JPH10195572A - Hydrogen storage alloy excellent in initial activity - Google Patents

Hydrogen storage alloy excellent in initial activity

Info

Publication number
JPH10195572A
JPH10195572A JP9002832A JP283297A JPH10195572A JP H10195572 A JPH10195572 A JP H10195572A JP 9002832 A JP9002832 A JP 9002832A JP 283297 A JP283297 A JP 283297A JP H10195572 A JPH10195572 A JP H10195572A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
hydrogen storage
phase
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9002832A
Other languages
Japanese (ja)
Inventor
Shinichiro Kakehashi
伸一郎 梯
Yoshio Takizawa
与司夫 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9002832A priority Critical patent/JPH10195572A/en
Publication of JPH10195572A publication Critical patent/JPH10195572A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy having a high hydrogen absorbing and releasing rates and excellent in initial activation. SOLUTION: This hydrogen storage alloy is composed of a Ti-Mn alloy having a composition consisting of, by atom, 19-33% Ti, 1-10% Zr, 0.05-0.4% Hf, 32-45% Mn, 3-13% Cr, 10-22% V, 2-10% Ni, 0.1-3.5% La and/or Ce, and the balance inevitable impurities and also having a structure constituted of primary phases of Ti-Mn alloy, numerous cracks developing with (La and/or Ce)-Ni alloy phases as origins by hydrogenation treatment, and secondary (La and/or Ce)-Ni alloy phases fluidized and distributed along the cracks by dehydrogenation treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばヒ−トポ
ンプの吸発熱源として組み込み、実用に供するに際し、
或いは、水素貯蔵、輸送用かつ、例えば、電池の電極な
どとして実用に供するに際しては、水素吸収および放出
速度がきわめて速く、優れた初期活性化を発揮する水素
貯蔵合金に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a heat pump incorporated in a heat pump, for example.
Alternatively, the present invention relates to a hydrogen storage alloy which has an extremely high hydrogen absorption and desorption rate and exhibits excellent initial activation when used for hydrogen storage and transport and practically as, for example, an electrode of a battery.

【0002】[0002]

【従来の技術】従来、ヒ−トポンプの吸発熱源として組
み込むことを目的とした下記の組成範囲を有するTi−
Mn系水素貯蔵合金が知られている。原子%で、 Ti:27.5〜31.5%、 Zr:1〜5%、 Mn:38.5〜44.5%、 Cr:7〜13%、 V:10〜16%、 Ni:1〜5%、 不可避不純物:残、 結晶構造当量比:[Mn(%)+Cr(%)+V(%)
+Ni(%)]/[Ti(%)+Zr(%)]=2.0
5〜2.20、 を満足する組成を有する水素貯蔵合金。
2. Description of the Related Art Conventionally, a Ti-pump having the following composition range intended to be incorporated as a heat-absorbing and heat-generating source of a heat pump.
Mn-based hydrogen storage alloys are known. Atomic%, Ti: 27.5 to 31.5%, Zr: 1 to 5%, Mn: 38.5 to 44.5%, Cr: 7 to 13%, V: 10 to 16%, Ni: 1 55%, inevitable impurities: residual, crystal structure equivalent ratio: [Mn (%) + Cr (%) + V (%)
+ Ni (%)] / [Ti (%) + Zr (%)] = 2.0
A hydrogen storage alloy having a composition that satisfies 5 to 2.20.

【0003】[0003]

【発明が解決しようとする課題】近年、水素貯蔵合金
が、多く適用されているヒートポンプなどの高出力化お
よび高性能化、また、電池の電極などとしての実用化に
際して、さらに省エネルギ−化に対する要求は強く、こ
れに伴ない、水素貯蔵合金に対し、大きな有効水素吸蔵
量と、更により一段と速い水素吸収放出速度と共に、よ
り短時間での初期活性化が可能であることが強く望まれ
ている。しかし上記従来の技術では、これら要求を十分
に満足させることは困難であるとの問題点があった。
In recent years, hydrogen storage alloys have been used for increasing the output and performance of heat pumps and the like, which have been widely applied, and for further saving energy in practical use as electrodes of batteries. There is a strong demand, and it is strongly desired that the hydrogen storage alloy be capable of initial activation in a shorter time with a large effective hydrogen storage amount and a much faster hydrogen absorption and release rate. I have. However, the above-described conventional technique has a problem that it is difficult to sufficiently satisfy these requirements.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、水素貯蔵合金の水素吸収放出速
度および初期活性化の向上をはかるべく研究を行なった
結果、原子%で、 Ti:19〜33%、 Zr:1〜10%、 Hf:0.05〜0.4% Mn:32〜45%、 Cr:3〜13%、 V:10〜22%、 Ni:2〜10%、 Laおよび/またはCe[以下、La(Ce)で示す] :0.1〜3.5%、 不可避不純物:残、 なる組成を有し、かつ、Ti−Mn系合金の主体相と、
水素化処理でLa(Ce)−Ni系合金相を起点として
発生した無数の亀裂と、脱水素処理で前記亀裂に沿って
流動化分布した再生La(Ce)−Ni系合金相で構成
された組織を有するTi−Mn基合金からなる水素貯蔵
合金は、上記La(Ce)−Ni系合金相がもつ触媒作
用で雰囲気中の水素分子(H2 )を水素原子(H)に解
離すると共に、解離した水素原子をTi−Mn系合金主
体相に比して一段と速い速度で吸収し、また放出はこの
逆の機構による作用をもつが、前記La(Ce)−Ni
系合金相は無数の亀裂に沿って流動化し、面状化した状
態になっており、この結果作用面積の著しい拡大化がな
されることから、上記の従来水素貯蔵合金における水素
吸収および放出速度に比して一段と速い速度での水素吸
収および放出が可能となり、さらに初期活性化時におけ
るTi−Mn系合金主体相の水素原子の吸収も面状化し
て広い作用面積を有するLa(Ce)−Ni系合金相を
介して行なわれることから、有効水素吸蔵量の増大と初
期活性化の著しい促進が計られ様になるとの研究結果を
得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of conducting research to improve the hydrogen absorption / release rate and the initial activation of the hydrogen storage alloy, Ti: 19 to 33%, Zr: 1 to 10%, and Hf: 0.05 to 0.4% Mn: 32 to 45%, Cr: 3 to 13%, V: 10 to 22%, Ni: 2 to 10%, La and / or Ce [hereinafter, indicated by La (Ce) ]: 0.1 to 3.5%, unavoidable impurities: residual, and a main phase of a Ti-Mn-based alloy;
It was composed of countless cracks generated from the La (Ce) -Ni-based alloy phase in the hydrogenation treatment and regenerated La (Ce) -Ni-based alloy phases fluidized and distributed along the cracks in the dehydrogenation treatment. A hydrogen storage alloy composed of a Ti—Mn base alloy having a structure dissociates hydrogen molecules (H 2 ) in the atmosphere into hydrogen atoms (H) by the catalytic action of the La (Ce) —Ni-based alloy phase, The dissociated hydrogen atoms are absorbed at a much higher rate than the Ti-Mn-based alloy main phase, and the release has an action by the reverse mechanism.
The system alloy phase is fluidized along countless cracks and is in a planar state.As a result, the working area is significantly enlarged. La (Ce) -Ni having a wide working area by absorbing and releasing hydrogen at a much higher speed than before, and by absorbing hydrogen atoms of the Ti-Mn-based alloy main phase during initial activation. The research results show that the increase in the effective hydrogen storage amount and the remarkable promotion of the initial activation can be achieved because the treatment is performed through the system alloy phase.

