JPH10195570A - Hydrogen storage alloy excellent in initial activity - Google Patents

Hydrogen storage alloy excellent in initial activity

Info

Publication number
JPH10195570A
JPH10195570A JP9002830A JP283097A JPH10195570A JP H10195570 A JPH10195570 A JP H10195570A JP 9002830 A JP9002830 A JP 9002830A JP 283097 A JP283097 A JP 283097A JP H10195570 A JPH10195570 A JP H10195570A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
hydrogen storage
phase
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9002830A
Other languages
Japanese (ja)
Inventor
Shinichiro Kakehashi
伸一郎 梯
Yoshio Takizawa
与司夫 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9002830A priority Critical patent/JPH10195570A/en
Publication of JPH10195570A publication Critical patent/JPH10195570A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy having high hydrogen absorbing and releasing rates and excellent in initial activation. SOLUTION: This hydrogen storage alloy is composed of a Ti-Ni alloy having a composition consisting of, by atom, 19-33% Ti, 1-10% Zr, 32-45% Mn, 3-13% Cr, 10-22% V, 2-10% Ni, 0.1-3.5% Re (where Re represents a mixture consisting of one or >=2 elements among La, Ce, Pr, and Nd), and the balance inevitable impurities and also having a structure constituted of primary phases of Ti-Mn alloy, numerous cracks developing with Re-Ni alloy phases as origins by hydrogenation treatment, and secondary Re-Ni alloy phases fluidized and distributed along the cracks by dehydrogenation treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばヒ−トポ
ンプの吸発熱源として組み込み、実用に供するに際し、
或いは、水素貯蔵、輸送用かつ、例えば、電池の電極な
どとして実用に供するに際しては、水素吸収および放出
速度がきわめて速く、優れた初期活性化を発揮する水素
貯蔵合金に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a heat pump incorporated in a heat pump, for example.
Alternatively, the present invention relates to a hydrogen storage alloy which has an extremely high hydrogen absorption and desorption rate and exhibits excellent initial activation when used for hydrogen storage and transport and practically as, for example, an electrode of a battery.

【0002】[0002]

【従来の技術】従来、ヒ−トポンプの吸発熱源として組
み込むことを目的とした下記の組成範囲を有するTi−
Mn系水素貯蔵合金が知られている。原子%で、 Ti:27.5〜31.5%、 Zr:1〜5%、 Mn:38.5〜44.5%、 Cr:7〜13%、 V:10〜16%、 Ni:1〜5%、 不可避不純物:残、 結晶構造当量比:[Mn(%)+Cr(%)+V(%)
+Ni(%)]/[Ti(%)+Zr(%)]=2.0
5〜2.20、 を満足する組成を有する水素貯蔵合金。
2. Description of the Related Art Conventionally, a Ti-pump having the following composition range intended to be incorporated as a heat-absorbing and heat-generating source of a heat pump.
Mn-based hydrogen storage alloys are known. Atomic%, Ti: 27.5 to 31.5%, Zr: 1 to 5%, Mn: 38.5 to 44.5%, Cr: 7 to 13%, V: 10 to 16%, Ni: 1 55%, inevitable impurities: residual, crystal structure equivalent ratio: [Mn (%) + Cr (%) + V (%)
+ Ni (%)] / [Ti (%) + Zr (%)] = 2.0
A hydrogen storage alloy having a composition that satisfies 5 to 2.20.

【0003】[0003]

