JPH10189597A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH10189597A
JPH10189597A JP34473596A JP34473596A JPH10189597A JP H10189597 A JPH10189597 A JP H10189597A JP 34473596 A JP34473596 A JP 34473596A JP 34473596 A JP34473596 A JP 34473596A JP H10189597 A JPH10189597 A JP H10189597A
Authority
JP
Japan
Prior art keywords
wiring
connection hole
pattern
area
cmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34473596A
Other languages
Japanese (ja)
Inventor
Takeshi Kubota
剛 久保田
Koichi Mase
康一 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34473596A priority Critical patent/JPH10189597A/en
Publication of JPH10189597A publication Critical patent/JPH10189597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate excess polishing in CMP and residues of material by a method wherein a non-pattern region whose area ratio to a buried region is set at a specific value or above is provided to the outer edges of connection holes or wiring grooves respectively when the adjacent connection holes or adjacent wiring grooves are filled with metal. SOLUTION: The sides a and b of a connection hole 103 are 1.0μm long respectively, and gaps d and c between the adjacent connection holes 103 are 0.5μm long respectively. As mentioned above, in a connection hole pattern, letting the area ratio of the outer edge of a blanked pattern to the blanked pattern be represented by Th , Th is expressed by a formula, Th = (a+c)(b+ d)-ab}/ab, and set at a certain value or above. Th is set at 70% in a case where connection holes are used and at 60% in a case where wiring grooves are used in place of connection holes. After filling wiring material 105 is filled into the connection holes 103, filling wiring material 105 except in the connections holes 103 is removed with CMP to planarize the surface. By this setup, a semiconductor device of this constitution can be protected against dishing which occurs when CMP is carried out, and residues of abrasive material used for CMP can be eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置及びそ
の製造方法に関し、特に配線溝及び接続孔に対する埋め
込み技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly, to a technique for embedding in a wiring groove and a connection hole.

【0002】[0002]

【従来の技術】従来の多層配線形成工程においては、絶
縁膜上に高融点金属やAl合金を成膜してこれに配線を
形成し、その後層間絶縁膜を成膜して例えばエッチバッ
ク法により平坦化し、層間絶縁膜に接続孔を開口し、高
融点金属やAl合金をスパッタにより被膜し、配線を形
成するといった工程を繰り返していた。尚、上記配線形
成及び接続孔形成はリソグラフィ及びエッチングによ
る。しかし、接続孔のアスペクト比(高さと幅の比)が
集積回路の微細化とともに非常に大きくなって来てお
り、その様な高集積の接続孔においては、上記のスパッ
タのみによる方法では接続孔内への金属の充填が不完全
になる。そこで、接続孔に上記金属膜をスパッタで成膜
後、リフローを施し、接続孔以外の上記金属膜をCMP
(Chemical Mechanical Polishing :化学的機械研磨)
法により除去することにより、接続孔へ金属膜を埋め込
む方法をとっている。また、配線形成に関しては、近
年、集積回路の微細化とともに多層配線化が進められて
おり、接続孔の場合と同じ様に配線のアスペクト比(高
さと幅の比)が増大し、製品の安定した歩留りや信頼性
を確保する為に、より厳しい平坦性が要求されるように
なっている。従って上記多層配線形成工程にかわり、層
間絶縁膜上に配線溝を形成し、その中に配線材料を埋め
こむ埋め込み配線法が検討されて来ている。また将来の
配線材料として、その低抵抗、高信頼性の特性を有する
が故に、Al配線に変わりCu配線が候補の一つとして
上がっているが、Cu配線は従来のRIEによる加工が
困難であることから、また埋め込み配線法によると、工
程削減(配線を加工する工程等が減る、配線と層間絶縁
膜の平坦化が同時に出来る等)によるコストの低減効果
も同時に有している事から、上記埋め込み配線の検討が
盛んになって来ている。埋め込み配線の場合は、配線溝
に上記金属膜をスパッタで成膜後リフローを施し、配線
溝以外の金属膜をCMPにより除去することにより、配
線溝へ金属膜を埋め込む方法をとっている。
2. Description of the Related Art In a conventional multi-layer wiring forming process, a refractory metal or an Al alloy is formed on an insulating film to form a wiring thereon, and then an interlayer insulating film is formed and then, for example, by an etch-back method. Steps of flattening, opening a connection hole in an interlayer insulating film, coating a high melting point metal or an Al alloy by sputtering, and forming a wiring were repeated. The wiring and the connection hole are formed by lithography and etching. However, the aspect ratio (ratio of height to width) of the connection hole has become very large with the miniaturization of the integrated circuit. Incomplete filling of metal into the interior. Therefore, after the metal film is formed in the connection hole by sputtering, reflow is performed, and the metal film other than the connection hole is subjected to CMP.
(Chemical Mechanical Polishing)
In this method, a metal film is buried in a connection hole by removing the metal film by a method. In recent years, with respect to wiring formation, multilayer wiring has been promoted along with miniaturization of integrated circuits. As in the case of connection holes, the wiring aspect ratio (ratio of height to width) has been increased, and product stability has been increased. Stricter flatness has been required to secure the yield and reliability. Therefore, instead of the multilayer wiring forming step, an embedded wiring method in which a wiring groove is formed on an interlayer insulating film and a wiring material is embedded therein has been studied. As a future wiring material, because of its low resistance and high reliability characteristics, Cu wiring is one of the candidates instead of Al wiring, but it is difficult to process Cu wiring by conventional RIE. From the above, the embedded wiring method also has the effect of reducing costs by reducing the number of steps (reduction in the number of steps for processing the wiring, flattening of the wiring and interlayer insulating film, etc.). The study of embedded wiring is becoming active. In the case of buried wiring, a method is used in which the metal film is buried in the wiring groove by removing the metal film other than the wiring groove by CMP after forming the metal film in the wiring groove by sputtering and removing the metal film other than the wiring groove by CMP.

