JPH10188957A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10188957A
JPH10188957A JP8355330A JP35533096A JPH10188957A JP H10188957 A JPH10188957 A JP H10188957A JP 8355330 A JP8355330 A JP 8355330A JP 35533096 A JP35533096 A JP 35533096A JP H10188957 A JPH10188957 A JP H10188957A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon material
lithium secondary
charge
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8355330A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shoji
良浩 小路
Atsushi Suemori
敦 末森
Masahisa Fujimoto
正久 藤本
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8355330A priority Critical patent/JPH10188957A/en
Publication of JPH10188957A publication Critical patent/JPH10188957A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having an excellent charge and discharge cycle characteristic by adding and mixing inorganic porous grain powder, which can hold electrolyte in holes thereof, to with the carbon material as a lithium ion storing material in a negative electrode. SOLUTION: As inorganic porous grain powder, each grain powder of silica gel, alumina and silica alumina is used, and used as one kind or mixture of two kind or more. Powder having specific surface area at 100m<2> /g or more has an excellent property for holding an electrolyte. This powder is desirably added at 0.5-10wt. parts in relative to the carbon material at 100wt. parts. In the case where such a powder is added to the carbon material of a negative electrode, the electrolyte is evenly distributed in the negative electrode. As a result, charge and discharge reaction is evenly performed, and partial deterioration of the carbon material at the time of charge an discharge cycle becomes hard to be generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、炭素材料を負極の
リチウムイオン吸蔵材とするリチウム二次電池に係わ
り、詳しくは充放電サイクル特性を改善することを目的
とした、負極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using a carbon material as a lithium ion storage material for a negative electrode, and more particularly to an improvement of a negative electrode for the purpose of improving charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
非水電解液を電解液として使用するリチウム二次電池
が、アルカリ水溶液を電解液として使用するアルカリ二
次電池と異なり、水の分解電圧を考慮する必要がないた
めに高電圧設計が可能であるなどの理由から、注目され
ている。
2. Description of the Related Art In recent years,
Unlike a lithium secondary battery using a non-aqueous electrolyte as an electrolyte, unlike an alkaline secondary battery using an alkaline aqueous solution as an electrolyte, a high voltage design is possible because there is no need to consider the decomposition voltage of water. For such reasons, attention has been paid.

【0003】従来、この種の二次電池の負極材料として
は、当初、金属リチウムが考えられていたが、金属リチ
ウムを使用した場合は、樹枝状の電析リチウムがセパレ
ータを貫通し、内部短絡が起こる虞れがあるため、最近
の実用電池では、リチウムイオンを電気化学的に吸蔵及
び放出することが可能な炭素材料が負極材料として使用
されている。
Conventionally, metallic lithium was initially considered as a negative electrode material for this type of secondary battery. However, when metallic lithium is used, dendritic electrodeposited lithium penetrates through the separator, causing an internal short circuit. Therefore, in a recent practical battery, a carbon material capable of electrochemically storing and releasing lithium ions is used as a negative electrode material.

【0004】炭素材料を使用した負極は、炭素材料と結
着剤とを混練して得た負極合剤を加圧成形したり、炭素
材料、結着剤及び増粘剤からなるスラリー乃至ペースト
を導電性の基体に塗布したり、することにより作製され
る。
A negative electrode using a carbon material is prepared by kneading a carbon material and a binder to form a negative electrode mixture under pressure, or forming a slurry or paste comprising a carbon material, a binder and a thickener. It is produced by coating or applying to a conductive substrate.

【0005】しかしながら、この種の負極を使用した場
合、結着剤や増粘剤が、負極が電解液を均一に保持する
のを妨げるので、充放電反応が均一に行われにくく、炭
素材料に局所的な劣化が起こり易い。このため、この種
の負極を使用したリチウム二次電池には、充放電サイク
ルに伴う電池容量の低下が著しい、すなわち充放電サイ
クル特性が良くない、という問題がある。
However, when this type of negative electrode is used, the binder and the thickener prevent the negative electrode from holding the electrolytic solution uniformly, so that the charge / discharge reaction is difficult to be performed uniformly, and the carbon material is hardly used. Local degradation is likely to occur. For this reason, the lithium secondary battery using this kind of negative electrode has a problem that the battery capacity is significantly reduced due to charge / discharge cycles, that is, the charge / discharge cycle characteristics are not good.

【0006】したがって、本発明は、充放電サイクル特
性に優れた、炭素材料を負極のリチウムイオン吸蔵材と
するリチウム二次電池を提供することを目的とする。
Accordingly, an object of the present invention is to provide a lithium secondary battery using a carbon material as a lithium ion storage material for a negative electrode, which is excellent in charge / discharge cycle characteristics.