【0005】この発明は、上記の研究結果にも基づいて
なされたものであって、原子%で、 Ti:19〜33%、 Zr:1〜10%、 Hf:0.05〜0.4% Mn:32〜45%、 Cr:3〜13%、 V:10〜22%、 Ni:2〜10%、La(Ce):0.1〜3.5%、 不可避不純物:残、 なる組成を有し、かつ、Ti−Mn系合金の主体相と、
水素化処理でLa(Ce)−Ni系合金相を起点として
発生した無数の亀裂と、脱水素処理で前記亀裂に沿って
流動化分布した再生La(Ce)−Ni系合金相で構成
された組織を有するTi−Mn基合金からなる初期活性
の良好な水素貯蔵合金、に特徴を有するものである。
The present invention has been made on the basis of the above-mentioned research results. In atomic%, Ti: 19 to 33%, Zr: 1 to 10%, Hf: 0.05 to 0.4% Mn: 32 to 45%, Cr: 3 to 13%, V: 10 to 22%, Ni: 2 to 10%, La (Ce): 0.1 to 3.5%, unavoidable impurities: residual Having, and a main phase of Ti-Mn-based alloy,
It was composed of countless cracks generated from the La (Ce) -Ni-based alloy phase in the hydrogenation treatment and regenerated La (Ce) -Ni-based alloy phases fluidized and distributed along the cracks in the dehydrogenation treatment. A hydrogen storage alloy having a good initial activity and comprising a Ti—Mn base alloy having a structure.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。まず、上記せる組成を有するTi−Mn系
合金を溶製し、鋳造した後、このTi−Mn系合金のイ
ンゴットを真空または不活性ガスの非酸化性雰囲気中9
50〜1050℃の範囲内の所定温度に所定時間保持後
冷却の条件で均質化熱処理を施すとTi−Mn系合金の
主体相と、この主体相の結晶粒界にそって分散分布した
La(Ce)−Ni系合金相の2相組織を有するように
なるが、さらに前記均質化熱処理に引き続いて加圧水素
雰囲気中、200〜950℃の範囲内の所定温度に所定
時間保持後冷却の条件で水素化処理を施すと、前記均質
化熱処理で形成されたLa(Ce)−Ni系合金相が雰
囲気の水素と優先的に反応して、主体がLa(Ce)水
素化物と、La(Ce)−Ni系金属間化合物からなる
水素反応生成物相となると共に、前記水素反応生成物相
はTi−Mn系合金主体相に比して大きな熱膨脹を示す
ことから、前記主体相には前記水素反応生成物相を起点
として無数の亀裂が発生し、この亀裂内面には前記水素
反応生成物相が露出した状態となり、さらに引続いて5
00〜950℃の範囲内の所定温度に保持しつつ、所定
の真空度まで真空引きの脱水素処理を施すと、上記水素
化処理で生成した上記水素反応生成物相の中のLa(C
e)水素化物がLa(Ce)となり、このLa(Ce)
が共存のLa(Ce)−Ni系金属間化合物と反応し
て、上記水素化処理前のLa(Ce)−Ni系合金相が
再生されるが、このLa(Ce)−Ni系合金相の再形
成に際しては、これが流動化するので、前記亀裂にそっ
て面状に流れて分布するようになり、この結果のTi−
Mn系合金は、図1の概略組織拡大模写図で示される通
り、Ti−Mn系合金の主体相と、水素化処理でLa
(Ce)−Ni系合金相を起点として発生した無数の亀
裂と、脱水素処理で前記亀裂にそって流動化分布した再
生La(Ce)−Ni系合金相で構成された組織をもつ
ようになる。
Embodiments of the present invention will be described below. First, a Ti-Mn-based alloy having the above composition is melted and cast, and then the ingot of this Ti-Mn-based alloy is placed in a vacuum or in a non-oxidizing atmosphere of an inert gas.
When a homogenizing heat treatment is performed under the condition of cooling after holding at a predetermined temperature within a range of 50 to 1050 ° C. for a predetermined time, La (dispersed and distributed along the main phase of the Ti—Mn alloy and the crystal grain boundaries of the main phase). Although it has a two-phase structure of Ce) -Ni alloy phase, it is further cooled in a pressurized hydrogen atmosphere at a predetermined temperature in a range of 200 to 950 ° C. for a predetermined time after the homogenization heat treatment, followed by cooling. When the hydrogenation treatment is performed, the La (Ce) -Ni-based alloy phase formed by the homogenization heat treatment preferentially reacts with hydrogen in the atmosphere, and the main components are La (Ce) hydride and La (Ce). -Ni-based intermetallic compound and a hydrogen reaction product phase, and the hydrogen reaction product phase shows a larger thermal expansion than the Ti-Mn-based alloy main phase, so that the hydrogen reaction product phase Countless cracks starting from the product phase Occurs, this crack the inner surface in a state in which the hydrogen reaction product phase is exposed, 5 have further subsequent
When the dehydrogenation process is performed by evacuation to a predetermined degree of vacuum while maintaining a predetermined temperature in the range of 00 to 950 ° C., La (C) in the hydrogen reaction product phase generated by the hydrogenation process is obtained.
e) The hydride becomes La (Ce) and this La (Ce)
Reacts with the coexisting La (Ce) -Ni-based intermetallic compound to regenerate the La (Ce) -Ni-based alloy phase before the hydrogenation treatment. At the time of reforming, it is fluidized, so that it flows and distributes in a plane along the crack, and the resulting Ti-
As shown in the schematic microstructure enlarged view of FIG. 1, the Mn-based alloy has a main phase of the Ti—Mn-based alloy and La in the hydrogenation treatment.
It has an infinite number of cracks generated starting from the (Ce) -Ni-based alloy phase and a structure composed of a regenerated La (Ce) -Ni-based alloy phase fluidized and distributed along the cracks by the dehydrogenation treatment. Become.