【0003】以下に、上記接続孔に対する埋め込みを例
に、従来例を説明する。図5に従来技術に係る半導体装
置の接続孔における製造工程の一例を示す。図中、50
1は半導体基板、502は絶縁膜、503は接続孔、5
05は接続孔埋め込み材料を示す。図5(a)に接続孔
パターンの上面図を示す。接続孔は1.0μm□であ
り、隣接する接続孔の間隔は0.3μmである。図5
(a)のA−B線で切った断面図を図5(b)に示す。
接続孔の埋め込みの工程は、図5(b)に示す様に、ま
ず絶縁膜502を被膜しリソグラフィ及びエッチングに
より接続孔503を形成する。次に図5(c)の様に接
続孔503に埋め込み材料505の形成をスパッタによ
り行う。しかる後に、図5(d)に示す様に例えば1.
5J/cm2のレーザー照射による加熱を行い、接続孔
に埋め込み材料を流動させることにより埋め込みを行
う。その後、図5(e)に示す様にCMPにより接続孔
503以外に存在する接続孔埋め込み材料505を研磨
除去する事により平坦化を行い、接続孔503の埋め込
み形成を行うものである。この様な工程を経た場合、図
5(d)のリフローを施しても埋め込み材料の表面起伏
は大きく、この状態で、図5(d)に示す様にCMPを
施すと、ディッシング(埋め込み部におけるCMPによ
る埋め込み材料の過剰研磨)やCMP残り(絶縁膜上の
残査)が発生する。ディッシングは配線抵抗の上昇及び
配線抵抗のウエハ面内・面間におけるばらつきによる動
作不良や歩留り低下、或いはエレクトロ・マイグレーシ
ョンによる寿命の低下といった配線信頼性の劣化の原因
となる。以上、接続孔に関して説明したが図6に示した
配線溝についても共通の問題がある。本発明ではこの問
題を改善する半導体装置の製造方法を提供するものであ
る。
[0003] A conventional example will be described below with an example of embedding in the connection hole. FIG. 5 shows an example of a manufacturing process in a connection hole of a semiconductor device according to a conventional technique. In the figure, 50
1 is a semiconductor substrate, 502 is an insulating film, 503 is a connection hole,
Reference numeral 05 denotes a connection hole filling material. FIG. 5A shows a top view of the connection hole pattern. The connection holes are 1.0 μm square, and the interval between adjacent connection holes is 0.3 μm. FIG.
FIG. 5B is a sectional view taken along line AB in FIG.
In the step of burying the connection holes, as shown in FIG. 5B, first, the insulating film 502 is coated, and the connection holes 503 are formed by lithography and etching. Next, as shown in FIG. 5C, a filling material 505 is formed in the connection hole 503 by sputtering. Thereafter, as shown in FIG.
Embedding is performed by heating by laser irradiation of 5 J / cm 2 and flowing the embedding material into the connection holes. Thereafter, as shown in FIG. 5 (e), the connection hole filling material 505 other than the connection holes 503 is polished and removed by CMP to planarize the surface, thereby burying the connection holes 503. After such a step, even if the reflow of FIG. 5D is performed, the surface undulation of the burying material is large. In this state, if CMP is performed as shown in FIG. Excessive polishing of the embedding material by CMP) or residual CMP (residue on the insulating film) occurs. The dishing causes an increase in wiring resistance and a deterioration in wiring reliability such as an operation failure or a decrease in yield due to a variation in wiring resistance within or between wafer surfaces, or a reduction in life due to electromigration. As described above, the connection hole has been described, but the wiring groove shown in FIG. 6 also has a common problem. The present invention provides a method of manufacturing a semiconductor device which solves this problem.