【0007】[0007]

【課題を解決するための手段】本発明に係るリチウム二
次電池(以下、「本発明電池」と称する)は、正極と、
炭素材料をリチウムイオン吸蔵材とする負極と、電解液
とを備えるリチウム二次電池であって、前記炭素材料
に、電解液を孔内に保持することが可能な無機多孔質粒
子粉末が添加混合されている。
A lithium secondary battery according to the present invention (hereinafter referred to as "battery of the present invention") comprises a positive electrode,
A lithium secondary battery including a negative electrode using a carbon material as a lithium ion storage material and an electrolyte, wherein inorganic carbon particles capable of holding the electrolyte in pores are added to the carbon material. Have been.

【0008】無機多孔質粒子粉末の具体例としては、シ
リカゲル、アルミナ及びシリカアルミナの各粒子粉末が
挙げられる。無機多孔質粒子粉末は、一種単独を使用し
てもよく、必要に応じて二種以上を併用してもよい。
Specific examples of the inorganic porous particle powder include silica gel, alumina and silica-alumina particle powder. One kind of the inorganic porous particle powder may be used alone, or two or more kinds thereof may be used in combination as needed.

【0009】無機多孔質粒子粉末としては、Ar(アル
ゴン)を被吸着体とするBET法による比表面積が10
0m2 /g以上のものが電解液を保持する能力に優れて
おり、好ましい。
The inorganic porous particle powder has a specific surface area of 10 according to the BET method using Ar (argon) as an object to be adsorbed.
Those having 0 m 2 / g or more are excellent in the ability to hold the electrolyte and are preferred.

【0010】無機多孔質粒子粉末の好適な添加量は、炭
素材料100重量部に対して、0.5〜10重量部であ
る。同添加量が0.5重量部未満の場合は、負極の含液
性が充分に改善されず、充放電反応が充分に均一化され
ない。一方、同添加量が10重量部を超えた場合は、炭
素材料の充填量が減少するため、充放電サイクル初期の
電池容量が小さくなるとともに、芯体(集電体)との密
着性が悪くなるため、充放電サイクル時に活物質が芯体
から剥離して、充放電サイクル特性が低下する。
The preferable addition amount of the inorganic porous particle powder is 0.5 to 10 parts by weight based on 100 parts by weight of the carbon material. If the amount is less than 0.5 part by weight, the liquid content of the negative electrode is not sufficiently improved, and the charge / discharge reaction is not sufficiently uniform. On the other hand, when the addition amount exceeds 10 parts by weight, the filling amount of the carbon material decreases, so that the battery capacity at the beginning of the charge / discharge cycle decreases and the adhesion to the core (current collector) deteriorates. Therefore, the active material peels off from the core during the charge / discharge cycle, and the charge / discharge cycle characteristics are degraded.

【0011】本発明の特徴は、炭素材料を負極のリチウ
ムイオン吸蔵材とするリチウム二次電池の充放電サイク
ル特性を改善するために、炭素材料に、電解液を孔内に
保持することが可能な無機多孔質粒子粉末を添加した点
にある。それゆえ、正極材料、電解液などの電池を構成
する他の材料については特に制限は無く、リチウム二次
電池用として従来使用され、或いは提案されている種々
の材料を使用することが可能である。
The feature of the present invention is that an electrolyte can be held in a hole in a carbon material in order to improve the charge / discharge cycle characteristics of a lithium secondary battery using the carbon material as a lithium ion storage material for a negative electrode. In that the addition of a fine inorganic porous particle powder. Therefore, other materials constituting the battery such as the positive electrode material and the electrolyte are not particularly limited, and various materials conventionally used or proposed for lithium secondary batteries can be used. .

【0012】正極材料としては、LiCoO2 、LiN
iO2 、LiMnO2 、LiVO2、LiNbO2 等の
金属酸化物が例示される。
As the cathode material, LiCoO 2 , LiN
Metal oxides such as iO 2 , LiMnO 2 , LiVO 2 , and LiNbO 2 are exemplified.

【0013】電解液としては、エチレンカーボネート、
プロピレンカーボネート、ブチレンカーボネート、ビニ
レンカーボネート等の環状炭酸エステル、ジメチルカー
ボネート、ジエチルカーボネート、エチルメチルカーボ
ネート、メチルプロピルカーボネート、エチルプロピル
カーボネート、ブチルメチルカーボネート、ブチルエチ
ルカーボネート、ジプロピルカーボネート等の鎖状炭酸
エステル又は環状炭酸エステルと鎖状炭酸エステルとの
混合溶媒に、LiPF6 、LiBF4 、LiCF3 SO
3 、LiAsF6 、LiN(CF3 SO2 2 、LiO
SO2 (CF23 CF3 等の電解質塩を溶かしたもの
が例示される。
As the electrolyte, ethylene carbonate,
Propylene carbonate, butylene carbonate, cyclic carbonate such as vinylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, butyl methyl carbonate, butyl ethyl carbonate, chain carbonate such as dipropyl carbonate or LiPF 6 , LiBF 4 , LiCF 3 SO in a mixed solvent of a cyclic carbonate and a chain carbonate
3, LiAsF 6, LiN (CF 3 SO 2) 2, LiO
An example in which an electrolyte salt such as SO 2 (CF 2 ) 3 CF 3 is dissolved is exemplified.