【発明が解決しようとする課題】近年、水素貯蔵合金
が、多く適用されているヒートポンプなどの高出力化お
よび高性能化、また、電池の電極などとしての実用化に
際して、さらに省エネルギ−化に対する要求は強く、こ
れに伴ない、水素貯蔵合金に対し、大きな有効水素吸蔵
量と、更により一段と速い水素吸収放出速度と共に、よ
り短時間での初期活性化が可能であることが強く望まれ
ている。しかし上記従来の技術では、これら要求を十分
に満足させることは困難であるとの問題点があった。
In recent years, hydrogen storage alloys have been used for increasing the output and performance of heat pumps and the like, which have been widely applied, and for further saving energy in practical use as electrodes of batteries. There is a strong demand, and it is strongly desired that the hydrogen storage alloy be capable of initial activation in a shorter time with a large effective hydrogen storage amount and a much faster hydrogen absorption and release rate. I have. However, the above-described conventional technique has a problem that it is difficult to sufficiently satisfy these requirements.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、水素貯蔵合金の有効水素吸蔵量
と水素吸収放出速度および初期活性化の向上をはかるべ
く研究を行なった結果、原子%で、 Ti:19〜33%、 Zr:1〜10%、 Mn:32〜45%、 Cr:3〜13%、 V:10〜22%、 Ni:2〜10%、 Re:0.1〜3.5%、(ここでReは、La,Ce,PrおよびNdの中 の1種または2種以上からなる混合物を表す、以下同様。) 不可避不純物:残、 なる組成を有し、かつ、Ti−Mn系合金の主体相と、
水素化処理でRe−Ni系合金相を起点として発生した
無数の亀裂と、脱水素処理で前記亀裂に沿って流動化分
布した再生Re−Ni系合金相で構成された組織を有す
るTi−Mn基合金からなる水素吸蔵合金は、上記Re
−Ni系合金相がもつ触媒作用で雰囲気中の水素分子
(H 2 )を水素原子(H)に解離すると共に、解離した
水素原子をTi−Mn系合金主体相に比して一段と速い
速度で吸収し、また放出はこの逆の機構による作用をも
つが、前記Re−Ni系合金相は無数の亀裂に沿って流
動化し、面状化した状態になっており、この結果作用面
積の著しい拡大化がなされることから、上記の従来水素
貯蔵合金における水素吸収および放出速度に比して一段
と速い速度での水素吸収および放出が可能となり、さら
に初期活性化時におけるTi−Mn系合金主体相の水素
原子の吸収も面状化して広い作用面積を有するRe−N
i系合金相を介して行なわれることから、有効水素吸蔵
量の増大と初期活性化の著しい促進が計られる様になる
との研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoint, the effective hydrogen storage capacity of the hydrogen storage alloy
The hydrogen absorption and release rates and the initial activation
As a result of extensive research, Ti: 19 to 33%, Zr: 1 to 10%, Mn: 32 to 45%, Cr: 3 to 13%, V: 10 to 22%, Ni: 2 to 2 10%, Re: 0.1 to 3.5%, (where Re represents one or more of La, Ce, Pr, and Nd, the same applies hereinafter) Inevitable impurities: residue And a main phase of a Ti-Mn-based alloy,
Generated starting from Re-Ni alloy phase in hydrogenation treatment
Countless cracks and fluidization along the cracks in the dehydrogenation process
It has a structure composed of a recycled Re-Ni-based alloy phase
A hydrogen storage alloy made of a Ti-Mn-based alloy
-Hydrogen molecules in the atmosphere due to the catalytic action of the Ni-based alloy phase
(H Two) Is dissociated into hydrogen atoms (H) and dissociated
Hydrogen atoms are much faster than Ti-Mn alloy-based phases
Absorption at a rate, and release also works by the opposite mechanism.
However, the Re-Ni alloy phase flows along innumerable cracks.
And the surface is in a state of being planarized.
Since the product is significantly expanded, the above conventional hydrogen
One step compared to hydrogen absorption and release rates in storage alloys
Hydrogen absorption and desorption at high speed.
Of Ti-Mn-based alloy main phase during initial activation
Re-N which has a large area of action by atomizing the absorption of atoms
Effective hydrogen storage because it is performed through the i-based alloy phase
Increased amount and significant acceleration of initial activation
The research result was obtained.

【0005】この発明は、上記の研究結果にも基づいて
なされたものであって、原子%で、 Ti:19〜33%、 Zr:1〜10%、 Mn:32〜45%、 Cr:3〜13%、 V:10〜22%、 Ni:2〜10%、 Re:0.1〜3.5%、 不可避不純物:残、 なる組成を有し、かつ、Ti−Mn系合金の主体相と、
水素化処理でRe−Ni系合金相を起点として発生した
無数の亀裂と、脱水素処理で前記亀裂に沿って流動化分
布した再生Re−Ni系合金相で構成された組織を有す
るTi−Mn基合金からなる初期活性の良好な水素貯蔵
合金、に特徴を有するものである。
The present invention has been made on the basis of the above-mentioned research results. In atomic%, Ti: 19 to 33%, Zr: 1 to 10%, Mn: 32 to 45%, Cr: 3 -13%, V: 10-22%, Ni: 2-10%, Re: 0.1-3.5%, unavoidable impurities: residual, and the main phase of Ti-Mn alloy When,
Ti-Mn having a structure composed of countless cracks generated from the Re-Ni alloy phase in the hydrogenation treatment and regenerated Re-Ni alloy phases fluidized and distributed along the cracks in the dehydrogenation treatment A hydrogen storage alloy having a good initial activity and comprising a base alloy.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。まず、上記せる組成を有するTi−Mn系
合金を溶製し、鋳造した後、このTi−Mn系合金のイ
ンゴットを真空または不活性ガスの非酸化性雰囲気中9
50〜1050℃の範囲内の所定温度に所定時間保持後
冷却の条件で均質化熱処理を施すとTi−Mn系合金の
主体相と、この主体相の結晶粒界にそって分散分布した
Re−Ni系合金相の2相組織を有するようになるが、
さらに前記均質化熱処理に引き続いて加圧水素雰囲気
中、200〜950℃の範囲内の所定温度に所定時間保
持後冷却の条件で水素化処理を施すと、前記均質化熱処
理で形成されたRe−Ni系合金相が雰囲気の水素と優
先的に反応して、主体がRe水素化物と、Re−Ni系
金属間化合物からなる水素反応生成物相となると共に、
前記水素反応生成物相はTi−Mn系合金主体相に比し
て大きな熱膨脹を示すことから、前記主体相には前記水
素反応生成物相を起点として無数の亀裂が発生し、この
亀裂内面には前記水素反応生成物相が露出した状態とな
り、さらに引続いて500〜950℃の範囲内の所定温
度に保持しつつ、所定の真空度まで真空引きの脱水素処
理を施すと、上記水素化処理で生成した上記水素反応生
成物相の中のRe水素化物がReとなり、このReが共
存のRe−Ni系金属間化合物と反応して、上記水素化
処理前のRe−Ni系合金相が再生されるが、このRe
−Ni系合金相の再形成に際しては、これが流動化する
ので、前記亀裂にそって面状に流れて分布するようにな
り、この結果のTi−Mn系合金は、図1の概略組織拡
大模写図で示される通り、Ti−Mn系合金の主体相
と、水素化処理でRe−Ni系合金相を起点として発生
した無数の亀裂と、脱水素処理で前記亀裂にそって流動
化分布した再生Re−Ni系合金相で構成された組織を
もつようになる。
Embodiments of the present invention will be described below. First, a Ti-Mn-based alloy having the above composition is melted and cast, and then the ingot of this Ti-Mn-based alloy is placed in a vacuum or in a non-oxidizing atmosphere of an inert gas.
When a homogenizing heat treatment is carried out under the condition of cooling after holding at a predetermined temperature in the range of 50 to 1050 ° C. for a predetermined time, the main phase of the Ti—Mn alloy and the Re— dispersed and distributed along the crystal grain boundaries of the main phase. Although it has a two-phase structure of a Ni-based alloy phase,
Further, following the homogenizing heat treatment, if hydrogenation treatment is performed under cooling conditions in a pressurized hydrogen atmosphere at a predetermined temperature in a range of 200 to 950 ° C. for a predetermined time, and then the Re-Ni formed by the homogenization heat treatment is cooled. The system-based alloy phase reacts preferentially with hydrogen in the atmosphere to form a hydrogenation product phase mainly composed of Re hydride and a Re-Ni-based intermetallic compound,
Since the hydrogen reaction product phase shows a large thermal expansion as compared with the Ti-Mn-based alloy main phase, innumerable cracks are generated in the main phase starting from the hydrogen reaction product phase. Is a state in which the hydrogen reaction product phase is exposed. Further, while performing the dehydrogenation treatment to a predetermined degree of vacuum while maintaining the predetermined temperature in the range of 500 to 950 ° C., the hydrogenation The Re hydride in the hydrogen reaction product phase generated by the treatment becomes Re, and this Re reacts with the co-existing Re-Ni-based intermetallic compound to form the Re-Ni-based alloy phase before the hydrogenation treatment. It is played, but this Re
At the time of re-forming the Ni-based alloy phase, it is fluidized, so that it flows and distributes in a plane along the crack, and the resulting Ti-Mn-based alloy has a schematic structure enlarged reproduction of FIG. As shown in the figure, regeneration of the main phase of the Ti-Mn-based alloy, countless cracks generated from the Re-Ni-based alloy phase in the hydrogenation treatment, and fluidization distribution along the cracks in the dehydrogenation treatment. It has a structure composed of the Re-Ni-based alloy phase.