【0007】また、上記Ti−Mn系合金においては、
これを構成するLa(Ce)−Ni系合金相は、これの
もつ触媒作用で雰囲気中の水素分子(H2 )を水素原子
(H)に解離すると共に、解離した水素原子をTi−M
n系合金主体相に比して一段と速い速度で吸収し、した
がって、前記主体相の水素原子の吸収は主として前記再
生La(Ce)−Ni系合金相を介して行なわれ、また
放出はこの逆の機構による作用をもつが、前記再生La
(Ce)−Ni系合金相は無数の亀裂にそって流動化
し、面状化した状態になっており、この結果作用面積の
著しい拡大化がなされることから、上記の従来水素貯蔵
合金における水素吸収および放出速度に比して一段と速
い速度での水素吸収および放出が可能となり、さらに初
期活性化時におけるTi−Mn系合金主体相の水素原子
の吸収も面状化して広い作用面積を有する再生La(C
e)−Ni系合金相を介して行なわれることから、初期
活性化の著しい促進がはかられるようになる。一般に、
水素貯蔵合金を、例えばヒ−トポンプの吸発熱源として
適用する場合には、水素貯蔵合金が組込まれた前記ヒ−
トポンプに対して、数回の水素吸収放出を繰り返すと、
水素吸蔵量が徐々に上昇し何れ一定の値となる初期活性
化が行なわれ、この初期活性化が行なわれた状態で実用
に供されるものである。活性化に必要な繰り返し数、水
素圧等は合金組成によって異なる。
[0007] In the above Ti-Mn alloy,
The La (Ce) -Ni alloy phase constituting this dissociates the hydrogen molecules (H 2 ) in the atmosphere into hydrogen atoms (H) by the catalytic action of the phase, and converts the dissociated hydrogen atoms into Ti-M
It absorbs at a much faster rate than the main phase of the n-based alloy, and therefore, the absorption of hydrogen atoms in the main phase is mainly performed through the regenerated La (Ce) -Ni-based alloy phase, and the release is performed in reverse. Has the function of
The (Ce) -Ni-based alloy phase is fluidized along countless cracks and is in a planar state. As a result, the working area is significantly increased. Hydrogen absorption and desorption can be performed at a much higher rate than the absorption and desorption rates, and the absorption of hydrogen atoms of the Ti-Mn-based alloy main phase during the initial activation is also planarized to have a wide active area. La (C
e) Since it is carried out through the -Ni-based alloy phase, remarkable promotion of initial activation can be achieved. In general,
When a hydrogen storage alloy is used as a heat absorbing / generating source of a heat pump, for example, the heat storage alloy incorporating the hydrogen storage alloy is used.
Repeated hydrogen absorption and release several times
Initial activation is performed so that the hydrogen storage amount gradually increases and eventually becomes a constant value, and the apparatus is put to practical use with the initial activation being performed. The number of repetitions, hydrogen pressure, and the like required for activation vary depending on the alloy composition.