【0014】本発明電池の負極は、炭素材料と無機多孔
質粒子粉末と結着剤とを混練して得た負極合剤を加圧成
形したり、炭素材料、無機多孔質粒子粉末、結着剤及び
増粘剤からなるスラリー乃至ペーストを導電性の基体に
塗布したり、することにより作製される。結着剤の具体
例としては、スチレン−ブタジエン共重合体の外、メチ
ルアクリレート、メチルメタアクリレート(以下、アク
リレートとメタクリレートとを総称して(メタ)アクリ
レートと記す)、エチル(メタ)アクリレート、ブチル
(メタ)アクリレート、(メタ)アクリロニトリル、ヒ
ドロキシエチル(メタ)アクリレート等のエチレン性不
飽和カルボン酸エステル又はアルリル酸、メタクリル
酸、イタコン酸、フマル酸、マレイン酸等のエチレン性
不飽和カルボン酸の重合体又は共重合体;及びポリビニ
リデンフルオライド、ポリテトラフルオロエチレン等の
フッ素系樹脂が挙げられる。また、増粘剤の具体例とし
ては、カルボキシメチルセルロース、メチルセルロー
ス、ヒドロキシメチルセルロース、エチルセルロース、
ポリビニルアルコール、ポリアクリル酸、ポリアクリル
酸塩、酸化スターチ、リン酸化スターチ及びカゼインが
挙げられる。
The negative electrode of the battery of the present invention can be formed by pressure-forming a negative electrode mixture obtained by kneading a carbon material, inorganic porous particle powder, and a binder, or forming a carbon material, inorganic porous particle powder, It is prepared by applying or applying a slurry or paste comprising an agent and a thickener to a conductive substrate. Specific examples of the binder include styrene-butadiene copolymer, methyl acrylate, methyl methacrylate (hereinafter, acrylate and methacrylate are collectively referred to as (meth) acrylate), ethyl (meth) acrylate, and butyl. (Meth) acrylate, (meth) acrylonitrile, ethylenically unsaturated carboxylic acid ester such as hydroxyethyl (meth) acrylate or the like, or heavy ethylenically unsaturated carboxylic acid such as allylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc. And a fluorine-based resin such as polyvinylidene fluoride and polytetrafluoroethylene. Specific examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose,
Polyvinyl alcohol, polyacrylic acid, polyacrylates, oxidized starch, phosphorylated starch and casein.

【0015】本発明電池は、電解液を孔内に保持可能な
無機多孔質粒子粉末が、負極の炭素材料に添加混合され
ているので、無添加の場合に比べて、負極に電解液が均
一いきわたる。このため、充放電反応が均一に行われる
ようになり、充放電サイクル時に炭素材料の部分的な劣
化が起こりにくくなる。
In the battery of the present invention, since the inorganic porous particle powder capable of holding the electrolytic solution in the pores is added to and mixed with the carbon material of the negative electrode, the electrolytic solution is more uniform in the negative electrode than in the case of no addition. It goes all the way. For this reason, the charge / discharge reaction is performed uniformly, and partial deterioration of the carbon material during the charge / discharge cycle is less likely to occur.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0017】(実施例1〜6) 〔正極の作製〕正極活物質としての平均粒径5μmのL
iCoO2 粉末と、導電剤としての炭素粉末とを、重量
比9:1で混合し、この混合物95重量部と、ポリフッ
化ビニリデン5重量部の5重量%N−メチル−2−ピロ
リドン(NMP)溶液とを混練して正極合剤スラリーを
調製し、この正極合剤スラリーを正極集電体としてのア
ルミニウム箔の両面にドクターブレード法により塗布
し、150°Cで2時間真空乾燥して、アルミニウム箔
の各面に厚さ50μmの正極活物質層が形成された正極
を作製した。
(Examples 1 to 6) [Preparation of positive electrode] L having an average particle size of 5 µm as a positive electrode active material
and ICoO 2 powder, a carbon powder as a conductive agent, the weight ratio of 9: 1 mixture, and the mixture 95 parts by weight, 5 wt% N-methyl-2-pyrrolidone polyvinylidene fluoride 5 parts by weight (NMP) The mixture was kneaded with a solution to prepare a positive electrode mixture slurry, and this positive electrode mixture slurry was applied to both sides of an aluminum foil as a positive electrode current collector by a doctor blade method, and vacuum-dried at 150 ° C. for 2 hours. A positive electrode having a 50 μm-thick positive electrode active material layer formed on each surface of the foil was produced.