【0007】また、上記Ti−Mn系合金においては、
これを構成するRe−Ni系合金相は、これのもつ触媒
作用で雰囲気中の水素分子(H2 )を水素原子(H)に
解離すると共に、解離した水素原子をTi−Mn系合金
主体相に比して一段と速い速度で吸収し、したがって、
前記主体相の水素原子の吸収は主として前記再生Re−
Ni系合金相を介して行なわれ、また放出はこの逆の機
構による作用をもつが、前記再生Re−Ni系合金相は
無数の亀裂にそって流動化し、面状化した状態になって
おり、この結果作用面積の著しい拡大化がなされること
から、上記の従来水素貯蔵合金における水素吸収および
放出速度に比して一段と速い速度での水素吸収および放
出が可能となり、さらに初期活性化時におけるTi−M
n系合金主体相の水素原子の吸収も面状化して広い作用
面積を有する再生Re−Ni系合金相を介して行なわれ
ることから、初期活性化の著しい促進がはかられるよう
になる。
[0007] In the above Ti-Mn alloy,
The Re-Ni-based alloy phase that constitutes this dissociates the hydrogen molecules (H 2 ) in the atmosphere into hydrogen atoms (H) by the catalytic action of the phase, and converts the dissociated hydrogen atoms into the Ti-Mn-based alloy-based phase. Absorbs at a much faster rate than
Absorption of hydrogen atoms in the main phase is mainly due to the regenerated Re-
The release is performed through the Ni-based alloy phase, and the release has an action by the reverse mechanism. However, the regenerated Re-Ni-based alloy phase is fluidized along countless cracks and is in a planarized state. As a result, since the working area is significantly increased, hydrogen absorption and release at a much higher rate than the hydrogen absorption and release rates of the above-mentioned conventional hydrogen storage alloy become possible. Ti-M
Since the absorption of hydrogen atoms of the n-based alloy main phase is also performed via the regenerated Re-Ni-based alloy phase having a large area of action, the initial activation can be remarkably promoted.

【0008】一般に、水素貯蔵合金を、例えばヒ−トポ
ンプの吸発熱源として適用する場合には、水素貯蔵合金
が組込まれた前記ヒ−トポンプに対して、数回の水素吸
収放出を繰り返すと、水素吸蔵量が徐々に上昇し何れ一
定の値となる初期活性化が行なわれ、この初期活性化が
行なわれた状態で実用に供されるものである。活性化に
必要な繰り返し数、水素圧等は合金組成によって異な
る。
In general, when a hydrogen storage alloy is applied as, for example, an endothermic source of a heat pump, it is necessary to repeat hydrogen absorption and release several times with respect to the heat pump in which the hydrogen storage alloy is incorporated. Initial activation is performed so that the hydrogen storage amount gradually increases and eventually becomes a constant value, and the apparatus is put to practical use with the initial activation being performed. The number of repetitions, hydrogen pressure, and the like required for activation vary depending on the alloy composition.

