適用する場合には、水素吸蔵合金が組込まれた
前記電極に対して、前記電極が充分な放電容量をもつよ
うになるまで、すなわち前記水素吸蔵合金によってもた
らされる放電容量がほぼ最大になるまで、充放電を繰り
返し施す初期活性化が行なわれ、この初期活性化が行な
われた状態で実用に供されるものである。
2. Description of the Related Art Conventionally, a large number of hydrogen storage alloys have been generally proposed, and recently, 6-11 November 1994.
Hydrogen storage alloys were announced at the "International Symposium on the Fundamentals and Applications of Metal-Hydrogen Systems" held in Fujiyoshida, Japan. This hydrogen storage alloy has a Zr: 22.1 to 25.5% by weight (hereinafter,% means% by weight).
%, Ti: 11.6-13.4%, Mn: 23.7
~ 24.6%, Cr: 22.4 to 23.3%, L
a: 7.5% or less, the rest of which has a composition of Ni and inevitable impurities, and the representative structure of which is shown in FIG. It has a two-phase structure of a base phase of the alloy and a dispersed phase of the La-Ni alloy distributed along the grain boundaries of the base phase. In the conventional hydrogen storage alloy, the dispersed phase of the La-Ni alloy dissociates hydrogen molecules (H 2 ) in the atmosphere into hydrogen atoms (H) by the catalytic action of the La-Ni alloy and dissociates the dissociated hydrogen atoms with Zr-. The Ni-Mn-based alloy absorbs at a much higher rate than the base phase, and thus the absorption of hydrogen atoms in the Zr-Ni-Mn-based alloy base phase is mainly caused by the La-N.
It is also known that it has a hydrogen absorption function performed through the dispersed phase of the i-based alloy, and hydrogen release is due to the opposite function. Further, the above conventional hydrogen storage alloy is prepared by preparing a Ni-based alloy molten metal having the above composition, casting it into an ingot, and heating the ingot to a predetermined temperature within a range of 950 to 1050 ° C. in a non-oxidizing atmosphere of vacuum or inert gas. It is manufactured by performing a homogenizing heat treatment under the condition of holding for a predetermined time. In general, when a hydrogen storage alloy is applied to, for example, an electrode of a battery, the hydrogen storage alloy has a sufficient discharge capacity with respect to the electrode in which the hydrogen storage alloy is incorporated, that is, the hydrogen storage alloy. The initial activation in which the charging and discharging are repeatedly performed is performed until the discharge capacity brought by is almost maximized, and this initial activation is put to practical use.

【0003】[0003]

【発明が解決しようとする課題】一方、近年、水素吸蔵
合金が多く適用されている電池やヒートポンプなどの高
出力化および高性能化、さらに省エネ化に対する要求は
強く、これに伴ない、水素吸蔵合金には上記従来水素吸
蔵合金における水素吸収放出速度よりも一段と速い水素
吸収放出速度と共に、より短時間での初期活性化が強く
望まれている。
On the other hand, in recent years, there has been a strong demand for higher output and higher performance and more energy saving of batteries and heat pumps to which many hydrogen storage alloys have been applied in recent years. It is strongly desired that alloys have an initial activation in a shorter time as well as a hydrogen absorption / desorption rate which is much higher than the hydrogen absorption / desorption rate of the conventional hydrogen storage alloy.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、水素吸蔵合金の水素吸収放出速
度および初期活性化の向上をはかるべく研究を行なった
結果、 (a) まず、Zr:25〜45%、 Ti:1
〜12%、Mn:10〜20%、 V:2〜12
%、Laおよび/またはCe:0.5〜5%、を含有
し、残りがNi(但し、25%以上含有)と不可避不純
物からなる組成を有するNi−Zr系合金を溶製し、鋳
造した後、このNi−Zr系合金のインゴットに、上記
の従来条件と同じ条件で均質化熱処理を施すと、上記の
従来水素吸蔵合金と同様に、Zr−Ni−Mn系合金の
素地相の結晶粒界にそってLaおよび/またはCe−N
i系合金(以下、La(Ce)−Ni系合金で示す)の
分散相が存在した組織を有するようになるが、さらに前
記均質化熱処理に引き続いて水素雰囲気中、400〜7
00℃の範囲内の所定温度に所定時間保持後冷却の条件
で水素化処理を施すと、図1に代表組織が概略組織拡大
模写図で例示される通り、前記均質化熱処理で形成され
たLa(Ce)−Ni系合金の分散相が雰囲気の水素と
優先的に反応して、主体がLaおよび/またはCeの水
素化物(以下、La(Ce)水素化物という)と、La
および/またはCe−Ni系合金(以下、La(Ce)
−Ni系合金で示す)からなる水素反応生成物相となる
と共に、前記水素反応生成物相はZr−Ni−Mn系合
金の素地相に比して大きな熱膨脹を示すことから、前記
素地相には前記水素反応生成物相を起点として無数の亀
裂が発生し、この亀裂内面には前記水素反応生成物相が
露出した状態となること。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoints, as a result of research to improve the hydrogen absorption / desorption rate and initial activation of the hydrogen storage alloy, (a) First, Zr: 25 to 45%, Ti: 1
~ 12%, Mn: 10-20%, V: 2-12
%, La and / or Ce: 0.5 to 5%, and the balance was Ni-Zr alloy having a composition of Ni (however, 25% or more) and inevitable impurities were melted and cast. After that, when this Ni—Zr alloy ingot is subjected to homogenizing heat treatment under the same conditions as the above-mentioned conventional conditions, the crystal grains of the base phase of the Zr—Ni—Mn alloy are similar to the above-mentioned conventional hydrogen storage alloy. La and / or Ce-N along the world
The i-based alloy (hereinafter referred to as La (Ce) -Ni-based alloy) has a structure in which a dispersed phase is present. Further, following the homogenizing heat treatment, 400 to 7 in a hydrogen atmosphere.
When the hydrogenation treatment is performed under the condition of cooling at a predetermined temperature within a range of 00 ° C. for a predetermined time, La is formed by the homogenizing heat treatment as shown in FIG. The dispersed phase of the (Ce) -Ni-based alloy preferentially reacts with hydrogen in the atmosphere to form La and / or Ce hydride (hereinafter referred to as La (Ce) hydride) and La.
And / or Ce-Ni alloy (hereinafter, La (Ce))
-Ni-based alloy), and the hydrogen reaction product phase shows a large thermal expansion as compared with the base phase of the Zr-Ni-Mn-based alloy. Means that innumerable cracks are generated from the hydrogen reaction product phase as a starting point, and the hydrogen reaction product phase is exposed on the inner surface of the crack.

