JP2017174664A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2017174664A
JP2017174664A JP2016060122A JP2016060122A JP2017174664A JP 2017174664 A JP2017174664 A JP 2017174664A JP 2016060122 A JP2016060122 A JP 2016060122A JP 2016060122 A JP2016060122 A JP 2016060122A JP 2017174664 A JP2017174664 A JP 2017174664A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016060122A
Other languages
Japanese (ja)
Other versions
JP6587105B2 (en
Inventor
武田 和久
Kazuhisa Takeda
和久 武田
哲 後藤
Satoru Goto
哲 後藤
淳子 天野
Junko Amano
淳子 天野
藤田 秀明
Hideaki Fujita
秀明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016060122A priority Critical patent/JP6587105B2/en
Publication of JP2017174664A publication Critical patent/JP2017174664A/en
Application granted granted Critical
Publication of JP6587105B2 publication Critical patent/JP6587105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery superior in high-rate charge and discharge characteristics.SOLUTION: A secondary battery 100 is provided according to the present invention, which comprises: a positive electrode 50 having a positive electrode active material layer 54 including at least a positive electrode active material; a negative electrode 60 having a negative electrode active material layer 64 including at least a negative electrode active material; and a separator 70 serving to electrically isolate the positive and negative electrodes from each other. In the secondary battery 100 as described above, the negative electrode active material layer 64 includes a subsidiary material higher, in compression modulus, than the negative electrode active material at 3-20 mass% to a total solid content of the negative electrode active material layer 64, namely 100 mass%. The porosity of the negative electrode active material layer 64 is 45-55%. The compression modulus of the negative electrode 60 in a thickness direction is 1.2 to 3.3 times the compression modulus of the separator 70 in a thickness direction.SELECTED DRAWING: Figure 2

Description

本発明は二次電池に関する。   The present invention relates to a secondary battery.

リチウム二次電池(リチウムイオン二次電池)、ナトリウムイオン二次電池等の二次電池は、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として好ましく用いられている。   Secondary batteries such as lithium secondary batteries (lithium ion secondary batteries) and sodium ion secondary batteries have been used in recent years as so-called portable power sources such as personal computers and portable terminals and power sources for driving vehicles. In particular, a lithium secondary battery that is lightweight and has a high energy density is preferably used as a high-output power source for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). .

二次電池は、典型的に、正極活物質層を備えた正極と、負極活物質層を備えた負極とがセパレータを介して積層された電極体と、電解液とを備える。かかる二次電池は、典型的に、電解液中の電荷担体(例えばリチウムイオン)が両電極間を行き来することで充放電を行う電池である。二次電池を充電する際には正極活物質層を構成する正極活物質内から電荷担体(典型的にはリチウムイオン)が放出(脱離)し、負極活物質層を構成する負極活物質内に電荷担体が吸蔵(挿入)される。放電時には逆に負極活物質内から電荷担体(典型的にはリチウムイオン)が放出(脱離)し、正極活物質内へ電荷担体が吸蔵(挿入)される。このように二次電池の充放電に伴い活物質内への電荷担体(典型的にはリチウムイオン)が吸蔵および放出されると、正負極活物質(即ち該活物質を有する正負極活物質層)が膨張および収縮する。   A secondary battery typically includes an electrode body in which a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer are stacked via a separator, and an electrolytic solution. Such a secondary battery is typically a battery that performs charge and discharge by charge carriers (for example, lithium ions) in the electrolyte solution passing between the electrodes. When charging the secondary battery, charge carriers (typically lithium ions) are released (desorbed) from the positive electrode active material constituting the positive electrode active material layer, and the negative electrode active material layer constituting the negative electrode active material layer Charge carriers are occluded (inserted) in Conversely, during discharge, charge carriers (typically lithium ions) are released (desorbed) from the negative electrode active material, and the charge carriers are occluded (inserted) into the positive electrode active material. Thus, when charge carriers (typically lithium ions) are occluded and released in the active material as the secondary battery is charged and discharged, the positive and negative electrode active materials (that is, the positive and negative electrode active material layers having the active materials) ) Expands and contracts.