【0018】〔負極の作製〕平均粒径20μmの天然黒
鉛粉末〔c軸方向の結晶子の大きさ(Lc)>1000
Å;格子面(002)面の面間隔(d002 )=3.35
Å)〕と、結着剤としてのスチレン−ブタジエンゴム
(SBR)ラテックス(固形分:48重量%)とを水に
分散させ、この分散液に、Arを被吸着体とするBET
法による比表面積(以下の比表面積もこの測定法による
比表面積である)が10、80、100、200、50
0又は1000m2 /gで、平均粒径が5μmのシリカ
ゲル(SiO2 )と、増粘剤としてのカルボキシメチル
セルロース(CMC)とを混合して負極合剤スラリーを
調製した。この調製において、乾固後の負極に含まれる
天然黒鉛粉末とSBR(固形分)とシリカゲルとCMC
の重量比が100:3:5:2になるようにした。次い
で、各負極合剤スラリーを負極集電体としての銅箔の両
面にドクターブレード法により塗布し、110°Cで2
時間真空乾燥して、銅箔の各面に厚さ50μmの炭素材
料層が形成された負極を作製した。
[Preparation of Negative Electrode] Natural graphite powder having an average particle size of 20 μm [crystallite size (Lc) in c-axis direction> 1000]
Å; spacing (d 002 ) of lattice plane (002) plane = 3.35
Å)] and styrene-butadiene rubber (SBR) latex (solid content: 48% by weight) as a binder are dispersed in water, and BET using Ar as an object to be adsorbed is added to this dispersion.
Specific surface area (the following specific surface area is also the specific surface area according to this measurement method) is 10, 80, 100, 200, 50
A negative electrode mixture slurry was prepared by mixing silica gel (SiO 2 ) having a mean particle size of 5 μm with 0 or 1000 m 2 / g, and carboxymethyl cellulose (CMC) as a thickener. In this preparation, the natural graphite powder, SBR (solid content), silica gel and CMC contained in the dried negative electrode were used.
Was adjusted to be 100: 3: 5: 2. Next, each negative electrode mixture slurry was applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and was applied at 110 ° C. for 2 hours.
After vacuum drying for a time, a negative electrode in which a carbon material layer having a thickness of 50 μm was formed on each surface of the copper foil was produced.

【0019】〔電解液の調製〕エチレンカーボネートと
ジエチルカーボネートとの体積比2:3の混合溶媒に、
LiPF6 を1モル/リットル溶かして電解液を調製し
た。
[Preparation of Electrolyte Solution] A mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 2: 3 was added to
LiPF 6 was dissolved at 1 mol / liter to prepare an electrolytic solution.

【0020】〔リチウム二次電池の作製〕上記の正極、
各負極及び電解液を用いて、順にAAサイズのリチウム
二次電池A1(比表面積10m2 /gのシリカゲルを使
用),A2(比表面積80m2 /gのシリカゲルを使
用),A3(比表面積100m2 /gのシリカゲルを使
用),A4(比表面積200m2 /gのシリカゲルを使
用),A5(比表面積500m2 /gのシリカゲルを使
用),A6(比表面積1000m2 /gのシリカゲルを
使用)を作製した。セパレータとしてポリプロピレン製
の微多孔膜を使用した。
[Preparation of Lithium Secondary Battery]
Using the respective negative electrodes and the electrolytic solution, AA size lithium secondary batteries A1 (using silica gel having a specific surface area of 10 m 2 / g), A2 (using silica gel having a specific surface area of 80 m 2 / g), A3 (using a specific surface area of 100 m 2 ) 2 / g of silica gel), A4 (using a silica gel with a specific surface area of 200 m 2 / g), A5 (using a silica gel with a specific surface area of 500 m 2 / g), A6 (using a silica gel with a specific surface area of 1000 m 2 / g) Was prepared. A microporous polypropylene membrane was used as a separator.

【0021】(実施例7〜12)負極の作製において、
シリカゲルに代えて、比表面積が10、80、100、
200、500又は1000m2 /gで、平均粒径が7
μmのアルミナ(Al23 )を使用したこと以外は実
施例1〜6と同様にして、リチウム二次電池A7(比表
面積10m2 /gのアルミナを使用),A8(比表面積
80m2 /gのアルミナを使用),A9(比表面積10
0m2 /gのアルミナを使用),A10(比表面積20
0m2 /gのアルミナを使用),A11(比表面積50
0m2 /gのアルミナを使用),A12(比表面積10
00m2 /gのアルミナを使用)を作製した。
(Examples 7 to 12) In the production of the negative electrode,
Instead of silica gel, the specific surface area is 10, 80, 100,
200, 500 or 1000 m 2 / g with an average particle size of 7
except for using μm of alumina (Al 2 O 3) in the same manner as in Example 1-6, (using alumina having a specific surface area of 10 m 2 / g) lithium secondary batteries A7, A8 (specific surface area 80 m 2 / g of alumina), A9 (specific surface area 10
0 m 2 / g of alumina), A10 (specific surface area 20
0 m 2 / g of alumina), A11 (specific surface area 50
0 m 2 / g alumina), A12 (specific surface area 10
00 m 2 / g alumina).