【0005】(b) 上記(a)のNi−Zr系合金に
おいては、これを構成する水素反応生成物相のLa(C
e)−Ni系合金が、図3に示される従来水素吸蔵合金
におけるLa−Ni系合金の分散相と同様の作用、すな
わちこれのもつ触媒作用で雰囲気中の水素分子(H2
を水素原子(H)に解離すると共に、解離した水素原子
をZr−Ni−Mn系の素地相に比して一段と速い速度
で吸収し、また放出はこの逆の機構による作用を示す
が、前記水素反応生成物相は無数の亀裂内面に多くが露
出した状態になっており、この結果作用面積の拡大がな
されることから、同じく上記La(Ce)水素化物が吸
収水素原子および放出水素原子の拡散の進行を促進する
作用をもつことと相まって、上記従来水素吸蔵合金にお
ける水素吸収および放出速度に比して一段と速い速度で
の水素吸収および放出となり、さらに初期活性時におけ
る上記素地相の水素原子の吸収割合も広い作用面積で行
なわれるため著しく増大することから、初期活性化の著
しい促進がはかられるようになること。以上(a)およ
び(b)に示される研究結果を得たのである。
(B) In the Ni--Zr alloy of (a) above, the hydrogen reaction product phase La (C
e) -Ni system alloy, same action as the dispersed phase of the La-Ni-based alloy in a conventional hydrogen storage alloy shown in FIG. 3, i.e. the hydrogen molecules in the atmosphere in the catalytic action possessed by this (H 2)
Is dissociated into hydrogen atoms (H), the dissociated hydrogen atoms are absorbed at a much higher speed than the matrix phase of the Zr-Ni-Mn system, and the release exhibits an action by the opposite mechanism. Most of the hydrogen reaction product phase is exposed on the inner surface of a myriad of cracks, and as a result, the action area is expanded. Therefore, the above La (Ce) hydride also has an absorption hydrogen atom and a desorption hydrogen atom. Combined with having the effect of promoting the progress of diffusion, the hydrogen absorption and desorption are much faster than the hydrogen absorption and desorption rates of the conventional hydrogen storage alloys described above, and further, the hydrogen atoms in the base phase at the time of initial activation. Since the absorption rate of is also increased over a wide area of action, the initial activation can be significantly promoted. The research results shown in (a) and (b) above were obtained.

【0006】この発明は、上記の研究結果にもとづいて
なされたものであって、Zr:25〜45%、
Ti:1〜12%、Mn:10〜20%、 V:
2〜12%、Laおよび/またはCe:0.5〜5%、
水素:0.01〜0.2%、を含有し、残りがNi(但
し、25%以上含有)と不可避不純物からなる組成、並
びにZr−Ni−Mn系合金の素地相に水素反応生成物
相が分散分布し、前記水素反応生成物相の主体が、La
(Ce)水素化物とLa(Ce)−Ni系合金からなる
組織、さらに前記水素反応生成物相の形成時に発生した
無数の亀裂が存在すると共に、前記亀裂内面には前記水
素反応生成物相が露出した構造を有する、水素吸収放出
速度が速く、かつ初期活性化のすぐれた水素吸蔵合金に
特徴を有するものである。
The present invention was made based on the above research results, and Zr: 25-45%,
Ti: 1 to 12%, Mn: 10 to 20%, V:
2-12%, La and / or Ce: 0.5-5%,
Hydrogen: 0.01-0.2%, the balance Ni (25% or more) and inevitable impurities, and a hydrogen reaction product phase in the base phase of the Zr-Ni-Mn alloy. Are dispersed and distributed, and the main component of the hydrogen reaction product phase is La
(Ce) A structure composed of a hydride and a La (Ce) -Ni-based alloy, and further, there are innumerable cracks generated during the formation of the hydrogen reaction product phase, and the hydrogen reaction product phase is formed on the inner surface of the crack. It is characterized by a hydrogen storage alloy having an exposed structure, a high hydrogen absorption / desorption rate, and an excellent initial activation.