【0008】なお、本発明の水素貯蔵合金では、JIS
規格による有効水素吸蔵量の測定は、すなわち(50℃
での吸蔵平衡圧:11気圧時の水素吸蔵量)−(−5℃
での放出平衡圧:1気圧時の水素吸蔵量)の条件により
測定した(図2参照)。
In the hydrogen storage alloy of the present invention, JIS
The measurement of the effective hydrogen storage capacity according to the standard is as follows: (50 ° C.
Equilibrium storage pressure: hydrogen storage capacity at 11 atm)-(-5 ° C)
(Equilibrium release pressure of hydrogen at 1 atm.) (See FIG. 2).

【0009】つぎに、この発明の水素貯蔵合金におい
て、これを構成するTi−Mn系合金の組成を上記の通
りに限定した理由を説明する。 (a) TiおよびZr 有効水素吸蔵量を増大させるには、Tiの一部をZrで
置換する必要があるが、その置換割合が、合金全体(1
00%)に占める割合で(以下、同じ)、1%未満また
はTiの含有割合が33.0%を越えて多くなった場合
では、圧力組成等温線における低温側曲線および高温側
曲線のプラト−圧が高くなり過ぎて、所望の有効水素吸
蔵量の増大が計れず、一方その置換割合が10%を越え
るか、またはTiの含有割合が19.0%未満となった
場合は逆に圧力組成等温線における低温側曲線および高
温側曲線のプラト−圧が著しく低下し、所望の大きな有
効水素吸蔵量を確保することが出来ないことから、その
含有割合を、それぞれTi:19.0〜33.0%、Z
r:1〜10%と定めた。
Next, the reason why the composition of the Ti—Mn alloy constituting the hydrogen storage alloy of the present invention is limited as described above will be described. (A) Ti and Zr In order to increase the effective hydrogen storage capacity, it is necessary to replace a part of Ti with Zr.
In the case where the content of Ti is less than 1% or the content of Ti is more than 33.0%, the low-temperature side curve and the high-temperature side curve in the pressure composition isotherm are calculated. If the pressure becomes too high to achieve the desired increase in the effective hydrogen storage capacity, and if the substitution ratio exceeds 10% or the Ti content ratio is less than 19.0%, the pressure composition Since the plate pressure of the low-temperature curve and the high-temperature curve in the isotherm is remarkably reduced, and a desired large effective hydrogen storage amount cannot be secured, the content ratio is set to Ti: 19.0 to 33.0 respectively. 0%, Z
r: 1 to 10%.

【0010】(b) Hf Hf成分には、Zr成分と共にTi−Mn系合金の素地
相を形成してZr成分によってもたらされる上記の作用
を十分に発揮させる作用があるが、その含有量が0.0
5%未満では、所望の効果を発揮することが出来ず、一
方その割合が0.4%を越えると、Zrによる上記の作
用が阻害される様になることから、その含有量を0.0
5〜0.4%と定めた。
(B) Hf The Hf component has a function of forming a base phase of the Ti—Mn alloy together with the Zr component to sufficiently exert the above-mentioned action brought about by the Zr component. .0
If it is less than 5%, the desired effect cannot be exerted. On the other hand, if the content exceeds 0.4%, the above-mentioned action by Zr will be impaired.
It was determined to be 5 to 0.4%.

【0011】(c) Mn、Cr、V、およびNi さらに、有効水素吸蔵量の増大には、上記の通りTiの
Zrによる一部置換に加えて 、MnのCr、Vおよび
Niによる一部置換が不可欠であり、更に言い換えれ
ば、Tiの所定量のZrによる一部置換が行なわれない
場合や、置換元素であるCr、VおよびNiのうちの少
なくともいずれかの元素が含有しない場合は勿論のこ
と、Mnのそれぞれ所定量のCr、VおよびNiによる
一部置換が行われない場合には、所望の大きな有効水素
吸蔵量を確保することが出来ないものであり、その理由
は、Mn、Cr、VおよびNi:2%未満であったり、
またMn:45%、Cr:13%、V:22%およびN
i:10%をそれぞれ越えると、圧力組成等温線におけ
るプラト−の傾きやヒステリシスが大きくなることにな
り、したがって、その含有割合を、それぞれMn:32
〜45%、Cr:3〜13%、V:10〜22%および
Ni:2〜10%と定めた。
(C) Mn, Cr, V, and Ni Further, as described above, in addition to the partial replacement of Ti by Zr, the partial replacement of Mn by Cr, V and Ni Is indispensable. In other words, when partial replacement of Ti with a predetermined amount of Zr is not performed, or when at least one of Cr, V, and Ni as replacement elements is not contained, it is needless to say that That is, if partial replacement of Mn with predetermined amounts of Cr, V and Ni is not performed, a desired large effective hydrogen storage amount cannot be secured. , V and Ni: less than 2%,
Mn: 45%, Cr: 13%, V: 22% and N
When i exceeds 10%, the slope and hysteresis of the plate in the pressure composition isotherm become large.
45%, Cr: 3 to 13%, V: 10 to 22%, and Ni: 2 to 10%.