特開第2000−285966号公報JP 2000-285966 A

上記の構成の二次電池をハイレート充放電を繰り返す用途(例えば車載用途)に用いると、充放電に伴う正負極活物質(正負極活物質層)の膨張および収縮の繰り返しにより、電極体内(例えば負極内)に保持していた電解液が電極体外に押し出されてしまう虞があった。このため、電極体内に保持される電解液の液量にムラが生じ、電極体内に電解液が多く存在する部分と電解液の液量が少ない(不足する)部分が生じる場合があった。
上記電極体のうち電解液が少ない部分(典型的には液枯れが生じた部分)では、当該部分に存在する電解液が必要量を下回り、電池全体としての充放電性能が低下する傾向がある。また、上記電極体のうち電解液が相対的に多く存在する部分には電池反応が集中するため当該部分の劣化が促進される傾向がある。これらの事象はいずれも性能劣化(電池抵抗の増大や容量劣化など)の要因になるため好ましくない。特に高いハイレート充放電特性が要求される目的に使用される二次電池に対しては、このような電極体内の電解液の液量ムラに起因する性能劣化を抑えることが重要である。
When the secondary battery having the above-described configuration is used for a purpose of repeating high-rate charge / discharge (for example, in-vehicle use), the electrode body (for example, by the expansion and contraction of the positive / negative electrode active material (positive / negative electrode active material layer) accompanying charge / discharge) There was a risk that the electrolyte held in the negative electrode) would be pushed out of the electrode body. For this reason, the liquid volume of the electrolyte solution held in the electrode body is uneven, and there are cases where a portion where the electrolyte solution exists in the electrode body and a portion where the electrolyte solution volume is small (insufficient) are generated.
In a portion of the electrode body where the electrolytic solution is small (typically a portion where the liquid withered), the amount of the electrolytic solution present in the portion is less than the required amount, and the charge / discharge performance of the battery as a whole tends to deteriorate. . In addition, since the battery reaction concentrates on a portion of the electrode body where the electrolytic solution is relatively large, deterioration of the portion tends to be promoted. All of these events are undesirable because they cause performance degradation (such as increased battery resistance and capacity degradation). In particular, for secondary batteries used for the purpose of requiring high-rate charge / discharge characteristics, it is important to suppress the performance deterioration due to the uneven amount of the electrolyte in the electrode body.

特許文献1には、負極の圧縮弾性率を正極あるいはセパレータの圧縮弾性率よりも高くし、充放電に伴う負極活物質層の膨張収縮を該負極活物質層よりも圧縮弾性率が小さい正極またはセパレータが吸収することで、充放電時に負極活物質層から電解液が流出(押し出される)ことを低減する技術について記載されている。かかる特許文献1には、負極の圧縮弾性率を調整する方法として、負極活物質層形成時の該負極活物質層に対するプレス圧力を調整することが記載されている。しかし、かかる方法によると、負極の圧縮弾性率を増大するために負極活物質層を高い圧力でプレスする必要があり、負極活物質層の多孔度が小さくなりがちであった。多孔度の小さな負極活物質層は保持し得る電解液の液量が減少するため、ハイレート充放電特性が十分に発揮されない場合があった。   Patent Document 1 discloses that the negative electrode active material layer has a compression elastic modulus lower than that of the negative electrode active material layer by increasing the compression elastic modulus of the negative electrode higher than that of the positive electrode or the separator, It describes a technique for reducing the outflow (extrusion) of the electrolytic solution from the negative electrode active material layer during charge and discharge by absorption by the separator. In Patent Document 1, as a method for adjusting the compression modulus of the negative electrode, it is described that the press pressure on the negative electrode active material layer at the time of forming the negative electrode active material layer is adjusted. However, according to such a method, it is necessary to press the negative electrode active material layer at a high pressure in order to increase the compression elastic modulus of the negative electrode, and the porosity of the negative electrode active material layer tends to be reduced. The negative electrode active material layer having a small porosity reduces the amount of electrolyte solution that can be retained, and thus high-rate charge / discharge characteristics may not be sufficiently exhibited.