【0007】つぎに、この発明の水素吸蔵合金におい
て、これを構成するNi−Zr系合金の組成を上記の通
りに限定した理由を説明する。 (a) Zr Zr成分には、上記の通りNiおよびMnと共に素地相
を形成して水素吸蔵量の増大に寄与する作用があるが、
その割合が25%未満では、所望の水素吸蔵量を確保す
ることができず、一方その割合が45%を越えても、合
金全体の水素吸蔵量が低下するようになることから、そ
の割合を25〜45%、望ましくは32〜38%と定め
た。
Next, in the hydrogen storage alloy of the present invention, the reason why the composition of the Ni-Zr alloy constituting the hydrogen storage alloy is limited as described above will be explained. (A) Zr Zr component has a function of forming a base phase together with Ni and Mn to contribute to an increase in hydrogen storage amount, as described above.
If the proportion is less than 25%, the desired hydrogen storage capacity cannot be secured, while if the proportion exceeds 45%, the hydrogen storage capacity of the entire alloy will decrease, so It was set to 25 to 45%, preferably 32 to 38%.

【0008】(b) Ti Ti成分には、合金の平衡水素解離圧を、例えば室温で
大気圧以下にし、もって水素の吸収および放出の促進に
寄与する作用があるほか、素地にあって水素吸蔵量を増
大させる作用があるが、その割合が1%未満では前記作
用に所望の効果が得られず、一方その割合が12%を越
えると、再び平衡水素解離圧が、例えば室温で大気圧以
上に上昇し、水素の吸収および放出が低下するようにな
ることから、その割合を1〜12%、望ましくは4〜8
%と定めた。
(B) Ti The Ti component has the function of making the equilibrium hydrogen dissociation pressure of the alloy lower than atmospheric pressure, for example, at room temperature, thereby contributing to promotion of absorption and desorption of hydrogen, and also hydrogen storage in the base material. Although it has an effect of increasing the amount, if the ratio is less than 1%, the desired effect cannot be obtained, while if the ratio exceeds 12%, the equilibrium hydrogen dissociation pressure is again higher than atmospheric pressure at room temperature, for example. The hydrogen absorption rate and the hydrogen absorption rate and the release rate of hydrogen decrease. Therefore, the ratio is 1 to 12%, preferably 4 to 8%.
Defined as%.

【0009】(c) Mn Mn成分には、主に素地相を形成して水素吸蔵量を増大
させる作用があるが、その割合が10%未満では前記作
用に所望の効果が得られず、一方その割合が20%を越
えると水素の吸収および放出が阻害されるようになるこ
とから、その割合を10〜20%、望ましくは14〜1
8%と定めた。
(C) Mn The Mn component mainly has a function of forming a matrix phase to increase the hydrogen storage amount, but if the ratio is less than 10%, the desired effect is not obtained on the other hand. If the ratio exceeds 20%, the absorption and release of hydrogen will be hindered. Therefore, the ratio is 10 to 20%, preferably 14 to 1.
8%.

【0010】(d) V V成分には、合金の平衡水素解離圧を安定化し、かつ水
素吸蔵量を増大させる作用があるが、その割合が2%未
満では前記作用に所望の効果が得られず、一方その割合
が12%を越えると、平衡水素解離圧が低くなりすぎて
吸蔵された水素の放出が困難になり、この結果として水
素吸蔵量の低下が避けられなくなることから、その割合
を2〜12%、望ましくは4〜8%と定めた。
(D) The V V component has a function of stabilizing the equilibrium hydrogen dissociation pressure of the alloy and increasing the hydrogen storage amount, but if the ratio is less than 2%, the desired effect can be obtained in the above function. On the other hand, if the ratio exceeds 12%, the equilibrium hydrogen dissociation pressure becomes too low, and it becomes difficult to release the stored hydrogen, and as a result, a decrease in the hydrogen storage amount cannot be avoided. It was set to 2 to 12%, preferably 4 to 8%.

【0011】(e) LaおよびCe これらの成分は、上記の通り雰囲気中の水素を素地相よ
り一段と速い速度で解離吸収し、一方再結合させて雰囲
気中に放出する作用を有するLa(Ce)−Ni系合金
の形成、並びに素地相への吸収水素の拡散および素地相
からの放出水素の拡散を促進する作用を有するLa(C
e)水素化物の形成に不可欠な成分であるが、その割合
が0.5%未満では前記La(Ce)−Ni系合金およ
びLa(Ce)水素化物の生成割合が少なすぎて所望の
速い水素吸収放出速度を確保することができず、一方そ
の割合が5%を越えると、水素吸蔵量の小さい前記分散
相の割合が多くなりすぎ、合金全体の水素吸蔵量が低下
するようになることから、その割合を0.5〜5%、望
ましくは1〜4%と定めた。
(E) La and Ce These components have the function of dissociating and absorbing hydrogen in the atmosphere at a much higher rate than the matrix phase as described above, and then recombining and releasing it into the atmosphere. La (C), which has the function of promoting the formation of a Ni-based alloy and the diffusion of absorbed hydrogen into the matrix phase and the diffusion of hydrogen released from the matrix phase.
e) It is an essential component for the formation of hydride, but if the proportion is less than 0.5%, the production rate of the La (Ce) -Ni-based alloy and La (Ce) hydride is too small and the desired fast hydrogen is obtained. If the absorption / desorption rate cannot be secured, and if the ratio exceeds 5%, the proportion of the dispersed phase with a small hydrogen storage amount becomes too large, and the hydrogen storage amount of the entire alloy decreases. The ratio was set to 0.5 to 5%, preferably 1 to 4%.