【0004】[0004]

【発明が解決しようとする課題】上記の様に、接続孔ま
たは配線溝に対する埋め込み材料の埋め込みにおいて、
CMPによる研磨の際に、埋め込み部における過剰研磨
や、埋め込み部の外縁部における埋め込み材料の残査が
発生し、それに伴い発生する断線不良,配線抵抗の上
昇,配線抵抗のウエハ面内・面間におけるばらつきによ
る動作不良或いはエレクトロ・マイグレーションによる
寿命の低下といった配線信頼性の劣化が問題となってい
た。
As described above, in embedding a filling material into a connection hole or a wiring groove,
During polishing by CMP, excessive polishing at the buried portion and residue of the buried material at the outer edge of the buried portion occur, resulting in disconnection failure, increase in wiring resistance, and wiring resistance in the wafer surface and between surfaces. However, there has been a problem that the wiring reliability is deteriorated such as an operation failure due to variations in the device or a shortened life due to electromigration.

【0005】[0005]

【課題を解決するための手段】隣接する接続孔または隣
接する配線溝に対して金属膜を埋め込む際、各接続孔ま
たは配線溝の外縁部に、各埋め込み部の面積に対して一
定比率以上の面積を有する無パターン領域を設ける。上
記一定比率は、接続孔の場合は70%,配線溝の場合は
60%とする。
When a metal film is buried in an adjacent connection hole or an adjacent wiring groove, an outer edge of each connection hole or the wiring groove has a predetermined ratio or more with respect to the area of each buried portion. A non-pattern region having an area is provided. The constant ratio is 70% for connection holes and 60% for wiring grooves.

【0006】[0006]