本発明は、上述した従来の課題を解決すべく創出されたものであり、その目的は、ハイレート充放電特性に優れた二次電池を提供することである。   The present invention has been created to solve the above-described conventional problems, and an object of the present invention is to provide a secondary battery excellent in high rate charge / discharge characteristics.

本発明により、少なくとも正極活物質を含む正極活物質層を有する正極と、少なくとも負極活物質を含む負極活物質層を有する負極と、該正負極を電気的に隔離するセパレータと、を備えた二次電池が提供される。かかる二次電池において、前記負極活物質層は、上記負極活物質よりも圧縮弾性率が高い副材を、負極活物質層の全固形分100質量%に対して3質量%以上20質量%以下の含有割合で含む。そして、前記負極活物質層の多孔度が、45%以上55%以下であり、前記負極の厚み方向の圧縮弾性率が、前記セパレータの厚み方向の圧縮弾性率の1.2倍以上3.3倍以下であることを特徴とする。   According to the present invention, there are provided a positive electrode having a positive electrode active material layer containing at least a positive electrode active material, a negative electrode having a negative electrode active material layer containing at least a negative electrode active material, and a separator for electrically isolating the positive and negative electrodes. A secondary battery is provided. In such a secondary battery, the negative electrode active material layer includes a secondary material having a compressive modulus higher than that of the negative electrode active material. It is included in the content ratio. And the porosity of the said negative electrode active material layer is 45% or more and 55% or less, and the compression elastic modulus of the thickness direction of the said negative electrode is 1.2 times or more of the compression elastic modulus of the thickness direction of the said separator 3.3. It is characterized by being less than double.

かかる構成の二次電池は、圧縮弾性率の高い副材を上記の割合で負極活物質層内に含むことで、該負極活物質層の圧縮弾性率を高いものとすることができる。これにより、充放電に伴う負極活物質層内の電解液の液量ムラを低減することができる。また、上記の構成の二次電池の負極は、多孔度が大きな負極活物質層を備えるため、該負極活物質層内に多くの電解液を保持することができる。
即ち、本発明によると、ハイレート充放電特性に優れた電池を提供することができる。
The secondary battery having such a configuration can increase the compression elastic modulus of the negative electrode active material layer by including the secondary material having a high compression elastic modulus in the negative electrode active material layer in the above ratio. Thereby, the liquid volume nonuniformity of the electrolyte solution in the negative electrode active material layer accompanying charging / discharging can be reduced. In addition, since the negative electrode of the secondary battery having the above structure includes a negative electrode active material layer having a large porosity, a large amount of electrolytic solution can be held in the negative electrode active material layer.
That is, according to the present invention, a battery excellent in high rate charge / discharge characteristics can be provided.

本発明の一実施形態に係る二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the secondary battery which concerns on one Embodiment of this invention. 図1中のII−II線に沿う断面構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the cross-sectional structure which follows the II-II line | wire in FIG.