【0012】(f) 水素 水素は、主に水素反応生成物相を構成するLa(Ce)
水素化物を形成して、同じく水素反応生成物を構成する
La(Ce)−Ni系合金が解離吸収した水素を速い拡
散速度で素地相中に移動させ、一方素地相からの放出水
素をいち速く前記La(Ce)−Ni系合金に拡散させ
る作用を発揮させるが、その割合が0.01%未満では
前記作用を発揮せしめるLa(Ce)水素化物の割合が
少なすぎて前記作用を十分に発揮することができず、一
方その割合が0.2%を越えるとLa(Ce)−Ni系
合金に比してLa(Ce)水素化物の割合が多くなりす
ぎ、相対的にLa(Ce)−Ni系金属間化合物が少な
くなって水素吸収放出速度および初期活性化が低下する
ようになることから、その割合を0.01〜0.2%、
望ましくは0.04〜0.12%と定めた。
(F) Hydrogen Hydrogen is mainly composed of La (Ce).
The La (Ce) -Ni-based alloy, which also forms a hydride and forms a hydrogen reaction product, dissociates and absorbs the dissociated and absorbed hydrogen and transfers it into the matrix phase at a high diffusion rate, while releasing the hydrogen from the matrix phase quickly. The La (Ce) —Ni-based alloy has an effect of diffusing, but if the ratio is less than 0.01%, the ratio of La (Ce) hydride that exerts the effect is too small to sufficiently exhibit the effect. On the other hand, if the proportion exceeds 0.2%, the proportion of La (Ce) hydride becomes too large as compared with the La (Ce) -Ni alloy, and the proportion of La (Ce)-is relatively large. Since the amount of Ni-based intermetallic compound decreases and the hydrogen absorption / desorption rate and the initial activation decrease, the ratio is 0.01 to 0.2%,
It is preferably set to 0.04 to 0.12%.

【0013】(g) Ni Ni成分の含有量が25%未満では、特に水素反応生成
物相の形成が不十分となるばかりでなく、これの形成時
に発生する亀裂も不十分となって、所望の水素吸収放出
速度および初期活性化を確保することができなくなるこ
とから、その含有量を25%以上と定めた。
(G) Ni When the content of Ni component is less than 25%, not only the formation of the hydrogen reaction product phase becomes insufficient, but also cracks generated during the formation become insufficient, which is desirable. Since it becomes impossible to secure the hydrogen absorption / desorption rate and the initial activation of, the content thereof was set to 25% or more.

【0014】なお、この発明の水素吸蔵合金は、通常の
機械的粉砕により所定粒度の粉末とすることができるほ
か、加圧水素雰囲気中、10〜200℃の範囲内の所定
温度に加熱の水素吸収と、真空排気による水素放出の水
素化粉砕によっても粉末とすることができ、この結果の
粉末は、いずれも図2に代表組織が概略組織拡大模写図
で例示される通りの組織をもつものとなる。
The hydrogen-absorbing alloy of the present invention can be made into powder having a predetermined particle size by ordinary mechanical pulverization, and can be heated to a predetermined temperature within a range of 10 to 200 ° C. in a pressurized hydrogen atmosphere to absorb hydrogen. It is also possible to make powder by hydrogenation and pulverization of hydrogen released by evacuation, and each of the resulting powders has a structure whose representative structure is illustrated in FIG. Become.

【0015】[0015]