【0022】(実施例13〜18)負極の作製におい
て、シリカゲルに代えて、比表面積が10、80、10
0、200、500又は1000m2 /gで、平均粒径
が5μmのシリカアルミナ(SiO2 とAl2 3 のモ
ル比9:1)を使用したこと以外は実施例1〜6と同様
にして、リチウム二次電池A13(比表面積10m2
gのシリカアルミナを使用),A14(比表面積80m
2 /gのシリカアルミナを使用),A15(比表面積1
00m2 /gのシリカアルミナを使用),A16(比表
面積200m2/gのシリカアルミナを使用),A17
(比表面積500m2 /gのシリカアルミナを使用),
A18(比表面積1000m2 /gのシリカアルミナを
使用)を作製した。
(Examples 13 to 18) In the preparation of the negative electrode, the specific surface area was 10, 80, 10 instead of silica gel.
Except that 0, 200, 500 or 1000 m 2 / g and an average particle size of 5 μm silica alumina (9: 1 molar ratio of SiO 2 and Al 2 O 3 ) was used, the same as in Examples 1 to 6 , Lithium secondary battery A13 (specific surface area 10 m 2 /
g of silica alumina), A14 (specific surface area 80 m
2 / g silica alumina), A15 (specific surface area 1
00 m 2 / g silica alumina), A16 (using a specific surface area of 200 m 2 / g silica alumina), A17
(Using a silica alumina having a specific surface area of 500 m 2 / g),
A18 (using a silica alumina having a specific surface area of 1000 m 2 / g) was produced.

【0023】(比較例1)負極の作製において、シリカ
ゲルを添加せずに、乾固後の負極に含まれる天然黒鉛粉
末とSBR(固形分)とCMCの重量比が100:3:
2になるようにしたこと以外は実施例1〜6と同様にし
て、リチウム二次電池B1(比較電池)を作製した。
Comparative Example 1 In the preparation of the negative electrode, without adding silica gel, the weight ratio of natural graphite powder, SBR (solid content) and CMC contained in the dried negative electrode was 100: 3:
A lithium secondary battery B1 (comparative battery) was produced in the same manner as in Examples 1 to 6, except that the battery was changed to No. 2.

【0024】(比較例2)天然黒鉛粉末(実施例1〜6
で使用したものと同じもの)と、SBRラテックス(実
施例1〜6で使用したものと同じもの)とを水に分散さ
せ、この分散液に、ポリテトラフルオロエチレン(PT
FE)を水に分散させたディスパージョン(固形分:6
0重量%)と、CMCとを混合して負極合剤スラリーを
調製した。この調製において、乾固後の負極に含まれる
天然黒鉛粉末とSBR(固形分)とPTFEとCMCの
重量比が100:3:2:2になるようにした。次い
で、この負極合剤スラリーを負極集電体としての銅箔の
両面にドクターブレード法により塗布し、110°Cで
2時間真空乾燥して、銅箔の各面に厚さ50μmの炭素
材料層が形成された負極を作製し、負極にこの負極を使
用したこと以外は実施例1〜6と同様にしてリチウム二
次電池B2(比較電池)を作製した。
(Comparative Example 2) Natural graphite powder (Examples 1 to 6)
And the same SBR latex (same as that used in Examples 1 to 6) were dispersed in water, and polytetrafluoroethylene (PT
FE) dispersed in water (solid content: 6)
0% by weight) and CMC to prepare a negative electrode mixture slurry. In this preparation, the weight ratio of the natural graphite powder, SBR (solid content), PTFE, and CMC contained in the dried negative electrode was adjusted to 100: 3: 2: 2. Next, this negative electrode mixture slurry is applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and dried in vacuum at 110 ° C. for 2 hours, and a carbon material layer having a thickness of 50 μm is formed on each surface of the copper foil. Was produced, and a lithium secondary battery B2 (comparative battery) was produced in the same manner as in Examples 1 to 6, except that the negative electrode was used as the negative electrode.

【0025】〈各電池の充放電サイクル特性〉各電池に
ついて、25°Cにて1Cで4.1Vまで充電した後、
25°Cにて1Cで2.75Vまで放電する工程を1サ
イクルとする充放電サイクルを1000サイクル行い、
1サイクル目の放電容量に対する1000サイクル目の
放電容量の比率(%)を求めて、各電池の充放電サイク
ル特性を調べた。結果を図1に示す。図1は、各電池の
充放電サイクル特性を、縦軸に1サイクル目の放電容量
に対する1000サイクル目の放電容量の比率(%)
を、横軸に使用した無機多孔質粒子粉末の比表面積(m
2 /g)をそれぞれとって、示したグラフである。
<Charge / Discharge Cycle Characteristics of Each Battery> Each battery was charged to 4.1 V at 1 C at 25 ° C.
1000 cycles of a charge / discharge cycle in which a step of discharging to 2.75 V at 1 C at 25 ° C. is one cycle,
The ratio (%) of the discharge capacity at the 1000th cycle to the discharge capacity at the first cycle was determined, and the charge / discharge cycle characteristics of each battery were examined. The results are shown in FIG. FIG. 1 shows the charge / discharge cycle characteristics of each battery. The vertical axis represents the ratio (%) of the discharge capacity at the 1000th cycle to the discharge capacity at the first cycle.
Is the specific surface area of the inorganic porous particle powder used on the horizontal axis (m
2 / g).