【0012】(d) La(Ce) これらの成分は、上記の通り雰囲気中の水素を主体相よ
り一段と速い速度で解離吸収し、かつ再結合させて雰囲
気中に放出する作用を有する再生La(Ce)−Ni系
合金相を形成するのに不可欠な成分であり、したがって
その割合が0.1%未満では、前記再生La(Ce)−
Ni系合金相の生成割合が少なすぎて、これのもつ上記
作用を十分に発揮させることができず、一方その割合が
3.5%を越えると、水素吸蔵能の小さい前記再生La
(Ce)−Ni系合金相の割合が多くなりすぎ、合金全
体の水素吸蔵量が低下するようになることから、その割
合を0.1〜3.5%、望ましくは0.5〜3.0%と
定めた。
(D) La (Ce) As described above, these components dissociate and absorb hydrogen in the atmosphere at a much higher rate than the main phase, and recombined to release hydrogen into the atmosphere. Ce) -Ni is an indispensable component for forming a Ni-based alloy phase. Therefore, if its proportion is less than 0.1%, the recycled La (Ce)-
If the proportion of the Ni-based alloy phase is too small, the above-mentioned action of the Ni-based alloy phase cannot be sufficiently exerted. On the other hand, if the proportion exceeds 3.5%, the regenerated La having a small hydrogen storage capacity is not used.
Since the proportion of the (Ce) -Ni-based alloy phase becomes too large, the hydrogen storage capacity of the entire alloy decreases, so that the proportion is 0.1 to 3.5%, preferably 0.5 to 3. It was set to 0%.

【0013】なお、この発明の水素貯蔵合金は、通常の
機械的粉砕により所定粒度の粉末とすることができるほ
か、加圧水素雰囲気中、10〜200℃の範囲内の所定
温度に加熱の水素吸収と、真空排気による水素放出の水
素化粉砕によっても粉末とすることができる。
The hydrogen storage alloy of the present invention can be converted into a powder having a predetermined particle size by ordinary mechanical pulverization, and can be heated to a predetermined temperature within a range of 10 to 200 ° C. in a pressurized hydrogen atmosphere. The powder can also be obtained by hydrogenation and pulverization of hydrogen release by evacuation.

【0014】[0014]

【実施例】つぎに、この発明の水素貯蔵合金を実施例に
より具体的に説明する。通常の高周波誘導溶解炉にて、
原料としていずれも99.9%以上の純度をもったT
i,Zr、Hf,Mn,Cr、V,Ni、La、および
Ceを用い、Ar雰囲気中で溶解して、それぞれ表1,
2に示される組成をもったTi−Mn系合金溶湯を調製
し、水冷銅鋳型に鋳造してインゴットとし、このインゴ
ットに、真空雰囲気中、それぞれ表1に示した所定温度
に20時間保持の条件で均質化熱処理を施し、ついでそ
れぞれ同じく表2に示した所定の圧力の水素雰囲気中、
まず室温で1時間保持した後、昇温を開始して同じく表
2に示した所定温度に加熱し、この温度に30分間保持
の水素化処理を施して、上記均質化熱処理で形成され
た、Ti−Mn系合金の主体相中に、その結晶粒界にそ
って分散分布するLa(Ce)−Ni系合金相を、La
(Ce)水素化物とLa(Ce)−Ni系金属間化合物
を主体とする水素反応生成物相とし(この水素反応生成
物相の形成によってこれを起点として無数の亀裂が発生
する)、引続いて前記水素化処理温度を保持したまま、
雰囲気が10-5torrの真空度となるまで真空引きの脱水
素処理を施して、前記水素反応生成物相をLa(Ce)
−Ni系合金相に再生する(この脱水素処理の間、反応
物は流動化しいるので、前記再生La(Ce)−Ni系
合金相は、図1の本発明合金の組織に示されるように無
数の亀裂にそって流れて面状に分布した状態になる)こ
とにより本発明水素貯蔵合金1〜16(以下、本発明合
金1〜16という)をそれぞれ製造した。
Next, the hydrogen storage alloy of the present invention will be described in detail with reference to examples. In a normal high-frequency induction melting furnace,
As a raw material, T has a purity of 99.9% or more.
Using i, Zr, Hf, Mn, Cr, V, Ni, La, and Ce, dissolved in an Ar atmosphere,
2. A molten Ti—Mn alloy having the composition shown in FIG. 2 was prepared and cast into a water-cooled copper mold to form an ingot, and the ingot was kept in a vacuum atmosphere at a predetermined temperature shown in Table 1 for 20 hours. , And then in a hydrogen atmosphere at a predetermined pressure also shown in Table 2,
First, after holding at room temperature for 1 hour, the temperature was raised and heated to the predetermined temperature shown in Table 2 as well, subjected to a hydrogenation treatment at this temperature for 30 minutes, and formed by the above homogenization heat treatment. The La (Ce) -Ni alloy phase dispersed and distributed along the crystal grain boundaries in the main phase of the Ti-Mn alloy is changed to La
(Ce) A hydrogen reaction product phase mainly composed of a hydride and a La (Ce) -Ni-based intermetallic compound (innumerable cracks are generated starting from the hydrogen reaction product phase due to the formation of the hydrogen reaction product phase). While maintaining the hydrogenation temperature,
A vacuum dehydrogenation treatment is performed until the atmosphere reaches a degree of vacuum of 10 -5 torr, and the hydrogen reaction product phase is La (Ce).
-Regenerate into Ni-based alloy phase (During this dehydrogenation treatment, the reactants are fluidized, so that the regenerated La (Ce) -Ni-based alloy phase is as shown in the structure of the alloy of the present invention in FIG. Hydrogen storage alloys 1 to 16 of the present invention (hereinafter referred to as alloys of the present invention 1 to 16) were produced by flowing along innumerable cracks to form a planar distribution.