【発明の実施の形態】つぎに、この発明の水素吸蔵合金
を実施例により具体的に説明する。通常の高周波誘導溶
解炉にて、原料としてそれぞれ99.9%以上の純度を
もったNi,Zr,Ti,Mn,V,La、およびCe
を用い、Ar雰囲気中で溶解して、それぞれ表1,2に
示される組成をもったNi−Zr系合金溶湯を調製し、
水冷銅鋳型に鋳造してインゴットとし、このインゴット
に、真空雰囲気中、950〜1050℃の範囲内の所定
温度に20時間保持の条件で均質化熱処理を施し、さら
に引続いて1〜1.2気圧の範囲内の所定の圧力の水素
雰囲気中、まず室温で1時間保持した後、昇温を開始し
て400〜700℃の範囲内の所定温度に加熱し、この
温度に1時間保持してから、Arガスによる強制空冷を
行なう条件で水素化処理を施すことにより本発明水素吸
蔵合金(以下、本発明合金という)1〜22をそれぞれ
製造した。また、比較の目的で、Ni系合金溶湯の組成
を表2に示される通りとし、かつ均質化熱処理後の水素
化処理を行なわない以外は同一の条件で従来水素吸蔵合
金(以下、従来合金という)を製造した。この結果得ら
れた水素吸蔵合金について、その組織を走査型電子顕微
鏡で観察したところ、本発明合金1〜22は、いずれも
図1に示される通り無数の亀裂が存在し、この亀裂の内
面には、La(Ce)−Ni系合金とLa(Ce)水素
化物で構成された水素反応生成物相が露出し、この水素
反応生成物がZr−Ni−Mn系合金の素地相中に分散
分布した組織を示し、従来合金は、図3に示される通り
Zr−Ni−Mn系合金の素地相の結晶粒界にそってL
a−Ni系合金の分散相が分布する組織を示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the hydrogen storage alloy of the present invention will be specifically described with reference to examples. Ni, Zr, Ti, Mn, V, La, and Ce each having a purity of 99.9% or more as a raw material in a normal high frequency induction melting furnace.
And melted in Ar atmosphere to prepare Ni-Zr alloy melts having the compositions shown in Tables 1 and 2, respectively.
A water-cooled copper mold is cast into an ingot, and this ingot is subjected to a homogenizing heat treatment in a vacuum atmosphere at a predetermined temperature within a range of 950 to 1050 ° C. for 20 hours, and then 1 to 1.2. In a hydrogen atmosphere of a predetermined pressure within the range of atmospheric pressure, first hold at room temperature for 1 hour, then start heating and heat to a predetermined temperature within a range of 400 to 700 ° C., and hold at this temperature for 1 hour. From the above, the hydrogen storage alloys of the present invention (hereinafter, referred to as the present invention alloys) 1 to 22 were produced by performing a hydrogenation treatment under the conditions of forced air cooling with Ar gas. For the purpose of comparison, the composition of the molten Ni-based alloy is as shown in Table 2, and the conventional hydrogen storage alloy (hereinafter referred to as the conventional alloy) is used under the same conditions except that the hydrogenation treatment after the homogenizing heat treatment is not performed. ) Was manufactured. As a result of observing the structure of the resulting hydrogen storage alloy with a scanning electron microscope, the alloys 1 to 22 of the present invention all have innumerable cracks as shown in FIG. 1, and the inner surfaces of the cracks are present. Reveals a hydrogen reaction product phase composed of La (Ce) -Ni alloy and La (Ce) hydride, and this hydrogen reaction product is distributed in the matrix phase of the Zr-Ni-Mn alloy. As shown in FIG. 3, the conventional alloy has an L-structure along the grain boundary of the matrix phase of the Zr—Ni—Mn alloy.
The structure in which the dispersed phase of the a-Ni alloy was distributed was shown.

【0016】つぎに、上記の本発明合金1〜22および
従来合金について、それぞれ水素吸収速度と水素放出速
度をJIS・H7202の「水素吸蔵合金の水素化速度
試験測定法」にもとづいて測定した。なお、測定に先だ
って、本発明合金1〜22および従来合金を、圧力容器
に封入し、水素雰囲気圧力:8気圧、加熱温度:200
℃、保持時間:1時間の条件での水素吸収と、真空排気
による水素放出からなる水素化粉砕を行なって200me
sh以下の粒度をもった粉末とし、この粉末を用いて以下
に示す条件で測定を行なった。
Next, the hydrogen absorption rate and the hydrogen desorption rate of each of the alloys 1 to 22 of the present invention and the conventional alloys were measured based on JIS H7202 "Hydrogen storage alloy hydrogenation rate test measuring method". Prior to the measurement, the alloys of the present invention 1 to 22 and the conventional alloy were sealed in a pressure vessel, the hydrogen atmosphere pressure was 8 atm, and the heating temperature was 200.
C., holding time: hydrogen absorption under the condition of 1 hour and hydrogen crushing consisting of hydrogen release by vacuum evacuation were performed to obtain 200me.
A powder having a particle size of sh or less was used, and measurement was performed using this powder under the following conditions.

【0017】まず、水素吸収速度については、図4に概
略説明図で示される通り、(a) 粉末を浴(油または
水)に浸漬した容器内に封入し、前記浴の温度を200
℃に保持した状態で、弁Vb:閉、弁VaおよびVc:
開として水素ボンベから加圧水素を系内に導入し、系内
を30気圧とした時点で弁Va:閉とし、系内の圧力が
一定圧力に降下する(粉末による水素吸収完了)まで放
置して粉末の初期活性化を行ない、(b) 系内の圧力
が一定圧力(約20気圧程度)に降下した時点で弁V
b:開とし、真空ポンプで系内を10-2トルの真空雰囲
気とした後、浴温を20℃とし、弁VbおよびVc:
閉、弁Va:開にして容器を除く系内に水素を導入し、
その圧力が30気圧となった時点で弁Va:閉、弁V
c:開とし、この状態で系内の時間に対する圧力降下を
測定し、この結果の圧力降下曲線から粉末の水素吸蔵量
が80%になった時点の水素吸蔵量とそれまでに要した
時間を求め、(80%吸蔵時の水素吸蔵量)÷(80%
水素吸蔵に要した時間)を算出し、この値を水素吸収速
度とした。
First, regarding the hydrogen absorption rate, as shown in the schematic explanatory view of FIG. 4, (a) the powder is enclosed in a container immersed in a bath (oil or water), and the temperature of the bath is set to 200.
C, the valves Vb: closed, valves Va and Vc:
When opened, pressurized hydrogen is introduced into the system from a hydrogen cylinder. When the pressure in the system reaches 30 atm, the valve Va is closed, and the system is left until the pressure in the system drops to a constant pressure (hydrogen absorption by powder is completed). (B) When the pressure in the system drops to a constant pressure (about 20 atm), the valve V
b: Open, set the system to a vacuum atmosphere of 10 -2 Torr with a vacuum pump, set the bath temperature to 20 ° C, and set the valves Vb and Vc:
Close, valve Va: open and introduce hydrogen into the system excluding the container,
When the pressure reaches 30 atm, valve Va: closed, valve V
c: Open, pressure drop with respect to time in the system was measured in this state, and from the resulting pressure drop curve, the hydrogen storage amount at the time when the hydrogen storage amount of the powder became 80% and the time required until then were calculated. Then, (hydrogen storage amount at 80% storage) ÷ (80%
The time required for hydrogen storage) was calculated, and this value was used as the hydrogen absorption rate.