【0009】なお、本発明の水素貯蔵合金では、JIS
規格による有効水素吸蔵量の測定は、すなわち(50℃
での吸蔵平衡圧:11気圧時の水素吸蔵量)−(−5℃
での放出平衡圧:1気圧時の水素吸蔵量)の条件により
測定された(図2参照)。
In the hydrogen storage alloy of the present invention, JIS
The measurement of the effective hydrogen storage capacity according to the standard is as follows: (50 ° C.
Equilibrium storage pressure: hydrogen storage capacity at 11 atm)-(-5 ° C)
(Equilibrium release pressure of hydrogen at 1 atm) was measured (see FIG. 2).

【0010】つぎに、この発明の水素貯蔵合金におい
て、これを構成するTi−Mn系合金の組成を上記の通
りに限定した理由を説明する。 (a) TiおよびZr 有効水素吸蔵量を増大させるには、Tiの一部をZrで
置換する必要があるが、その置換割合が、合金全体(1
00%)に占める割合で(以下、同じ)、1%未満また
はTiの含有割合が33.0%を越えて多くなった場合
では、圧力組成等温線における低温側曲線および高温側
曲線のプラト−圧が高くなり過ぎて、所望の有効水素吸
蔵量の増大が計れず、一方その置換割合が10%を越え
るか、またはTiの含有割合が19.0%未満となった
場合は逆に圧力組成等温線における低温側曲線および高
温側曲線のプラト−圧が著しく低下し、所望の大きな有
効水素吸蔵量を確保することが出来ないことから、その
含有割合を、それぞれTi:19.0〜33.0%、Z
r:1〜10%と定めた。
Next, the reason why the composition of the Ti—Mn alloy constituting the hydrogen storage alloy of the present invention is limited as described above will be described. (A) Ti and Zr In order to increase the effective hydrogen storage capacity, it is necessary to replace a part of Ti with Zr.
In the case where the content of Ti is less than 1% or the content of Ti is more than 33.0%, the low-temperature side curve and the high-temperature side curve in the pressure composition isotherm are calculated. If the pressure becomes too high to achieve the desired increase in the effective hydrogen storage capacity, and if the substitution ratio exceeds 10% or the Ti content ratio is less than 19.0%, the pressure composition Since the plate pressure of the low-temperature curve and the high-temperature curve in the isotherm is remarkably reduced, and a desired large effective hydrogen storage amount cannot be secured, the content ratio is set to Ti: 19.0 to 33.0 respectively. 0%, Z
r: 1 to 10%.

【0011】(b) Mn、Cr、V、およびNi さらに、有効水素吸蔵量の増大には、上記の通りTiの
Zrによる一部置換に加えて、MnのCr、VおよびN
iによる一部置換が不可欠であり、更に言い換えれば、
Tiの所定量のZrによる一部置換が行なわれない場合
や、置換元素であるCr、VおよびNiのうちの少なく
ともいずれかの元素が含有しない場合は勿論のこと、M
nのそれぞれ所定量のCr、VおよびNiによる一部置
換が行われない場合には、所望の大きな有効水素吸蔵量
を確保することが出来ないものであり、その理由は、M
n、Cr、VおよびNi:2%未満であったり、またM
n:45%、Cr:13%、V:22%およびNi:1
0%をそれぞれ越えると、圧力組成等温線におけるプラ
ト−の傾きやヒステリシスが大きくなることになり、し
たがって、その含有割合を、それぞれMn:32〜45
%、Cr:3〜13%、V:10〜22%およびNi:
2〜10%と定めた。
(B) Mn, Cr, V, and Ni Furthermore, in order to increase the effective hydrogen storage capacity, in addition to the partial replacement of Ti with Zr as described above, Mn includes Cr, V and N.
Partial replacement by i is essential, and in other words,
If the Ti is not partially replaced by a predetermined amount of Zr, or if at least one of the replacing elements Cr, V and Ni is not contained, M
If partial replacement of each of n with predetermined amounts of Cr, V, and Ni is not performed, a desired large effective hydrogen storage amount cannot be secured.
n, Cr, V and Ni: less than 2%;
n: 45%, Cr: 13%, V: 22% and Ni: 1
If it exceeds 0%, the gradient of plateau and the hysteresis in the pressure composition isotherm become large, and therefore, the content ratio is set to Mn: 32 to 45, respectively.
%, Cr: 3 to 13%, V: 10 to 22%, and Ni:
It was determined as 2 to 10%.

【0012】(c) Re これらの成分は、上記の通り雰囲気中の水素を主体相よ
り一段と速い速度で解離吸収し、かつ再結合させて雰囲
気中に放出する作用を有する再生Re−Ni系合金相を
形成するのに不可欠な成分であり、したがってその割合
が0.1%未満では、前記再生Re−Ni系合金相の生
成割合が少なすぎて、これのもつ上記作用を十分に発揮
させることができず、一方その割合が3.5%を越える
と、水素吸蔵能の小さい前記再生Re−Ni系合金相の
割合が多くなりすぎ、合金全体の水素吸蔵量が低下する
ようになることから、その割合を0.1〜3.5%、望
ましくは0.5〜3.0%と定めた。
(C) Re These components are, as described above, a reclaimed Re-Ni-based alloy having the function of dissociating and absorbing hydrogen in the atmosphere at a higher speed than the main phase, and recombining and releasing into the atmosphere. It is an indispensable component for forming a phase. Therefore, if the ratio is less than 0.1%, the generation ratio of the recycled Re-Ni-based alloy phase is too small, and the above-described function of the phase is sufficiently exhibited. On the other hand, if the proportion exceeds 3.5%, the proportion of the regenerated Re-Ni-based alloy phase having a small hydrogen storage capacity becomes too large, and the hydrogen storage capacity of the entire alloy decreases. , The ratio is determined to be 0.1 to 3.5%, preferably 0.5 to 3.0%.