【0015】また、比較の目的で、Ti−Mn系合金溶
湯の組成を表2に示される通りとし、かつ均質化熱処理
後の水素化処理および脱水素処理を行なわない以外は同
一の条件で従来水素貯蔵合金(以下、従来合金という)
を製造した。
For the purpose of comparison, the composition of the molten Ti—Mn alloy is as shown in Table 2, and the conventional conditions are the same under the same conditions except that the hydrogenation treatment and the dehydrogenation treatment after the homogenization heat treatment are not performed. Hydrogen storage alloy (hereinafter referred to as conventional alloy)
Was manufactured.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】つぎに、上記の本発明合金1〜16および
従来合金について、それぞれ水素吸収速度と水素放出速
度をJIS・H7202の「水素吸蔵合金の水素化速度
試験測定法」にもとづいて測定した。
Next, with respect to the alloys 1 to 16 of the present invention and the conventional alloy, the hydrogen absorption rate and the hydrogen release rate were measured in accordance with JIS H7202 "Hydrogen storage alloy hydrogenation rate test measurement method".

【0019】まず、水素吸収速度の測定装置について
は、図3の概略説明図で示される通りで、測定に先だっ
て、本発明合金1〜16および従来合金を、圧力容器に
封入し、水素雰囲気圧力:8気圧、加熱温度:200
℃、保持時間:1時間の条件での水素吸収と、真空排気
による水素放出からなる水素化粉砕を行なって200m
esh以下の粒度をもった粉末とし、この粉末を用いて
以下に示す条件で測定を行なった。 (a)粉末を浴(油または水)に浸漬した容器内に封入
し、前記浴の温度を200℃に保持した状態で、弁V
b:閉、弁VaおよびVc:開として水素ボンベから加
圧水素を系内に導入し、系内を30気圧とした時点で弁
Va:閉とし、系内の圧力が一定圧力に降下する(粉末
による水素吸収完了)まで放置して粉末の初期活性化を
行ない、(b)系内の圧力が一定圧力(約20気圧程
度)に降下した時点で弁Vb:開とし、真空ポンプで系
内を10-2トルの真空雰囲気とした後、浴温を20℃と
し、弁VbおよびVc:閉、弁Va:開にして容器を除
く系内に水素を導入し、その圧力が30気圧となった時
点で弁Va:閉、弁Vc:開とし、この状態で系内の時
間に対する圧力降下を測定し、この結果の圧力降下曲線
から粉末の水素吸蔵量が80%になった時点の水素吸蔵
量とそれまでに要した時間を求め、(80%吸蔵時の水
素吸蔵量)÷(80%水素吸蔵量に要した時間)を算出
し、この値を水素吸収速度とした。
First, as shown in the schematic explanatory view of FIG. 3, a hydrogen absorption rate measuring apparatus is described. Prior to measurement, alloys 1 to 16 of the present invention and a conventional alloy are sealed in a pressure vessel, and the hydrogen atmosphere pressure is measured. : 8 atm, heating temperature: 200
C., holding time: 200 m after hydrogen crushing consisting of absorption of hydrogen under the condition of 1 hour and release of hydrogen by evacuation.
A powder having a particle size of esh or less was used, and measurement was performed using the powder under the following conditions. (A) The powder was sealed in a container immersed in a bath (oil or water), and the temperature of the bath was kept at 200 ° C.
b: Closed, valves Va and Vc: Open and pressurized hydrogen was introduced into the system from a hydrogen cylinder, and when the pressure in the system reached 30 atm, valve Va was closed and the pressure in the system dropped to a constant pressure (powder (The hydrogen absorption is completed), and the powder is initially activated. (B) When the pressure in the system drops to a constant pressure (about 20 atm), the valve Vb is opened and the system is opened by a vacuum pump. After a vacuum atmosphere of 10 -2 Torr, the bath temperature was set to 20 ° C., the valves Vb and Vc were closed and the valve Va was opened to introduce hydrogen into the system except for the container, and the pressure became 30 atm. At this time, the valve Va: closed and the valve Vc: open, the pressure drop with respect to time in the system was measured in this state, and the hydrogen storage amount at the time when the hydrogen storage amount of the powder became 80% was obtained from the resulting pressure drop curve. And the time required until then, (hydrogen occlusion amount at 80% occlusion) ÷ (80 Calculating the time) that takes in hydrogen storage capacity was the value as hydrogen absorption rate.

【0020】また、水素放出速度については、上記の水
素吸収速度測定後の状態、すなわち弁VaおよびVb:
閉、弁Vc:開であって系内の圧力が一定圧(通常20
気圧前後)となった状態で、浴温を100〜300℃の
範囲内の粉末の水素放出適正温度、例えば120℃とし
た後、弁Vb:開、弁Vc:閉として容器を除く系内を
10-2Torrに排気し、ついで弁Vb:閉、弁Vc:開
とした状態で、系内の時間に対する圧力上昇を測定し、
この結果の圧力上昇曲線から粉末の水素放出量が80%
になった時点の水素放出量とそれまでに要した時間を求
め、(80%放出時の水素放出量)÷(80%水素放出
に要した時間)を算出し、この値を水素放出速度とし
た。これらの結果を表3に示した。
Regarding the hydrogen release rate, the state after the above-mentioned hydrogen absorption rate measurement, that is, the valves Va and Vb:
Closed, valve Vc: Open and the pressure in the system is constant (typically 20
(Atmospheric pressure), the bath temperature is set to an appropriate temperature for releasing hydrogen of powder in the range of 100 to 300 ° C., for example, 120 ° C., then the valve Vb is opened and the valve Vc is closed to remove the inside of the system. Exhaust to 10 -2 Torr, then measure the pressure rise in the system with the valve Vb: closed and valve Vc: open,
From the resulting pressure rise curve, the hydrogen release amount of the powder was 80%.
The amount of hydrogen released at the time when became and the time required until then were calculated, and (the amount of hydrogen released at the time of 80% release) divided by (the time required for the release of 80% hydrogen) was calculated. did. Table 3 shows the results.