【0018】また、水素放出速度については、上記の水
素吸収速度測定後の状態、すなわち弁VaおよびVb:
閉、弁Vc:開であって系内の圧力が一定圧(通常20
気圧前後)となった状態で、浴温を100〜300℃の
範囲内の粉末の水素放出適正温度、例えば120℃とし
た後、弁Vb:開、弁Vc:閉として容器を除く系内を
10-2トルに排気し、ついで弁Vb:閉、弁Vc:開と
した状態で、系内の時間に対する圧力上昇を測定し、こ
の結果の圧力上昇曲線から粉末の水素放出量が80%に
なった時点の水素放出量とそれまでに要した時間を求
め、(80%放出時の水素放出量)÷(80%水素放出
に要した時間)を算出し、この値を水素放出速度とし
た。これらの結果を表1,2に示した。
Regarding the hydrogen release rate, the state after the above hydrogen absorption rate measurement, that is, the valves Va and Vb:
Closed, valve Vc: open and the pressure in the system is constant (normally 20
(Atmospheric pressure), the bath temperature is set to an appropriate temperature for releasing hydrogen of powder in the range of 100 to 300 ° C., for example, 120 ° C., then the valve Vb is opened and the valve Vc is closed to remove the inside of the system. After exhausting to 10 -2 torr and then, with the valve Vb closed and the valve Vc open, the pressure rise over time in the system was measured and the resulting pressure rise curve showed that the hydrogen release of the powder was 80%. The amount of hydrogen released at the point of time and the time required up to that time were obtained, and (the amount of hydrogen released at the time of 80% release) / (the time required for the release of 80% hydrogen) was calculated. . The results are shown in Tables 1 and 2.