【0026】図1に示すように、本発明電池A1〜A1
8は、比較電池B1,B2に比べて、充放電サイクル特
性に優れている。この事実から、無機多孔質粒子粉末を
炭素材料に添加混合することにより、充放電サイクル特
性が改善されることが分かる。また、図1に示すよう
に、シリカゲル、アルミナ及びシリカアルミナのいずれ
を使用した場合も、比表面積が100m2 /g以上のも
のを使用したときに、充放電サイクル特性が顕著に改善
されている。この事実から、無機多孔質粒子粉末として
は、比表面積が100m2 /g以上のものを使用するこ
とが好ましいことが分かる。
As shown in FIG. 1, the batteries A1 to A1 of the present invention
No. 8 is more excellent in charge / discharge cycle characteristics than the comparative batteries B1 and B2. From this fact, it is understood that the charge and discharge cycle characteristics are improved by adding and mixing the inorganic porous particle powder with the carbon material. In addition, as shown in FIG. 1, when using any one of silica gel, alumina and silica-alumina, when the specific surface area is 100 m 2 / g or more, the charge / discharge cycle characteristics are remarkably improved. . From this fact, it is understood that it is preferable to use a powder having a specific surface area of 100 m 2 / g or more as the inorganic porous particle powder.

【0027】〈無機多孔質粒子粉末の添加量と充放電サ
イクル特性の関係〉負極の作製において、乾固後の負極
に含まれる天然黒鉛粉末とSBR(固形分)と比表面積
が500m2 /gのシリカゲルとCMCの重量比が10
0:3:X:2(X=0.1、0.5、2.5、7.
5、10又は15)になるようにしたこと以外は実施例
1〜6と同様にして、リチウム二次電池A19(X=
0.1),A20(X=0.5),A21(X=2.
5),A22(X=7.5),A23(X=10),A
24(X=15)を作製した。また、負極の作製におい
て、乾固後の負極に含まれる天然黒鉛粉末とSBR(固
形分)と比表面積が500m2 /gのアルミナとCMC
の重量比が100:3:Y:2(Y=0.1、0.5、
2.5、7.5、10又は15)になるようにしたこと
以外は実施例7〜12と同様にして、リチウム二次電池
A25(Y=0.1),A26(Y=0.5),A27
(Y=2.5),A28(Y=7.5),A29(Y=
10),A30(Y=15)を作製した。さらに、負極
の作製において、乾固後の負極に含まれる天然黒鉛粉末
とSBR(固形分)と比表面積が500m2 /gのシリ
カアルミナとCMCの重量比が100:3:Z:2(Z
=0.1、0.5、2.5、7.5、10又は15)に
なるようにしたこと以外は実施例13〜18と同様にし
て、リチウム二次電池A31(Z=0.1),A32
(Z=0.5),A33(Z=2.5),A34(Z=
7.5),A35(Z=10),A36(Z=15)を
作製した。次いで、先と同様の充放電サイクル試験を行
い、各電池の充放電サイクル特性を調べた。結果を図2
に示す。図2は、各電池の充放電サイクル特性を、縦軸
に1サイクル目の放電容量に対する1000サイクル目
の放電容量の比率(%)を、横軸に天然黒鉛粉末100
重量部に対する無機多孔質粒子粉末の添加量(重量部)
をそれぞれとって、示したグラフである。なお、図2に
は、本発明電池A5(X=5),A11(Y=5),A
17(Z=5)及び比較電池B1(X,Y,Z=0)の
充放電サイクル特性も示してある。
<Relationship between the amount of inorganic porous particle powder added and charge / discharge cycle characteristics> In the preparation of the negative electrode, the specific surface area of the natural graphite powder, SBR (solid content) and the specific surface area of the dried negative electrode was 500 m 2 / g. Weight ratio of silica gel to CMC is 10
0: 3: X: 2 (X = 0.1, 0.5, 2.5, 7.
5, 10 or 15), except that the lithium secondary battery A19 (X =
0.1), A20 (X = 0.5), A21 (X = 2.
5), A22 (X = 7.5), A23 (X = 10), A
24 (X = 15) were produced. In the preparation of the negative electrode, natural graphite powder, SBR (solid content), alumina having a specific surface area of 500 m 2 / g and CMC contained in the dried negative electrode were used.
Is 100: 3: Y: 2 (Y = 0.1, 0.5,
The lithium secondary batteries A25 (Y = 0.1) and A26 (Y = 0.5) in the same manner as in Examples 7 to 12 except that the values were changed to 2.5, 7.5, 10 or 15). ), A27
(Y = 2.5), A28 (Y = 7.5), A29 (Y =
10), A30 (Y = 15) were produced. Further, in the preparation of the negative electrode, the weight ratio of natural graphite powder, SBR (solid content), silica alumina having a specific surface area of 500 m 2 / g, and CMC contained in the negative electrode after drying was 100: 3: Z: 2 (Z
= 0.1, 0.5, 2.5, 7.5, 10 or 15) in the same manner as in Examples 13 to 18 except that the lithium secondary battery A31 (Z = 0.1 ), A32
(Z = 0.5), A33 (Z = 2.5), A34 (Z =
7.5), A35 (Z = 10) and A36 (Z = 15). Next, the same charge / discharge cycle test as described above was performed, and the charge / discharge cycle characteristics of each battery were examined. Figure 2 shows the results.
Shown in FIG. 2 shows the charge / discharge cycle characteristics of each battery, the vertical axis represents the ratio (%) of the discharge capacity at the 1000th cycle to the discharge capacity at the first cycle, and the horizontal axis represents 100% of natural graphite powder.
Addition amount of inorganic porous particle powder to parts by weight (parts by weight)
Is a graph showing each of the graphs. FIG. 2 shows the batteries A5 (X = 5), A11 (Y = 5), A
17 (Z = 5) and the charge / discharge cycle characteristics of the comparative battery B1 (X, Y, Z = 0) are also shown.