【0021】次いで、上記本発明合金1〜16および従
来合金について、これをジョークラッシャにて粗粉砕し
て直径:2mm以下の粗粒とし、さらにこれをボ−ルミ
ルで微粉砕して粒度:350メッシュ以下の微粉末とし
た状態で、JIS規格にもとづいて、(50℃での吸蔵
平衡圧:11気圧時の水素吸蔵量)−(−5℃での放出
平衡圧:1気圧時の水素吸蔵量)を測定し、算出して有
効水素吸蔵量を求めた。この結果を表3に示した。
Next, the alloys 1 to 16 of the present invention and the conventional alloy are coarsely pulverized with a jaw crusher to coarse particles having a diameter of 2 mm or less, and further finely pulverized with a ball mill to obtain a particle size of 350. In the state of fine powder having a mesh size or less, based on JIS standards, (storage equilibrium pressure at 50 ° C .: hydrogen storage amount at 11 atm) − (equilibrium release pressure at −5 ° C .: hydrogen storage at 1 atm. Was measured and calculated to obtain an effective hydrogen storage amount. The results are shown in Table 3.

【0022】さらに、上記の発明合金1〜16および従
来合金について、初期活性化を評価する目的で、まず、
本発明合金1〜16と従来合金をジョークラッシャを用
いて粗粉砕して直径:2mm以下の粗粒とし、引続いて本
発明合金1〜23および前記粗粒の従来合金をボールミ
ルを用いて微粉砕して200メッシュ以下の粒度とし、
これに結着剤としてのポリテトラフルオロエチレン(P
TFE)と増粘剤としてのカルボキシルメチルセルロー
ス(CMC)を加えてペースト状とした後、95%の気
孔率を有する市販の発泡Ni板に充填し、乾燥し、加圧
して、平面寸法:30mm×40mm、厚さ:0.40〜
0.43mmの形状(前記活物質粉末充填量:約1.8
g)とし、これの一辺にリードとなるNi薄板を溶接に
より取り付けて負極を形成し、一方正極は、活物質とし
てNi(OH)2 を用い、これに結着剤としてのポリテ
トラフルオロエチレン(PTFE)と増粘剤としてのカ
ルボキシルメチルセルロース(CMC)を加えてペース
ト状とし、これを上記発泡Ni板に充填し、乾燥し、加
圧して、平面寸法:30mm×40mm、厚さ:0.71〜
0.73mmの形状とし、同じくこれの一辺にNi薄板を
取り付けることにより形成し、ついで、上記負極の両側
に、それぞれポリプロピレンポリエチレン共重合体のセ
パレータ板を介して上記正極を配置し、さらに前記正極
のそれぞれの外面から活物質の脱落を防止する目的で塩
化ビニール製の保護板ではさんで一体化し、これを塩化
ビニール製のセルに装入し、前記セルに電解液として3
5%KOH水溶液を装入することにより電池を製造し
た。ついで、上記電池に、充電速度:0.20C、放電
速度:0.20C、充電電気量:負極容量の135%の
条件で充放電を行ない、前記充電と放電を充放電1回と
数え、前記電池が最大放電容量を示すに至るまで前記充
放電を繰り返し行なった。表3に、前記最大放電容量の
95%の放電容量を示すに要した充放電回数を示し、こ
れによって初期活性化を評価した。
Further, for the purpose of evaluating the initial activation of the above-mentioned alloys 1 to 16 and the conventional alloy, first,
The alloys 1 to 16 of the present invention and the conventional alloy are coarsely pulverized using a jaw crusher to obtain coarse particles having a diameter of 2 mm or less. Subsequently, the alloys 1 to 23 of the present invention and the conventional alloy having the coarse particles are finely ground using a ball mill. Crushed to a particle size of 200 mesh or less,
In addition, polytetrafluoroethylene (P
TFE) and carboxymethylcellulose (CMC) as a thickener were added to form a paste, filled into a commercially available Ni plate having a porosity of 95%, dried, and pressed to obtain a plane size of 30 mm × 40 mm, thickness: 0.40
0.43 mm shape (the active material powder filling amount: about 1.8
g), and a Ni thin plate serving as a lead is attached to one side of the negative electrode by welding to form a negative electrode, while the positive electrode uses Ni (OH) 2 as an active material, and uses polytetrafluoroethylene (B) as a binder. PTFE) and carboxymethylcellulose (CMC) as a thickener were added to form a paste, which was filled in the above foamed Ni plate, dried, and pressed to obtain a plane size: 30 mm × 40 mm, thickness: 0.71 ~
It is formed by attaching a Ni thin plate to one side of the 0.73 mm shape. Then, the positive electrode is disposed on both sides of the negative electrode with a separator plate made of a polypropylene-polyethylene copolymer interposed therebetween. In order to prevent the active material from falling off from the respective outer surfaces, they are integrated by sandwiching them with a protective plate made of vinyl chloride, and this is charged into a cell made of vinyl chloride.
A battery was manufactured by charging a 5% KOH aqueous solution. Then, the battery was charged and discharged under the conditions of a charge rate: 0.20 C, a discharge rate: 0.20 C, a charged amount of electricity: 135% of the negative electrode capacity, and the charge and discharge were counted as one charge and discharge. The charging and discharging were repeated until the battery reached the maximum discharge capacity. Table 3 shows the number of times of charging and discharging required to show a discharge capacity of 95% of the maximum discharge capacity, and the initial activation was evaluated based on the number of times.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】表3に示される結果から、本発明合金1
〜16は、いずれも無数の亀裂にそって流動化分布して
広い作用面積をもつようになった再生La(Ce)−N
i系合金相の作用で、La−Ni系合金相が結晶粒界に
そって分散分布する従来合金に比して一段と速い水素吸
収および放出速度を示し、大きい有効水素吸蔵量を示す
と共に、さらに初期活性化のすぐれたものとなることが
明らかである。上述のように、この発明の水素貯蔵合金
においては、大きい有効水素吸蔵量を持つと共に、水素
吸収および放出速度がきわめて速く、かつ実用に際して
はすぐれた初期活性化を示すので、水素貯蔵合金が適用
されている各種機械装置の高出力化および高性能化、さ
らに省エネ化に大いに寄与するものである。
According to the results shown in Table 3, the alloy of the present invention 1
Nos. 16 to 16 are regenerated La (Ce) -N fluidized and distributed along innumerable cracks to have a wide working area.
Due to the action of the i-based alloy phase, the La-Ni-based alloy phase exhibits a much faster hydrogen absorption and desorption rate as compared to the conventional alloy in which the La-Ni-based alloy phase is dispersed and distributed along the crystal grain boundaries. It is clear that the initial activation is excellent. As described above, the hydrogen storage alloy of the present invention has a large effective hydrogen storage capacity, a very fast hydrogen absorption and desorption rate, and excellent initial activation in practical use. It greatly contributes to higher output, higher performance, and energy saving of various mechanical devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水素貯蔵合金の概略組織拡大模写図
である。
FIG. 1 is a schematic enlarged schematic view of a structure of a hydrogen storage alloy of the present invention.