【0019】さらに、上記本発明合金1〜22および従
来合金について、初期活性化を評価する目的で、以下に
詳述する通り、これを粉末にして電池に活物質として組
み込み、前記電池が最大放電容量を示すに至るまで、こ
れに充放電を繰り返し施し、前記最大放電容量の95%
±1%に相当する放電容量を示すまでの充放電回数を測
定した。すなわち、まず、従来合金について、ジョーク
ラッシャを用いて粗粉砕して直径:2mm以下の粗粒と
し、引続いて上記本発明合金1〜22および前記粗粉砕
した従来合金を、ボールミルを用いて微粉砕して200
メッシュ以下の粒度とし、これに結着剤としてのポリテ
トラフルオロエチレン(PTFE)と増粘剤としてのカ
ルボキシルメチルセルロース(CMC)を加えてペース
ト状とした後、95%の気孔率を有する市販の多孔質N
i焼結板に充填し、乾燥し、加圧して、平面寸法:30
mm×40mm、厚さ:0.40〜0.43mmの形状(前記
活物質粉末充填量:約1.8g)とし、これの一辺にリ
ードとなるNi薄板を溶接により取り付けて負極を形成
し、一方正極は、活物質として重量比で84:16の割
合に配合したNi(OH)2 とCoOを用い、これに結
着剤としてのポリテトラフルオロエチレン(PTFE)
と増粘剤としてのカルボキシルメチルセルロース(CM
C)を加えてペースト状とし、これを上記多孔質Ni焼
結板に充填し、乾燥し、加圧して、平面寸法:30mm×
40mm、厚さ:0.71〜0.73mmの形状とし、同じ
くこれの一辺にNi薄板を取り付けることにより形成
し、ついで、上記負極の両側に、それぞれポリプロピレ
ンポリエチレン共重合体のセパレータ板を介して上記正
極を配置し、さらに前記正極のそれぞれの外面から活物
質の脱落を防止する目的で塩化ビニール製の保護板では
さんで一体化し、これを塩化ビニール製のセルに装入
し、前記セルに電解液として30%KOH水溶液を装入
することにより電池を製造した。ついで、上記電池に、
充電速度:0.15C、放電速度:0.15C、充電電
気量:負極容量の135%の条件で充放電を行ない、前
記充電と放電を充放電1回と数え、前記電池が最大放電
容量を示すに至るまで前記充放電を繰り返し行なった。
表1,2に、この結果測定された最大放電容量を示すと
共に、前記最大放電容量の95%の放電容量を示すに要
した充放電回数を示し、これによって初期活性化を評価
した。
Further, for the purpose of evaluating the initial activation of the alloys 1 to 22 of the present invention and the conventional alloys, as described in detail below, the powders were powdered and incorporated into a battery as an active material, and the battery was discharged at maximum discharge. It is repeatedly charged and discharged until the capacity is reached, and 95% of the maximum discharge capacity is reached.
The number of times of charge and discharge until a discharge capacity corresponding to ± 1% was shown was measured. That is, first, a conventional alloy was coarsely crushed using a jaw crusher to obtain coarse particles having a diameter of 2 mm or less, and then the alloys 1 to 22 of the present invention and the coarsely crushed conventional alloy were finely crushed using a ball mill. Crushed 200
After making the particle size below the mesh and adding polytetrafluoroethylene (PTFE) as a binder and carboxymethyl cellulose (CMC) as a thickener to this to make a paste, a commercially available porous material having a porosity of 95% Quality N
i Sintered plate is filled, dried, pressed, and plane dimension: 30
mm × 40 mm, thickness: 0.40 to 0.43 mm (active material powder filling amount: about 1.8 g), and a Ni thin plate to be a lead is attached to one side of this by welding to form a negative electrode, On the other hand, the positive electrode uses Ni (OH) 2 and CoO mixed in a weight ratio of 84:16 as an active material, and polytetrafluoroethylene (PTFE) as a binder is added thereto.
And carboxymethyl cellulose as a thickener (CM
C) is added to form a paste, which is filled in the above-mentioned porous Ni sintered plate, dried, and pressed to obtain a plane dimension: 30 mm ×
40 mm, thickness: 0.71 to 0.73 mm, and also formed by attaching a Ni thin plate to one side of this, and then, on both sides of the negative electrode, through a polypropylene polyethylene copolymer separator plate, respectively. In order to prevent the active material from falling off from the outer surface of each of the positive electrodes, the positive electrodes are arranged and integrated with a protective plate made of vinyl chloride, which is then placed in a cell made of vinyl chloride and placed in the cell. A battery was manufactured by charging a 30% KOH aqueous solution as an electrolytic solution. Then, in the above battery,
Charging rate: 0.15C, discharging rate: 0.15C, charge amount: 135% of the negative electrode capacity, charging and discharging are performed, the charging and discharging are counted as one charging and discharging, and the battery has the maximum discharging capacity. The charging / discharging was repeated until the process shown in FIG.
Tables 1 and 2 show the maximum discharge capacities measured as a result, and the number of times of charging and discharging required to show a discharge capacity of 95% of the maximum discharge capacities, thereby evaluating the initial activation.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】表1,2に示される結果から、本発明合
金1〜22においては、表面および無数の亀裂内面に露
出し、これによって全体的に広い表面積で雰囲気中に露
出した状態にある水素反応生成物相のLa(Ce)−N
i系合金を通して、雰囲気中の水素が水素原子に解離さ
れて吸収され、この吸収水素が直接、あるいは同La
(Ce)水素化物を介してZr−Ni−Mn系合金の素
地相に拡散して水素吸蔵が行なわれるが、上記の通りき
わめて速い水素吸収能を有するLa(Ce)−Ni系合
金が全体的に広い表面積で分布するので、水素吸収速度
は相対的にきわめて速いものとなり、かつ初期活性化も
著しく促進されるようになり、また水素放出もこの逆の
機構によるものであるため速い速度での水素放出が行な
われるのに対して、従来合金においては、水素の吸収お
よび放出が主として上記La(Ce)−Ni系合金と同
じ性能を有するLa−Ni系合金の分散相によって行な
われるが、この分散相の水素雰囲気に対する露出面積
は、水素化処理による積極的亀裂形成が行なわれない分
だけ相対的に小さく、この結果水素吸収および放出速度
は遅くならざるを得ず、かつ初期活性化も遅いものとな
ることが明らかである。上述のように、この発明の水素
吸蔵合金においては、水素吸収および放出速度がきわめ
て速く、かつ実用に際してはすぐれた初期活性化を示す
ので、水素吸蔵合金が適用されている各種機械装置の高
出力化および高性能化、さらに省エネ化に大いに寄与す
るものである。
From the results shown in Tables 1 and 2, in the alloys 1 to 22 of the present invention, they are exposed to the surface and the inner surface of numerous cracks, and as a result, they are exposed to the atmosphere with a large surface area as a whole. La (Ce) -N in the hydrogen reaction product phase
Through the i-based alloy, hydrogen in the atmosphere is dissociated into hydrogen atoms and absorbed, and the absorbed hydrogen is directly or
Although hydrogen is absorbed by diffusing into the base phase of the Zr—Ni—Mn-based alloy via the (Ce) hydride, the La (Ce) -Ni-based alloy having an extremely fast hydrogen absorption ability is generally used as described above. Since it has a large surface area, the hydrogen absorption rate is relatively fast, and the initial activation is also significantly accelerated. Also, hydrogen release is due to the reverse mechanism, so that the hydrogen absorption rate is high. While hydrogen is released, in the conventional alloy, absorption and release of hydrogen are mainly performed by the dispersed phase of the La-Ni alloy having the same performance as that of the La (Ce) -Ni alloy. The exposed area of the dispersed phase to the hydrogen atmosphere is relatively small because active crack formation by hydrogenation is not performed, and as a result, the hydrogen absorption and desorption rates must be slow. And that becomes initial activation is slow is clear. As described above, in the hydrogen storage alloy of the present invention, the rate of hydrogen absorption and release is extremely fast, and it exhibits excellent initial activation in practical use. Therefore, high output of various mechanical devices to which the hydrogen storage alloy is applied is high. This greatly contributes to higher efficiency, higher performance, and energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の水素吸蔵合金の代表組織を例示する
概略組織拡大模写図である。
FIG. 1 is a schematic structure enlarged copy diagram illustrating a representative structure of a hydrogen storage alloy of the present invention.

【図2】この発明の水素吸蔵合金粉砕粉末の代表組織を
例示する概略組織拡大模写図である。
FIG. 2 is a schematic structure enlarged copy diagram illustrating a representative structure of the hydrogen-absorbing alloy crushed powder of the present invention.