以下、適宜図面を参照しながら、本発明の好適な実施形態を、リチウム二次電池(リチウムイオン二次電池)を例にして説明する。なお、本発明において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面において、同じ作用を奏する部材・部位に同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。
なお、リチウム二次電池は一例であり、本発明の技術思想はこれに限定されない。例えば、正負極間での電荷担体の移動に伴う電荷の移動により、繰り返し充放電が実現される各種の二次電池を適応対象とすることができる。具体的には、電荷担体としてリチウムイオンを利用するリチウム二次電池以外に、その他の電荷担体(例えばマグネシウムイオン、ナトリウムイオン等)を備える他の二次電池(例えばマグネシウム二次電池、ナトリウムイオン二次電池等)にも本発明の技術思想は適用される。
Hereinafter, a suitable embodiment of the present invention will be described taking a lithium secondary battery (lithium ion secondary battery) as an example, with appropriate reference to the drawings. It should be noted that matters other than matters specifically mentioned in the present invention and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. In addition, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted or simplified. Further, the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.
Note that the lithium secondary battery is an example, and the technical idea of the present invention is not limited to this. For example, various secondary batteries that can be repeatedly charged and discharged by the movement of charges accompanying the movement of charge carriers between the positive and negative electrodes can be applied. Specifically, in addition to lithium secondary batteries that use lithium ions as charge carriers, other secondary batteries (eg, magnesium secondary batteries, sodium ion secondary batteries) that include other charge carriers (eg, magnesium ions, sodium ions, etc.). The technical idea of the present invention is also applied to secondary batteries and the like.

ここで開示される二次電池の一実施形態を、図1、2に示すリチウム二次電池100を例として説明する。   One embodiment of the secondary battery disclosed herein will be described using the lithium secondary battery 100 shown in FIGS.

ここで開示されるリチウム二次電池100は、図1、2に示すように、電極体20と電解液(図示せず)とが電池ケース(即ち外装容器)30に収容された電池である。電池ケース30は、一端(電池の通常の使用状態における上端部に相当する)に開口部を有する箱形(すなわち有底直方体状)のケース本体32と、該ケース本体32の開口部を封止する蓋体34とから構成される。また、図示すように、蓋体34には外部接続用の正極端子42および負極端子44が設けられている。また、蓋体34には、電池ケース30内部で発生したガスを電池ケース外部に排出するための安全弁36および電解液を当該電池ケース内に注入するための注入口(図示せず)が設けられている。電池ケース30の材質としては、軽量で熱伝導性の良い金属材料(例えばアルミニウム)が好ましく用いられ得る。   A lithium secondary battery 100 disclosed herein is a battery in which an electrode body 20 and an electrolytic solution (not shown) are accommodated in a battery case (that is, an exterior container) 30 as shown in FIGS. The battery case 30 has a box-shaped (that is, bottomed rectangular parallelepiped) case body 32 having an opening at one end (corresponding to the upper end in a normal use state of the battery), and the opening of the case body 32 is sealed. The lid body 34 is configured. Further, as shown in the figure, the lid 34 is provided with a positive terminal 42 and a negative terminal 44 for external connection. The lid 34 is provided with a safety valve 36 for discharging the gas generated inside the battery case 30 to the outside of the battery case and an inlet (not shown) for injecting the electrolyte into the battery case. ing. As the material of the battery case 30, a metal material (for example, aluminum) that is lightweight and has good thermal conductivity can be preferably used.

捲回電極体20は、図2に示すように長尺状の正極50と、長尺状の負極60とを、2枚の長尺状のセパレータ70を介して積層して(重ね合わせて)長手方向に捲回されている。かかる扁平形状の捲回電極体20は、例えば正極50、負極60およびセパレータ70を積層して捲回した後で、当該捲回体を捲回軸に対して直交する一方向に(典型的には側面方向から)押しつぶして(プレスして)拉げさせることによって成形し得る。   As shown in FIG. 2, the wound electrode body 20 is formed by laminating (superimposing) a long positive electrode 50 and a long negative electrode 60 via two long separators 70. It is wound in the longitudinal direction. The flat wound electrode body 20 is formed by, for example, laminating the positive electrode 50, the negative electrode 60, and the separator 70 and winding the wound body in one direction orthogonal to the winding axis (typically Can be shaped by crushing (pressing) and kidnapping (from the side).