【発明の実施の形態】以下、図1乃至3を参照して本発
明に係る半導体装置の製造方法の実施例を、接続孔に関
して詳細に説明する。図1は、本発明に係る半導体装置
の製造工程の一例を断面により示したものである。図
中、101は半導体基板、102は絶縁膜、103は接
続孔、105は埋め込み材料を示す。図1(a)に接続
孔の上面図を示す。a及びbは各々1.0μmつまり接
続孔は1.0μm□であり、隣接する接続孔の間隔b及
びcは各々0.5μmである。この様に接続孔パターン
において、抜きパターン外縁部面積の抜きパターン面積
に対する割合をTh としたときに、Th ={(a+c)
(b+d)−ab}/abを一定値以上とする。図1
(a)のC−D線で切った断面図を図(b)に示す。接
続孔の埋め込みを行う際、まず図1(b)に示す様に絶
縁膜を被膜し、リソグラフィ及びエッチングにより接続
孔を形成する。次に図1(c)の様に埋め込み材料とし
て15nmのTi,60nmのTiN,1.0μmのC
uの被膜をスパッタにより順次行う。しかる後に、図1
(d)に示す様に、例えば1.5J/cm2 のレーザー
照射による加熱を行い、埋め込み材料を流動させること
により接続孔に埋め込む。その後、図1(e)に示す様
にCMPにより接続孔以外に存在する接続孔埋め込み材
料を除去する事により平坦化を行い、接続孔の埋め込み
形成を行う。この様に、隣接する個々の接続孔の周りに
各接続孔の面積に対して一定比率以上の無パターン領域
がある場合は、図1(c)の段階において、隣接した接
続孔間の絶縁膜上における成膜量は、接続孔の容積を埋
め込む為に必要な埋め込み材を供給できるものとなり、
結果的に図1(d)においてリフローした時点で接続孔
への接続孔材料の供給量が必要十分なものとなり、かつ
接続孔部の埋め込み材料の表面起伏が緩和される。ここ
で、上記無パターン領域とは、平坦化された絶縁膜のこ
とを言う。以上、接続孔パターンの場合を説明したが、
配線溝パターンの場合を図2に示す。工程は接続孔パタ
ーンと同様であり、図2(b)の配線溝204に対して
埋め込み材205を埋め込むものであるが、上記面積比
率については、図2(a)の様な配線溝パターンにおい
て、抜きパターン外縁部面積の、抜きパターン面積に対
する割合をTs とすると、Ts =f/eを一定比率以上
に設定する。図3は、この段階つまりCMP前において
抜きパターン部と残しパターン部における埋め込み材料
の膜厚差を比較したものである。この様に、接続孔パタ
ーン,配線溝パターンどちらの場合も、パターン外縁部
の面積を各パタ−ン面積に対して一定比率以上取る事に
よって上記膜厚差を少なくする事ができる。この様な状
態で、図1(d)に示す様にCMPを施すと、ディッシ
ングやCMP残りは発生しない。図4に、上記抜きパタ
ーン外縁部の面積の、抜きパターン面積に対する割合を
変化させた場合のCMP歩留りの結果を示す。ここでC
MP歩留りとは、CMP後に上記ディッシングやCMP
残りが発生しない割合とする。この様に、接続孔パター
ンにおいては70%,配線溝パターンにおいては60%
以上の領域において98%以上の高いCMP歩留りが得
られている事が分かる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to FIGS. FIG. 1 is a cross-sectional view illustrating an example of a manufacturing process of a semiconductor device according to the present invention. In the figure, 101 is a semiconductor substrate, 102 is an insulating film, 103 is a connection hole, and 105 is a filling material. FIG. 1A shows a top view of the connection hole. a and b are each 1.0 μm, that is, the connection hole is 1.0 μm square, and the intervals b and c between adjacent connection holes are each 0.5 μm. In such a via hole pattern, the ratio of open pattern area of opening pattern edge portion area is taken as T h, T h = {( a + c)
(B + d) -ab} / ab is set to a certain value or more. FIG.
FIG. 2B is a cross-sectional view taken along line CD in FIG. When filling the connection holes, first, as shown in FIG. 1B, an insulating film is coated, and the connection holes are formed by lithography and etching. Next, as shown in FIG. 1C, 15 nm of Ti, 60 nm of TiN, and 1.0 μm of C
u film is sequentially formed by sputtering. After a while, FIG.
As shown in (d), for example, heating is performed by laser irradiation of 1.5 J / cm 2 , and the embedding material is caused to flow so as to be embedded in the connection holes. Thereafter, as shown in FIG. 1E, planarization is performed by removing the material for filling the connection holes other than the connection holes by CMP, and the filling of the connection holes is performed. As described above, when there is a non-pattern region having a fixed ratio or more with respect to the area of each connection hole around each adjacent connection hole, the insulating film between the adjacent connection holes is formed at the stage of FIG. The film formation amount above can supply the necessary filling material to fill the volume of the connection hole,
As a result, at the time of reflow in FIG. 1D, the supply amount of the connection hole material to the connection hole becomes necessary and sufficient, and the surface unevenness of the filling material in the connection hole portion is reduced. Here, the non-pattern region refers to a planarized insulating film. The connection hole pattern has been described above.
FIG. 2 shows the case of the wiring groove pattern. The process is the same as that of the connection hole pattern, in which the filling material 205 is buried in the wiring groove 204 of FIG. 2B, but the above-mentioned area ratio is different in the wiring groove pattern as shown in FIG. Assuming that the ratio of the area of the outer edge portion of the cut pattern to the area of the cut pattern is T s , T s = f / e is set to a certain ratio or more. FIG. 3 compares the film thickness difference of the burying material between the punched pattern portion and the remaining pattern portion at this stage, that is, before the CMP. As described above, in both the connection hole pattern and the wiring groove pattern, the above film thickness difference can be reduced by setting the area of the outer edge of the pattern to a certain ratio or more with respect to the area of each pattern. In such a state, if CMP is performed as shown in FIG. 1D, dishing and remaining CMP do not occur. FIG. 4 shows the results of CMP yield when the ratio of the area of the outer edge of the cut pattern to the area of the cut pattern is changed. Where C
MP yield refers to the above-mentioned dishing or CMP after CMP.
It is a ratio that does not generate the remainder. Thus, 70% in the connection hole pattern and 60% in the wiring groove pattern.
It can be seen that a high CMP yield of 98% or more is obtained in the above region.