【0028】図2に示すように、シリカゲル、アルミナ
及びシリカアルミナのいずれを使用した場合も、天然黒
鉛粉末100重量部に対する無機多孔質粒子粉末の添加
量が0.5〜10重量部のときに、充放電サイクル特性
が顕著に改善されている。この事実から、天然黒鉛粉末
100重量部に対する無機多孔質粒子粉末の添加量は、
0.5〜10重量部が好ましいことが分かる。
As shown in FIG. 2, regardless of the use of silica gel, alumina or silica-alumina, when the amount of the inorganic porous particle powder is 0.5 to 10 parts by weight relative to 100 parts by weight of natural graphite powder. In addition, the charge / discharge cycle characteristics are remarkably improved. From this fact, the amount of the inorganic porous particle powder added to 100 parts by weight of the natural graphite powder is
It is understood that 0.5 to 10 parts by weight is preferable.

【0029】上記の実施例では、本発明を円筒形のリチ
ウム二次電池に適用する場合を例に挙げて説明したが、
電池の形状は特に限定されず、本発明は扁平形、角形な
ど種々の形状のリチウム二次電池に適用し得るものであ
る。
In the above embodiment, the case where the present invention is applied to a cylindrical lithium secondary battery has been described as an example.
The shape of the battery is not particularly limited, and the present invention can be applied to lithium secondary batteries having various shapes such as a flat shape and a square shape.

【0030】また、上記の実施例では、無機多孔質粒子
粉末として、シリカゲル、アルミナ又はシリカアルミナ
を使用したが、電解液を孔内に保持することが可能なも
のであれば特に制限なく使用することが可能である。
In the above embodiment, silica gel, alumina or silica-alumina was used as the inorganic porous particle powder, but any material can be used without any particular limitation as long as the electrolyte can be held in the pores. It is possible.

【0031】[0031]

【発明の効果】充放電サイクル特性に優れたリチウム二
次電池が提供される。
According to the present invention, a lithium secondary battery having excellent charge / discharge cycle characteristics is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池及び比較電池の充放電サイクル特性
を示すグラフである。
FIG. 1 is a graph showing charge / discharge cycle characteristics of a battery of the present invention and a comparative battery.

【図2】無機多孔質粒子粉末の添加量と充放電サイクル
特性の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of inorganic porous particle powder added and charge / discharge cycle characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極と、炭素材料をリチウムイオン吸蔵材
とする負極と、電解液とを備えるリチウム二次電池にお
いて、前記炭素材料に、電解液を孔内に保持することが
可能な無機多孔質粒子粉末が添加混合されていることを
特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and an electrolytic solution, wherein the carbon material has an inorganic porous material capable of holding an electrolytic solution in pores. A lithium secondary battery characterized in that porous particles are added and mixed.
【請求項2】前記無機多孔質粒子粉末が、シリカゲル、
アルミナ及びシリカアルミナから選ばれた少なくとも1
種である請求項1記載のリチウム二次電池。
2. The method according to claim 1, wherein the inorganic porous particle powder is silica gel,
At least one selected from alumina and silica alumina
The lithium secondary battery according to claim 1, which is a seed.
【請求項3】前記無機多孔質粒子粉末の比表面積が、1
00m2 /g以上である請求項1又は2記載のリチウム
二次電池。
3. The inorganic porous particle powder has a specific surface area of 1
The lithium secondary battery according to claim 1, wherein the lithium secondary battery is at least 00 m 2 / g.
【請求項4】前記無機多孔質粒子粉末が、前記炭素材料
100重量部に対して、0.5〜10重量部添加混合さ
れている請求項1〜3のいずれかに記載のリチウム二次
電池。
4. The lithium secondary battery according to claim 1, wherein 0.5 to 10 parts by weight of the inorganic porous particle powder is added to 100 parts by weight of the carbon material. .
JP8355330A 1996-12-20 1996-12-20 Lithium secondary battery Pending JPH10188957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8355330A JPH10188957A (en) 1996-12-20 1996-12-20 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8355330A JPH10188957A (en) 1996-12-20 1996-12-20 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10188957A true JPH10188957A (en) 1998-07-21