【0013】なお、この発明の水素貯蔵合金は、通常の
機械的粉砕により所定粒度の粉末とすることができるほ
か、加圧水素雰囲気中、10〜200℃の範囲内の所定
温度に加熱の水素吸収と、真空排気による水素放出の水
素化粉砕によっても粉末とすることができる。
The hydrogen storage alloy of the present invention can be converted into a powder having a predetermined particle size by ordinary mechanical pulverization, and can be heated to a predetermined temperature within a range of 10 to 200 ° C. in a pressurized hydrogen atmosphere. The powder can also be obtained by hydrogenation and pulverization of hydrogen release by evacuation.

【0014】[0014]

【実施例】つぎに、この発明の水素貯蔵合金を実施例に
より具体的に説明する。通常の高周波誘導溶解炉にて、
原料としていずれも99.9%以上の純度をもったT
i,Zr,Mn,Cr、V,Ni、およびReを用い、
Ar雰囲気中で溶解して、それぞれ表1に示される組成
をもったTi−Mn系合金溶湯を調製し、水冷銅鋳型に
鋳造してインゴットとし、このインゴットに、真空雰囲
気中、それぞれ表2に示した所定温度に20時間保持の
条件で均質化熱処理を施し、ついでそれぞれ同じく表2
に示した所定の圧力の水素雰囲気中、まず室温で1時間
保持した後、昇温を開始して同じく表2に示した所定温
度に加熱し、この温度に30分間保持の水素化処理を施
して、上記均質化熱処理で形成された、Ti−Mn系合
金の主体相中に、その結晶粒界にそって分散分布するR
e−Ni系合金相を、Re水素化物とRe−Ni系金属
間化合物を主体とする水素反応生成物相とし(この水素
反応生成物相の形成によってこれを起点として無数の亀
裂が発生する)、引続いて前記水素化処理温度を保持し
たまま、雰囲気が10-5torrの真空度となるまで真空引
きの脱水素処理を施して、前記水素反応生成物相をRe
−Ni系合金相に再生する(この脱水素処理の間、反応
物は流動化しいるので、前記再生Re−Ni系合金相
は、図1の本発明合金の組織に示されるように無数の亀
裂にそって流れて面状に分布した状態になる)ことによ
り本発明水素貯蔵合金1〜16(以下、本発明合金1〜
16という)をそれぞれ製造した。
Next, the hydrogen storage alloy of the present invention will be described in detail with reference to examples. In a normal high-frequency induction melting furnace,
As a raw material, T has a purity of 99.9% or more.
Using i, Zr, Mn, Cr, V, Ni, and Re,
Dissolved in an Ar atmosphere to prepare a Ti-Mn-based alloy melt having the composition shown in Table 1 and cast it into a water-cooled copper mold to form an ingot. The homogenization heat treatment was performed at the indicated temperature for 20 hours, and then the heat treatment was performed in the same manner as in Table 2.
In a hydrogen atmosphere at a predetermined pressure as shown in Table 1, after holding at room temperature for 1 hour, heating was started to heat to a predetermined temperature as shown in Table 2, and a hydrogenation treatment was performed at this temperature for 30 minutes. In the main phase of the Ti—Mn-based alloy formed by the homogenizing heat treatment, R is distributed and distributed along the crystal grain boundaries.
The e-Ni-based alloy phase is a hydrogen reaction product phase mainly composed of Re hydride and a Re-Ni-based intermetallic compound (innumerable cracks are generated starting from the hydrogen reaction product phase as a starting point). Subsequently, while maintaining the hydrogenation temperature, a vacuum dehydrogenation treatment is performed until the atmosphere reaches a degree of vacuum of 10 −5 torr, and the hydrogen reaction product phase is subjected to Re-treatment.
-Regenerate into a Ni-based alloy phase (during this dehydrogenation treatment, the reactants are fluidized, so the regenerated Re-Ni-based alloy phase has numerous cracks as shown in the structure of the alloy of the present invention in FIG. 1). The hydrogen storage alloys 1 to 16 of the present invention (hereinafter, alloys 1 to 6 of the present invention)
16).

【0015】また、比較の目的で、Ti−Mn系合金溶
湯の組成を表2に示される通りとし、かつ均質化熱処理
後の水素化処理および脱水素処理を行なわない以外は同
一の条件で従来水素貯蔵合金(以下、従来合金という)
を製造した。
For the purpose of comparison, the composition of the molten Ti—Mn alloy is as shown in Table 2, and the conventional conditions are the same under the same conditions except that the hydrogenation treatment and the dehydrogenation treatment after the homogenization heat treatment are not performed. Hydrogen storage alloy (hereinafter referred to as conventional alloy)
Was manufactured.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】つぎに、上記の本発明合金1〜16および
従来合金について、それぞれ水素吸収速度と水素放出速
度をJIS・H7202の「水素吸蔵合金の水素化速度
試験測定法」にもとづいて測定した。
Next, with respect to the alloys 1 to 16 of the present invention and the conventional alloy, the hydrogen absorption rate and the hydrogen release rate were measured in accordance with JIS H7202 "Hydrogen storage alloy hydrogenation rate test measurement method".