【図3】従来水素吸蔵合金の代表組織を例示する概略組
織拡大模写図である。
FIG. 3 is an enlarged schematic structure diagram illustrating a representative structure of a conventional hydrogen storage alloy.

【図4】水素吸蔵合金の水素吸収放出速度を測定するの
に用いた装置の概略説明図である。
FIG. 4 is a schematic explanatory diagram of an apparatus used for measuring a hydrogen absorption / desorption rate of a hydrogen storage alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉生 良孝 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshitaka Tamao 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Zr:25〜45%、 Ti:1〜12%、 Mn:10〜20%、 V:2〜12%、 Laおよび/またはCe:0.5〜5%、 水素:0.01〜0.2%、を含有し、残りがNi(但
し、25%以上含有)と不可避不純物からなる全体組成
を有し、 かつZr−Ni−Mn系合金の素地相に水素反応生成物
相が分散分布し、前記水素反応生成物相の主体が、La
および/またはCeの水素化物と、Laおよび/または
Ce−Ni系合金で構成された組織を有し、 さらに前記水素反応生成物相の形成時に発生した無数の
亀裂が存在すると共に、前記亀裂内面には前記水素反応
生成物相が露出した構造を有すること、を特徴とする水
素吸蔵合金。
1. By weight%, Zr: 25 to 45%, Ti: 1 to 12%, Mn: 10 to 20%, V: 2 to 12%, La and / or Ce: 0.5 to 5%, Hydrogen: 0.01 to 0.2% is contained, the rest has a total composition of Ni (however, 25% or more is contained) and inevitable impurities, and hydrogen is contained in the base phase of the Zr-Ni-Mn-based alloy. The reaction product phase is dispersed and distributed, and the main component of the hydrogen reaction product phase is La
And / or Ce hydride and a structure composed of La and / or Ce-Ni based alloy, and further, there are innumerable cracks generated during the formation of the hydrogen reaction product phase, and the inner surface of the crack. Has a structure in which the hydrogen reaction product phase is exposed in the hydrogen storage alloy.
JP8105089A 1995-07-12 1996-04-25 Hydrogen storage alloy Pending JPH0978167A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8105089A JPH0978167A (en) 1995-07-12 1996-04-25 Hydrogen storage alloy
US08/678,048 US5885378A (en) 1995-07-12 1996-07-10 Hydrogen occluding alloy and electrode made of the alloy
DE69601605T DE69601605T2 (en) 1995-07-12 1996-07-11 Hydrogen storage alloy and electrode made from it
EP96111138A EP0753590B1 (en) 1995-07-12 1996-07-11 Hydrogen occluding alloy and electrode made of the alloy
CN96112266A CN1149769A (en) 1995-07-12 1996-07-12 Hydrogen-storage alloy and its produced electrode
KR1019960028234A KR970072537A (en) 1995-07-12 1996-07-12 A hydrogen absorbing alloy and an electrode made of the alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19917995 1995-07-12
JP7-199179 1995-07-12
JP8105089A JPH0978167A (en) 1995-07-12 1996-04-25 Hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH0978167A true JPH0978167A (en) 1997-03-25

Family

ID=26445438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8105089A Pending JPH0978167A (en) 1995-07-12 1996-04-25 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH0978167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894598A1 (en) * 2005-12-14 2007-06-15 Renault Sas Activation of alloys absorbing hydrogen comprising titanium and vanadium, useful in fuel cells and internal combustion engines, comprises hydrogenation and a thermal activation cycle comprising heating and cooling activation stages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894598A1 (en) * 2005-12-14 2007-06-15 Renault Sas Activation of alloys absorbing hydrogen comprising titanium and vanadium, useful in fuel cells and internal combustion engines, comprises hydrogenation and a thermal activation cycle comprising heating and cooling activation stages

Similar Documents

Publication Publication Date Title
JP3965209B2 (en) Low Co hydrogen storage alloy
US5900334A (en) Hydrogen occluding alloy
US5932369A (en) Hydrogen occluding alloy and electrode made of the alloy
EP0753590B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JP3697996B2 (en) Hydrogen storage alloy for battery negative electrode that enables high discharge capacity with a small number of charge / discharge cycles and improvement of low-temperature, high-rate discharge capacity with high-rate initial activation treatment
JPH0978167A (en) Hydrogen storage alloy
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH09176777A (en) Hydrogen storage alloy
JPH09176775A (en) Hydrogen storage alloy
JPH0987784A (en) Hydrogen storage alloy
JPH09176778A (en) Hydrogen storage alloy
JPH10195584A (en) Hydrogen storage alloy excellent in initial activity
JPH0987785A (en) Hydrogen storage alloy
JPH10195575A (en) Hydrogen storage alloy excellent in initial activity
JPH09176776A (en) Hydrogen storage alloy
EP0749170A2 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH0959733A (en) Hydrogen storage alloy
JPH10195569A (en) Hydrogen storage alloy excellent in initial activity
JPH10195574A (en) Hydrogen storage alloy excellent in initial activity
JPH0971836A (en) Hydrogen storage alloy
JPH0978176A (en) Hydrogen storage alloy
JPH05217578A (en) Manufacture of hydrogen storage alloy electrode
JPH10195580A (en) Hydrogen storage alloy excellent in initial activity
JPH09118948A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020305