【0007】[0007]

【発明の効果】上述した様に本発明によれば、CMPを
施す際に発生していたディッシングやCMP残りが抑え
られる。従って、埋め込み材料の表面や絶縁膜上は平坦
な面となり、その結果、断線不良,配線抵抗の上昇,配
線抵抗のウエハ面内・面間におけるばらつきによる動作
不良或いはエレクトロ・マイグレーションによる寿命の
低下といった配線信頼性の劣化を回避する事ができる。
As described above, according to the present invention, dishing and residual CMP which occur when performing CMP can be suppressed. Accordingly, the surface of the buried material or the insulating film becomes a flat surface, and as a result, a disconnection failure, an increase in wiring resistance, a malfunction due to a variation in wiring resistance within or between wafer surfaces, or a reduction in life due to electromigration. Deterioration of wiring reliability can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体装置の接続孔における製造
工程の一例を断面で示したものである。
FIG. 1 is a cross-sectional view illustrating an example of a manufacturing process for a connection hole of a semiconductor device according to the present invention.

【図2】本発明に係る半導体装置の配線溝における製造
工程の一例を断面で示したものである。
FIG. 2 is a cross-sectional view illustrating an example of a manufacturing process in a wiring groove of the semiconductor device according to the present invention.

【図3】抜きパターン外縁部面積の抜きパターン面積に
対する割合を変化させた場合の、CMP前における抜き
パターン部と残しパターン部の埋め込み材料の膜厚差を
比較したグラフである。
FIG. 3 is a graph comparing the film thickness difference between the buried pattern portion and the buried material portion of the remaining pattern portion before the CMP when the ratio of the area of the outer edge portion of the pierced pattern to the area of the pierced pattern is changed.

【図4】抜きパターン外縁部面積の抜きパターン面積に
対する割合を変化させた場合のCMP歩留りの結果を示
すグラフである。
FIG. 4 is a graph showing the results of CMP yield when the ratio of the area of the outer edge portion of the cut pattern to the area of the cut pattern is changed.

【図5】従来例に係る半導体装置の接続孔における製造
工程の一例を断面で示したものである。
FIG. 5 is a cross-sectional view illustrating an example of a manufacturing process for a connection hole of a semiconductor device according to a conventional example.

【図6】従来例に係る半導体装置の配線溝における製造
工程の一例を断面で示したものである。
FIG. 6 is a cross-sectional view illustrating an example of a manufacturing process in a wiring groove of a semiconductor device according to a conventional example.

【符号の説明】[Explanation of symbols]

101 201 501 601 :半導体基板 102 202 502 602 :絶縁膜 103 503 :接続孔 204 604 :配線溝 105 205 505 605 :埋め込み配線材料 101 201 501 601: semiconductor substrate 102 202 502 602: insulating film 103 503: connection hole 204 604: wiring groove 105 205 505 605: embedded wiring material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に絶縁膜を堆積する工程と、
前記絶縁膜に隣接する複数の接続孔を形成する工程と、
スパッタにより金属を被膜する工程と、前記金属を熱処
理によりリフローさせる工程と、前記リフロー後に接続
孔以外に存在する接続孔埋め込み材料を化学的機械研磨
により除去する工程を含み、前記絶縁膜の前記接続孔の
各外縁部に、前記各接続孔の面積の70%以上の無パタ
ーン領域ができる様に各接続孔を離して形成する事を特
徴とする半導体装置の製造方法。
A step of depositing an insulating film on a semiconductor substrate;
Forming a plurality of connection holes adjacent to the insulating film;
A step of coating a metal by sputtering, a step of reflowing the metal by heat treatment, and a step of removing a connection hole filling material other than the connection hole by chemical mechanical polishing after the reflow, wherein the connection of the insulating film is performed. A method of manufacturing a semiconductor device, comprising: forming each connection hole at an outer edge portion of the hole so as to form a non-patterned area of 70% or more of the area of each connection hole.
【請求項2】前記無パターン領域の面積の前記各接続孔
の面積に対する割合をTh としたときに、Th ={(a
+c)(b+d)−ab}/ab(但し、a,bは各々
接続孔の1辺の長さ、c,dは各々隣接する接続孔間の
距離であり、aとcは同方向)とする事を特徴とする請
求項1記載の半導体装置の製造方法。
Wherein the ratio of the area of each connection hole of the area of the non-pattern area is taken as T h, T h = {( a
+ C) (b + d) -ab} / ab (where a and b are the lengths of one side of the connection hole, c and d are the distances between adjacent connection holes, and a and c are in the same direction). 2. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項3】半導体基板上に絶縁膜を堆積する工程と、
前記絶縁膜に隣接する複数の配線溝を形成する工程と、
スパッタにより金属を被膜する工程と、前記金属を熱処
理によりリフローさせる工程と、前記リフロー後に配線
溝以外に存在する配線溝埋め込み材料を化学的機械研磨
により除去する工程を含み、前記絶縁膜の前記配線溝の
各外縁部に、前記各配線溝の面積の60%以上の無パタ
ーン領域ができる様に各配線溝を離して形成する事を特
徴とする半導体装置の製造方法。
A step of depositing an insulating film on the semiconductor substrate;
Forming a plurality of wiring grooves adjacent to the insulating film;
A step of coating a metal by sputtering, a step of reflowing the metal by heat treatment, and a step of removing a wiring groove filling material existing in areas other than the wiring grooves by chemical mechanical polishing after the reflow, wherein the wiring of the insulating film is removed. A method of manufacturing a semiconductor device, comprising: forming each wiring groove apart at each outer edge of the groove so as to form a non-pattern area of 60% or more of the area of each wiring groove.
【請求項4】前記無パターン領域の面積の前記各配線溝
の面積に対する割合をTs としたときに、Ts =f/e
(但し、eは配線溝の幅,fは隣接する配線溝の間隔)
とする事を特徴とする請求項3記載の半導体装置の製造
方法。
4. When the ratio of the area of the non-pattern region to the area of each wiring groove is T s , T s = f / e
(However, e is the width of the wiring groove, f is the distance between adjacent wiring grooves)
4. The method for manufacturing a semiconductor device according to claim 3, wherein
JP34473596A 1996-12-25 1996-12-25 Manufacture of semiconductor device Pending JPH10189597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34473596A JPH10189597A (en) 1996-12-25 1996-12-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34473596A JPH10189597A (en) 1996-12-25 1996-12-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH10189597A true JPH10189597A (en) 1998-07-21