【0019】まず、水素吸収速度の測定装置について
は、図3の概略説明図で示される通りで、測定に先だっ
て、本発明合金1〜16および従来合金を、圧力容器に
封入し、水素雰囲気圧力:8気圧、加熱温度:200
℃、保持時間:1時間の条件での水素吸収と、真空排気
による水素放出からなる水素化粉砕を行なって200me
sh以下の粒度をもった粉末とし、この粉末を用いて以下
に示す条件で測定を行なった。
First, as shown in the schematic explanatory view of FIG. 3, a hydrogen absorption rate measuring apparatus is described. Prior to measurement, alloys 1 to 16 of the present invention and a conventional alloy are sealed in a pressure vessel, and the hydrogen atmosphere pressure is measured. : 8 atm, heating temperature: 200
C., holding time: hydrogen absorption under the condition of 1 hour and hydrogen crushing consisting of hydrogen release by vacuum evacuation were performed to obtain 200me.
A powder having a particle size of sh or less was used, and measurement was performed using this powder under the following conditions.

【0020】(a)粉末を浴(油または水)に浸漬した
容器内に封入し、前記浴の温度を200℃に保持した状
態で、弁Vb:閉、弁VaおよびVc:開として水素ボ
ンベから加圧水素を系内に導入し、系内を30気圧とし
た時点で弁Va:閉とし、系内の圧力が一定圧力に降下
する(粉末による水素吸収完了)まで放置して粉末の初
期活性化を行ない、(b)系内の圧力が一定圧力(約2
0気圧程度)に降下した時点で弁Vb:開とし、真空ポ
ンプで系内を10-2トルの真空雰囲気とした後、浴温を
20℃とし、弁VbおよびVc:閉、弁Va:開にして
容器を除く系内に水素を導入し、その圧力が30気圧と
なった時点で弁Va:閉、弁Vc:開とし、この状態で
系内の時間に対する圧力降下を測定し、この結果の圧力
降下曲線から粉末の水素吸蔵量が80%になった時点の
水素吸蔵量とそれまでに要した時間を求め、(80%吸
蔵時の水素吸蔵量)÷(80%水素吸蔵量に要した時
間)を算出し、この値を水素吸収速度とした。
(A) The powder is sealed in a container immersed in a bath (oil or water), and while the temperature of the bath is maintained at 200 ° C., the valves Vb are closed, and the valves Va and Vc are opened and the hydrogen cylinder is opened. , Pressurized hydrogen is introduced into the system, and when the pressure in the system is reduced to 30 atm, the valve Va is closed, and the system is allowed to stand until the pressure in the system drops to a constant pressure (complete absorption of hydrogen by the powder). (B) The pressure in the system is maintained at a constant pressure (approximately 2
When the pressure drops to about 0 atm), the valve Vb is opened, the system is evacuated to a vacuum atmosphere of 10 -2 torr by a vacuum pump, the bath temperature is set to 20 ° C, the valves Vb and Vc are closed, and the valve Va is open. Then, hydrogen was introduced into the system except for the container, and when the pressure reached 30 atm, the valve Va was closed and the valve Vc was opened. In this state, the pressure drop with respect to time in the system was measured. From the pressure drop curve of the above, the hydrogen storage amount at the time when the hydrogen storage amount of the powder becomes 80% and the time required up to that time are obtained, and (hydrogen storage amount at 80% storage) ÷ (80% hydrogen storage amount Was calculated, and this value was used as the hydrogen absorption rate.

【0021】また、水素放出速度については、上記の水
素吸収速度測定後の状態、すなわち弁VaおよびVb:
閉、弁Vc:開であって系内の圧力が一定圧(通常20
気圧前後)となった状態で、浴温を100〜300℃の
範囲内の粉末の水素放出適正温度、例えば120℃とし
た後、弁Vb:開、弁Vc:閉として容器を除く系内を
10-2Torrに排気し、ついで弁Vb:閉、弁Vc:
開とした状態で、系内の時間に対する圧力上昇を測定
し、この結果の圧力上昇曲線から粉末の水素放出量が8
0%になった時点の水素放出量とそれまでに要した時間
を求め、(80%放出時の水素放出量)÷(80%水素
放出に要した時間)を算出し、この値を水素放出速度と
した。これらの結果を表4,5に示した。
The hydrogen release rate is the state after the above-described hydrogen absorption rate measurement, that is, the valves Va and Vb:
Closed, valve Vc: Open and the pressure in the system is constant (typically 20
(Atmospheric pressure), the bath temperature is set to an appropriate temperature for releasing hydrogen of powder in the range of 100 to 300 ° C., for example, 120 ° C., then the valve Vb is opened and the valve Vc is closed to remove the inside of the system. Exhaust to 10 -2 Torr, then valve Vb: closed, valve Vc:
In the open state, the pressure rise with respect to time in the system was measured, and from the resulting pressure rise curve, the amount of hydrogen released from the powder was 8%.
The amount of hydrogen released at 0% and the time required up to that time are obtained, and (hydrogen released at 80% release) / (time required for 80% hydrogen release) is calculated. Speed. The results are shown in Tables 4 and 5.