上記負極60は、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って形成された負極活物質層64を備える。かかる負極活物質層64は、負極活物質と、該負極活物質よりも圧縮弾性率が大きな副材とを含む。   The negative electrode 60 includes a negative electrode active material layer 64 formed along the longitudinal direction on one or both surfaces (here, both surfaces) of a long negative electrode current collector 62. The negative electrode active material layer 64 includes a negative electrode active material and a secondary material having a compressive elastic modulus larger than that of the negative electrode active material.

かかる負極60は、厚み方向の圧縮弾性率が、セパレータ70の厚み方向の圧縮弾性率よりも大きい。好ましくは、負極60の厚み方向の圧縮弾性率が、セパレータ70の厚み方向の圧縮弾性率の1.2倍以上である。なお、上記負極60の厚み方向の圧縮弾性率の上限は特に限定されないが、例えばセパレータ70の厚み方向の圧縮弾性率の3.3倍以下とすればよい。
かかる圧縮弾性率は、負極(またはセパレータ)に対して厚み方向に所定の荷重を印加したときの負極(またはセパレータ)の厚み方向の変形量から算出される。即ち、以下の式:圧縮弾性率(kN/mm)=荷重(kN)/負極(またはセパレータ)の変形量(mm);から算出される。
The negative electrode 60 has a compressive modulus in the thickness direction that is greater than the compressive modulus in the thickness direction of the separator 70. Preferably, the compression elastic modulus in the thickness direction of the negative electrode 60 is 1.2 times or more the compression elastic modulus in the thickness direction of the separator 70. The upper limit of the compressive elastic modulus in the thickness direction of the negative electrode 60 is not particularly limited, but may be, for example, 3.3 times or less the compressive elastic modulus in the thickness direction of the separator 70.
The compressive elastic modulus is calculated from the amount of deformation in the thickness direction of the negative electrode (or separator) when a predetermined load is applied to the negative electrode (or separator) in the thickness direction. That is, it is calculated from the following equation: compression modulus (kN / mm) = load (kN) / deformation amount (mm) of negative electrode (or separator).

上記負極活物質層64に含まれる負極活物質は、従来の二次電池に用いられるものを特に限定なく使用し得る。例えば、少なくとも一部にグラファイト構造(層状構造)を有する炭素材料、リチウム遷移金属窒化物等が挙げられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもの等の炭素材料を好適に使用し得る。また、上記炭素材料(コアとなる炭素材料)の表面が非晶質炭素膜で被覆されていてもよい。   As the negative electrode active material contained in the negative electrode active material layer 64, those used in conventional secondary batteries can be used without any particular limitation. For example, a carbon material having a graphite structure (layered structure) at least partially, lithium transition metal nitride, and the like can be given. Carbon materials such as so-called graphitic materials (graphite), non-graphitizable carbon materials (hard carbon), graphitizable carbon materials (soft carbon), and materials having a combination of these are preferably used. obtain. Further, the surface of the carbon material (the carbon material serving as the core) may be covered with an amorphous carbon film.

上記負極活物質層64に含まれる副材は、上記負極活物質よりも圧縮弾性率が大きいものであれば特に限定されず、例えば、負極活物質(典型的には上記炭素材料)の3倍以上(好ましくは10倍以上)の圧縮弾性率を有するものである。副材と電解液(典型的には非水電解液の溶媒)との副反応を低減する観点からは、電荷担体と反応しない材質が好ましい。
ここで、上記副材および上記負極活物質の圧縮弾性率は、副材または負極活物質に所定の荷重を印加したときの該副材(または負極活物質)の変形量から算出される。即ち、上記圧縮弾性率は、以下の式:圧縮弾性率(kN/mm)=荷重(kN)/副材(または負極活物質)の変形量(mm);から算出される。かかる副材(負極活物質)の圧縮弾性率は、粉体材料に対応した圧縮試験機(微小圧縮試験機など)を用いて測定することができる。
The secondary material included in the negative electrode active material layer 64 is not particularly limited as long as it has a compressive modulus higher than that of the negative electrode active material, and is, for example, three times that of the negative electrode active material (typically the carbon material). It has a compression elastic modulus of the above (preferably 10 times or more). From the viewpoint of reducing the side reaction between the secondary material and the electrolytic solution (typically the solvent of the nonaqueous electrolytic solution), a material that does not react with the charge carrier is preferable.
Here, the compression elastic modulus of the secondary material and the negative electrode active material is calculated from the amount of deformation of the secondary material (or the negative electrode active material) when a predetermined load is applied to the secondary material or the negative electrode active material. That is, the compression elastic modulus is calculated from the following formula: compression elastic modulus (kN / mm) = load (kN) / deformation amount (mm) of secondary material (or negative electrode active material). The compression modulus of the secondary material (negative electrode active material) can be measured using a compression tester (such as a micro compression tester) corresponding to the powder material.