【図2】 本発明の水素貯蔵合金の圧力組成等温線を示
す図である。
FIG. 2 is a diagram showing a pressure composition isotherm of the hydrogen storage alloy of the present invention.

【図3】 水素貯蔵合金の水素吸収放出速度を測定する
のに用いた装置の概略説明図である。
FIG. 3 is a schematic explanatory view of an apparatus used for measuring a hydrogen absorption / release rate of a hydrogen storage alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子%で、 Ti:19〜33%、 Zr:1〜10%、 Hf:0.05〜0.4% Mn:32〜45%、 Cr:3〜13%、 V:10〜22%、 Ni:2〜10%、 Laおよび/またはCe:0.1〜3.5%、 不可避不純物:残、 なる組成を有し、かつ、Ti−Mn系合金の主体相と、
水素化処理でLaおよび/またはCe−Ni系合金相を
起点として発生した無数の亀裂と、脱水素処理で前記亀
裂に沿って流動化分布した再生Laおよび/またはCe
−Ni系合金相で構成された組織を有するTi−Mn基
合金からなることを特徴とする初期活性の良好な水素貯
蔵合金。
1. Atomic%, Ti: 19 to 33%, Zr: 1 to 10%, Hf: 0.05 to 0.4% Mn: 32 to 45%, Cr: 3 to 13%, V: 10 -22%, Ni: 2-10%, La and / or Ce: 0.1-3.5%, unavoidable impurities: residual, and a main phase of a Ti-Mn alloy;
Innumerable cracks generated from the La and / or Ce-Ni-based alloy phase in the hydrogenation treatment and regenerated La and / or Ce fluidized and distributed along the cracks in the dehydrogenation treatment
-A hydrogen storage alloy having a good initial activity, comprising a Ti-Mn-based alloy having a structure composed of a Ni-based alloy phase.
JP9002832A 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity Withdrawn JPH10195572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9002832A JPH10195572A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9002832A JPH10195572A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Publications (1)

Publication Number Publication Date
JPH10195572A true JPH10195572A (en) 1998-07-28

Family

ID=11540402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9002832A Withdrawn JPH10195572A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Country Status (1)

Country Link
JP (1) JPH10195572A (en)

Similar Documents

Publication Publication Date Title
JP3965209B2 (en) Low Co hydrogen storage alloy
EP0806803B1 (en) Hydrogen occluding alloy, process for its preparation and electrode
US5932369A (en) Hydrogen occluding alloy and electrode made of the alloy
EP0753590B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JPH10195569A (en) Hydrogen storage alloy excellent in initial activity
JPH10195572A (en) Hydrogen storage alloy excellent in initial activity
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH10195571A (en) Hydrogen storage alloy excellent in initial activity
JPH10195584A (en) Hydrogen storage alloy excellent in initial activity
JPH10195575A (en) Hydrogen storage alloy excellent in initial activity
JPH10195570A (en) Hydrogen storage alloy excellent in initial activity
JPH10195583A (en) Hydrogen storage alloy excellent in initial activity
JPH10195580A (en) Hydrogen storage alloy excellent in initial activity
JPH09176778A (en) Hydrogen storage alloy
JPH10195581A (en) Hydrogen storage alloy excellent in initial activity
JPH10195574A (en) Hydrogen storage alloy excellent in initial activity
JPH10195582A (en) Hydrogen storage alloy excellent in initial activity
JPS63291363A (en) Hydrogen absorption alloy
JPH0978167A (en) Hydrogen storage alloy
JPH10195579A (en) Hydrogen storage alloy excellent in initial activity
JPH09118948A (en) Hydrogen storage alloy
JPH09176777A (en) Hydrogen storage alloy
JPH10195578A (en) Hydrogen storage alloy excellent in initial activity
JPH10195573A (en) Hydrogen storage alloy excellent in initial activity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406