【0022】次いで、上記本発明合金1〜16および従
来合金について、これをジョークラッシャにて粗粉砕し
て直径:2mm以下の粗粒とし、さらにこれをボ−ルミ
ルで微粉砕して粒度:350メッシュ以下の微粉末とし
た状態で、JIS規格にもとづいて、(50℃での吸蔵
平衡圧:11気圧時の水素吸蔵量)−(−5℃での放出
平衡圧:1気圧時の水素吸蔵量)を測定し、算出して有
効水素吸蔵量を求めた。この結果を表3に示した。
Next, the above alloys 1 to 16 of the present invention and the conventional alloy are coarsely pulverized by a jaw crusher into coarse particles having a diameter of 2 mm or less, and further finely pulverized by a ball mill to obtain a particle size of 350. In the state of fine powder having a mesh size or less, based on JIS standards, (storage equilibrium pressure at 50 ° C .: hydrogen storage amount at 11 atm) − (equilibrium release pressure at −5 ° C .: hydrogen storage at 1 atm. Was measured and calculated to obtain an effective hydrogen storage amount. The results are shown in Table 3.

【0023】さらに、上記の発明合金1〜16および従
来合金について、初期活性化を評価する目的で、まず、
本発明合金1〜16と従来合金をジョークラッシャを用
いて粗粉砕して直径:2mm以下の粗粒とし、引続いて本
発明合金1〜16および前記粗粒の従来合金をボールミ
ルを用いて微粉砕して200メッシュ以下の粒度とし、
これに結着剤としてのポリテトラフルオロエチレン(P
TFE)と増粘剤としてのカルボキシルメチルセルロー
ス(CMC)を加えてペースト状とした後、95%の気
孔率を有する市販の発泡Ni板に充填し、乾燥し、加圧
して、平面寸法:30mm×40mm、厚さ:0.40〜
0.43mmの形状(前記活物質粉末充填量:約1.8
g)とし、これの一辺にリードとなるNi薄板を溶接に
より取り付けて負極を形成し、一方正極は、活物質とし
てNi(OH)2 を用い、これに結着剤としてのポリテ
トラフルオロエチレン(PTFE)と増粘剤としてのカ
ルボキシルメチルセルロース(CMC)を加えてペース
ト状とし、これを上記発泡Ni板に充填し、乾燥し、加
圧して、平面寸法:30mm×40mm、厚さ:0.71〜
0.73mmの形状とし、同じくこれの一辺にNi薄板を
取り付けることにより形成し、ついで、上記負極の両側
に、それぞれポリプロピレンポリエチレン共重合体のセ
パレータ板を介して上記正極を配置し、さらに前記正極
のそれぞれの外面から活物質の脱落を防止する目的で塩
化ビニール製の保護板ではさんで一体化し、これを塩化
ビニール製のセルに装入し、前記セルに電解液として3
5%KOH水溶液を装入することにより電池を製造し
た。
Further, for the purpose of evaluating the initial activation of the invention alloys 1 to 16 and the conventional alloy, first,
The alloys 1 to 16 of the present invention and the conventional alloy are coarsely pulverized using a jaw crusher into coarse particles having a diameter of 2 mm or less. Subsequently, the alloys 1 to 16 of the present invention and the conventional alloy having the coarse particles are finely ground using a ball mill. Crushed to a particle size of 200 mesh or less,
In addition, polytetrafluoroethylene (P
TFE) and carboxymethylcellulose (CMC) as a thickener were added to form a paste, filled into a commercially available Ni plate having a porosity of 95%, dried, and pressed to obtain a plane size of 30 mm × 40 mm, thickness: 0.40
0.43 mm shape (the active material powder filling amount: about 1.8
g), and a Ni thin plate serving as a lead is attached to one side of the negative electrode by welding to form a negative electrode, while the positive electrode uses Ni (OH) 2 as an active material, and uses polytetrafluoroethylene (B) as a binder. PTFE) and carboxymethylcellulose (CMC) as a thickener were added to form a paste, which was filled in the above foamed Ni plate, dried, and pressed to obtain a plane size: 30 mm × 40 mm, thickness: 0.71 ~
It is formed by attaching a Ni thin plate to one side of the 0.73 mm shape. Then, the positive electrode is disposed on both sides of the negative electrode with a separator plate made of a polypropylene-polyethylene copolymer interposed therebetween. In order to prevent the active material from falling off from the respective outer surfaces, they are integrated by sandwiching them with a protective plate made of vinyl chloride, and this is charged into a cell made of vinyl chloride.
A battery was manufactured by charging a 5% KOH aqueous solution.