上記副材の材質の好適例として、アルミナ、ベーマイト、ジルコニア、マグネシア等のセラミックス材料や水酸化アルミニウム等が挙げられる。比較的低いコストでの入手が可能である観点から、アルミナ、ベーマイト、水酸化アルミニウムからなる群から選択される少なくとも1種が好ましい。ここで、一般的に、上記アルミナの圧縮弾性率は凡そ2300MPa以上、ジルコニアの圧縮弾性率は凡そ1200MPa以上であり、負極活物質として一般的に用いられる黒鉛の圧縮弾性率100MPaよりも十分に高い圧縮弾性率を有する。   Preferable examples of the material of the secondary material include ceramic materials such as alumina, boehmite, zirconia, and magnesia, aluminum hydroxide, and the like. From the viewpoint of availability at a relatively low cost, at least one selected from the group consisting of alumina, boehmite, and aluminum hydroxide is preferable. Here, in general, the compression elastic modulus of the alumina is about 2300 MPa or more, the compression elastic modulus of zirconia is about 1200 MPa or more, which is sufficiently higher than the compression elastic modulus of 100 MPa of graphite generally used as a negative electrode active material. It has a compression modulus.

副材の粒子径が大きすぎると負極活物質どうしの電子伝導性が低下しがちである。このため、特に限定されるものではないが、負極活物質の平均粒子径よりも粒子径(平均粒子径)が小さい副材が好ましい。例えば、負極活物質の平均粒径の1/2以下(例えば凡そ1/5)がより好ましい。副材の平均粒子径をかかる範囲とすることで、負極活物質どうしの電子伝導性を維持しつつ、負極60の圧縮弾性率を増大することができる。
なお、負極活物質の平均粒子径は特に限定されず、従来の二次電池と同程度とすればよい。例えば、負極活物質の平均粒径は、例えば50μm以下(典型的には20μm以下、例えば1μm〜20μm、好ましくは5μm〜15μm)であり得る。
なお、本明細書中における「平均粒子径」とは、特記しない限り、レーザ散乱・回折法に基づく粒度分布測定装置により測定された粒度分布における、積算値50%での粒径(50%体積平均粒子径;以下、D50と略記する場合もある。)を意味するものとする。
If the particle size of the secondary material is too large, the electronic conductivity between the negative electrode active materials tends to be lowered. For this reason, although it does not specifically limit, the secondary material whose particle diameter (average particle diameter) is smaller than the average particle diameter of a negative electrode active material is preferable. For example, the average particle size of the negative electrode active material is more preferably 1/2 or less (for example, approximately 1/5). By setting the average particle diameter of the secondary material in such a range, the compressive elastic modulus of the negative electrode 60 can be increased while maintaining the electronic conductivity between the negative electrode active materials.
In addition, the average particle diameter of a negative electrode active material is not specifically limited, What is necessary is just to be comparable as the conventional secondary battery. For example, the average particle diameter of the negative electrode active material can be, for example, 50 μm or less (typically 20 μm or less, for example, 1 μm to 20 μm, preferably 5 μm to 15 μm).
In this specification, “average particle size” means, unless otherwise specified, a particle size (50% volume) at an integrated value of 50% in a particle size distribution measured by a particle size distribution measuring apparatus based on a laser scattering / diffraction method. average particle diameter; hereinafter shall mean also) be abbreviated as D 50..