Family

ID=18443310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8355330A Pending JPH10188957A (en) 1996-12-20 1996-12-20 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10188957A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039567A1 (en) * 1999-03-25 2000-09-27 Sony Corporation Non-aqueous electrolyte battery
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
EP1148563A2 (en) * 1997-03-13 2001-10-24 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
WO2004055925A1 (en) * 2002-12-17 2004-07-01 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery-use cathode and nonaqueous electrolyte secondary battery
JP2004253379A (en) * 2003-01-29 2004-09-09 Jfe Chemical Corp Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2005026271A (en) * 2003-06-30 2005-01-27 Nippon Zeon Co Ltd Method of manufacturing electrode for electric double layer capacitor
EP1555244A2 (en) * 2004-01-16 2005-07-20 Korea Institute Of Science And Technology Carbon-porous media composite electrode and preparation method thereof
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2013047016A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Negative electrode of non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
JP2017174664A (en) * 2016-03-24 2017-09-28 トヨタ自動車株式会社 Secondary battery
JP2020523772A (en) * 2017-07-04 2020-08-06 エルジー・ケム・リミテッド Electrode and lithium secondary battery including the same
CN113471435A (en) * 2021-05-20 2021-10-01 惠州锂威新能源科技有限公司 Lithium ion battery cathode material and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905796B2 (en) 1997-03-13 2005-06-14 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
EP1148563A2 (en) * 1997-03-13 2001-10-24 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
EP1148563A3 (en) * 1997-03-13 2001-11-07 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
US6517973B1 (en) 1999-03-25 2003-02-11 Sony Corporation Non-aqueous electrolyte battery
EP1039567A1 (en) * 1999-03-25 2000-09-27 Sony Corporation Non-aqueous electrolyte battery
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2004055925A1 (en) * 2002-12-17 2004-07-01 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery-use cathode and nonaqueous electrolyte secondary battery
JP2004253379A (en) * 2003-01-29 2004-09-09 Jfe Chemical Corp Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4507517B2 (en) * 2003-06-30 2010-07-21 日本ゼオン株式会社 Method for manufacturing electrode for electric double layer capacitor
JP2005026271A (en) * 2003-06-30 2005-01-27 Nippon Zeon Co Ltd Method of manufacturing electrode for electric double layer capacitor
EP1555244A2 (en) * 2004-01-16 2005-07-20 Korea Institute Of Science And Technology Carbon-porous media composite electrode and preparation method thereof
US7505250B2 (en) 2004-01-16 2009-03-17 Korea Institute Of Science And Technology Carbon-porous media composite electrode and preparation method thereof
EP1555244A3 (en) * 2004-01-16 2009-12-30 Korea Institute Of Science And Technology Carbon-porous media composite electrode and preparation method thereof
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2013047016A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Negative electrode of non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
JP2017174664A (en) * 2016-03-24 2017-09-28 トヨタ自動車株式会社 Secondary battery
JP2020523772A (en) * 2017-07-04 2020-08-06 エルジー・ケム・リミテッド Electrode and lithium secondary battery including the same
US11424441B2 (en) 2017-07-04 2022-08-23 Lg Energy Solution, Ltd. Electrode and lithium secondary battery comprising same
CN113471435A (en) * 2021-05-20 2021-10-01 惠州锂威新能源科技有限公司 Lithium ion battery cathode material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110137485B (en) Preparation method of silicon negative electrode material containing surface modification film
JP3316412B2 (en) Lithium secondary battery
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
JP2971451B1 (en) Lithium secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3286516B2 (en) Non-aqueous electrolyte secondary battery
JP4991996B2 (en) Non-aqueous electrolyte secondary battery
JPH10188957A (en) Lithium secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
WO2024040858A1 (en) Negative electrode sheet, secondary battery, and electrical device
JP3188033B2 (en) Non-aqueous secondary battery
JP3561628B2 (en) Non-aqueous electrolyte secondary battery
JP2003272625A (en) Nonaqueous electrolyte secondary battery
US20180226635A1 (en) Lithium ion battery positive electrode composition and preparation method thereof
JP2003109596A (en) Electrode material and manufacturing method of the same, electrode and battery
JP2020035682A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JPH11288718A (en) Nonaqueous solvent secondary battery
JPH10106542A (en) Lithium secondary battery
WO2015132845A1 (en) All-solid-state battery
JP2001283862A (en) Nonaqueous electrolyte battery
KR20230061309A (en) Method for preparing the electrode for secondary battery secondary battery comprising the same
JP3223051B2 (en) Lithium secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH09265990A (en) Nonaqueous electrolyte battery and manufacture thereof