【0024】ついで、上記電池に、充電速度:0.20
C、放電速度:0.20C、充電電気量:負極容量の1
35%の条件で充放電を行ない、前記充電と放電を充放
電1回と数え、前記電池が最大放電容量を示すに至るま
で前記充放電を繰り返し行なった。表3に、前記最大放
電容量の95%の放電容量を示すに要した充放電回数を
示し、これによって初期活性化を評価した。
Next, the battery was charged at a charging rate of 0.20.
C, discharge rate: 0.20C, charge amount: 1 of negative electrode capacity
The charge and discharge were performed under the condition of 35%, and the charge and discharge were counted as one charge and discharge, and the charge and discharge were repeated until the battery showed the maximum discharge capacity. Table 3 shows the number of times of charging and discharging required to show a discharge capacity of 95% of the maximum discharge capacity, and the initial activation was evaluated based on the number of times.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】表3に示される結果から、本発明合金1
〜16は、いずれも無数の亀裂にそって流動化分布して
広い作用面積をもつようになった再生Re−Ni系合金
相の作用で、Re−Ni系合金相が結晶粒界にそって分
散分布する従来合金に比して一段と速い水素吸収および
放出速度を示し、さらにこの結果として初期活性化のす
ぐれたものとなることが明らかである。
According to the results shown in Table 3, the alloy of the present invention 1
Nos. 16 to 16 are the actions of the regenerated Re-Ni alloy phase, which is fluidized and distributed along an infinite number of cracks and has a wide area of action, and the Re-Ni alloy phase extends along the crystal grain boundaries. It is evident that the alloy exhibits a much higher hydrogen absorption and release rate than the conventional alloy having a dispersed distribution, and as a result, the initial activation is excellent.

【0027】上述のように、この発明の水素貯蔵合金に
おいては、水素吸収および放出速度がきわめて速く、か
つ実用に際してはすぐれた初期活性化を示すので、水素
貯蔵合金が適用されている各種機械装置の高出力化およ
び高性能化、さらに省エネ化に大いに寄与するものであ
る。
As described above, the hydrogen storage alloy of the present invention has a very high rate of hydrogen absorption and desorption and exhibits excellent initial activation in practical use. It greatly contributes to high output, high performance, and energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水素貯蔵合金の概略組織拡大模写図
である。
FIG. 1 is a schematic enlarged schematic view of a structure of a hydrogen storage alloy of the present invention.

【図2】 本発明の水素貯蔵合金の圧力組成等温線を示
す図である。
FIG. 2 is a diagram showing a pressure composition isotherm of the hydrogen storage alloy of the present invention.

【図3】 水素貯蔵合金の水素吸収放出速度を測定する
のに用いた装置の概略説明図である。
FIG. 3 is a schematic explanatory view of an apparatus used for measuring a hydrogen absorption / release rate of a hydrogen storage alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子%で、 Ti:19〜33%、 Zr:1〜10%、 Mn:32〜45%、 Cr:3〜13%、 V:10〜22%、 Ni:2〜10%、 Re:0.1〜3.5%、 不可避不純物:残、 なる組成を有し、かつ、Ti−Mn系合金の主体相と、
水素化処理でRe−Ni系合金相を起点として発生した
無数の亀裂と、脱水素処理で前記亀裂に沿って流動化分
布した再生Re−Ni系合金相で構成された組織を有す
るTi−Mn基合金からなることを特徴とする初期活性
の良好な水素貯蔵合金。
1. Atomic%, Ti: 19 to 33%, Zr: 1 to 10%, Mn: 32 to 45%, Cr: 3 to 13%, V: 10 to 22%, Ni: 2 to 10% , Re: 0.1 to 3.5%, unavoidable impurities: residual, and a main phase of a Ti-Mn-based alloy;
Ti-Mn having a structure composed of countless cracks generated from the Re-Ni alloy phase in the hydrogenation treatment and regenerated Re-Ni alloy phases fluidized and distributed along the cracks in the dehydrogenation treatment A hydrogen storage alloy having a good initial activity, comprising a base alloy.
JP9002830A 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity Pending JPH10195570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9002830A JPH10195570A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9002830A JPH10195570A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Publications (1)

Publication Number Publication Date
JPH10195570A true JPH10195570A (en) 1998-07-28

Family

ID=11540347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9002830A Pending JPH10195570A (en) 1997-01-10 1997-01-10 Hydrogen storage alloy excellent in initial activity

Country Status (1)

Country Link
JP (1) JPH10195570A (en)

Similar Documents

Publication Publication Date Title
JP2021510767A (en) A method for producing an AB5-based hydrogen storage alloy, an electrode for a nickel-metal hydride battery, a secondary battery, and a hydrogen storage alloy.
JP3965209B2 (en) Low Co hydrogen storage alloy
JPH10195570A (en) Hydrogen storage alloy excellent in initial activity
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JPH10195569A (en) Hydrogen storage alloy excellent in initial activity
JPH10195571A (en) Hydrogen storage alloy excellent in initial activity
JPH10195572A (en) Hydrogen storage alloy excellent in initial activity
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
JPH10195584A (en) Hydrogen storage alloy excellent in initial activity
JPH10195580A (en) Hydrogen storage alloy excellent in initial activity
JPH10195575A (en) Hydrogen storage alloy excellent in initial activity
JPH10195583A (en) Hydrogen storage alloy excellent in initial activity
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH0978167A (en) Hydrogen storage alloy
JPH09176778A (en) Hydrogen storage alloy
JPH10195582A (en) Hydrogen storage alloy excellent in initial activity
JPH09118948A (en) Hydrogen storage alloy
JPH10195574A (en) Hydrogen storage alloy excellent in initial activity
JPS63291363A (en) Hydrogen absorption alloy
JPH10195581A (en) Hydrogen storage alloy excellent in initial activity
JPH10195579A (en) Hydrogen storage alloy excellent in initial activity
JPH04318106A (en) Production of hydrogen storage alloy powder
JPH10195578A (en) Hydrogen storage alloy excellent in initial activity
JPH09176777A (en) Hydrogen storage alloy
JPH0987784A (en) Hydrogen storage alloy