Family

ID=18371576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34473596A Pending JPH10189597A (en) 1996-12-25 1996-12-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH10189597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432825B1 (en) 1998-12-03 2002-08-13 Nec Corporation Semiconductor device production method
US6514853B1 (en) 1999-06-25 2003-02-04 Nec Corporation Semiconductor device and a manufacturing process therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432825B1 (en) 1998-12-03 2002-08-13 Nec Corporation Semiconductor device production method
KR100356125B1 (en) * 1998-12-03 2002-10-19 닛폰 덴키(주) Semiconductor device production method
US6514853B1 (en) 1999-06-25 2003-02-04 Nec Corporation Semiconductor device and a manufacturing process therefor

Similar Documents

Publication Publication Date Title
US20170179035A1 (en) Method of planarizing recesses filled with copper
JP3297359B2 (en) Method for planarizing semiconductor wafer
US7470981B2 (en) Semiconductor device with varying dummy via-hole plug density
JPH0745616A (en) Manufacture of semiconductor device
JP2000260768A (en) Manufacture of semiconductor device
KR100350111B1 (en) Wiring of Semiconductor Device and Method for Manufacturing Thereof
JPS63244858A (en) Formation of metallic wiring
JP3302142B2 (en) Method for manufacturing semiconductor device
JPH11150114A (en) Semiconductor device and manufacture of the same
JPH10189597A (en) Manufacture of semiconductor device
JPH10335460A (en) Semiconductor device and its manufacture
KR100256055B1 (en) Method of manufacturing semiconductor device for improving planarization
JP2991695B2 (en) Method for forming insulating film of semiconductor device
JP3299486B2 (en) Semiconductor device and manufacturing method thereof
US6395636B1 (en) Methods for improved planarization post CMP processing
KR19990010537A (en) Contact plug formation and insulating film planarization method of semiconductor device
JP2001345378A (en) Semiconductor device and method of manufacturing the same
KR20020010937A (en) Fabrication process for dishing-free cu damascene structures
JP2768294B2 (en) Method for manufacturing semiconductor device
JPH10189497A (en) Semiconductor device and its fabrication
JP2004319965A (en) Method for forming wire and semiconductor device
JP2005109138A (en) Manufacturing method for semiconductor device
KR920001913B1 (en) Method of fabricating semiconductor device with pattern layer
KR100447977B1 (en) Method for forming metal line of semiconductor device by using dual damascene process
JP2734881B2 (en) Method for manufacturing semiconductor device