上記負極活物質層64は、電解液が含浸し得る空孔を一定の割合で有している。即ち、かかる負極活物質層64は、多孔度が45%以上55%以下である。負極活物質層64の多孔度を上記の範囲とすることで、負極活物質層64中に適量の電解液を保持することができる。
ここで、負極活物質層64の多孔度とは、負極活物質層64に占める空孔の体積基準の割合を示している。即ち、負極活物質層64の見かけの体積に対する、負極活物質層64の内部に形成された空孔の容積の割合によってあらわすことができる。
上記負極活物質層64に形成された空孔の容積は、水銀圧入法によって求めることが可能であり、従来公知の水銀ポロシメータを用いて測定することができる。また、上記負極活物質層64の見かけの体積は、負極活物質層64の平面視の面積と、厚さとの積によって求められる。即ち、本明細書において、「多孔度」とは、水銀ポロシメータを用いた測定によって得られた全空孔容積を負極活物質層64の見かけの体積で除して100を掛けた値をいう(多孔度(%)=(空孔の容積/負極活物質層の体積)×100)。
なお、上記負極活物質層64の平均厚みは特に限定されないが、例えば、片面当たり40μm以上(典型的には50μm以上)であって、110μm以下(典型的には100μm以下)とすることができる。
The negative electrode active material layer 64 has a certain percentage of holes that can be impregnated with the electrolyte. That is, the negative electrode active material layer 64 has a porosity of 45% or more and 55% or less. By setting the porosity of the negative electrode active material layer 64 in the above range, an appropriate amount of electrolytic solution can be held in the negative electrode active material layer 64.
Here, the porosity of the negative electrode active material layer 64 indicates a volume-based ratio of pores in the negative electrode active material layer 64. That is, it can be represented by the ratio of the volume of pores formed inside the negative electrode active material layer 64 to the apparent volume of the negative electrode active material layer 64.
The volume of the holes formed in the negative electrode active material layer 64 can be determined by a mercury intrusion method, and can be measured using a conventionally known mercury porosimeter. Further, the apparent volume of the negative electrode active material layer 64 is determined by the product of the area of the negative electrode active material layer 64 in plan view and the thickness. That is, in this specification, “porosity” means a value obtained by dividing the total pore volume obtained by measurement using a mercury porosimeter by the apparent volume of the negative electrode active material layer 64 and multiplying by 100 ( Porosity (%) = (Volume volume / negative electrode active material layer volume) × 100).
The average thickness of the negative electrode active material layer 64 is not particularly limited, and may be, for example, 40 μm or more (typically 50 μm or more) per side and 110 μm or less (typically 100 μm or less). .

また、好適な一態様では、上記負極活物質層64は導電材を含み得る。これにより、負極活物質どうしの電子伝導性を向上し、電池のハイレート充放電特性を向上することができる。負極活物質どうしの電子導電性を向上する観点からは、上記副材の表面に該導電材が配置された形態(典型的には、上記副材の表面が上記導電材により被覆された形態)で負極活物質層64内に存在することが好ましく、より好ましくは物理的手法(典型的にはメカノフュージョン)により副材の表面に上記導電材が固定された形態で該副材および導電材が負極活物質層64内に存在する。
なお、上記導電材は、従来の二次電池に使用されるものと同様のものを特に制限なく使用し得る。例えば、カーボン粉末、カーボンファイバー等の炭素材料が好適なものとして例示される。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、カーボンブラック、ケッチェンブラック)、グラファイト粉末などのカーボン粉末を用いることができる。このような導電材から選択される一種を単独で用いてもよく、二種以上を組み合わせて用いるようにしてもよい。
In a preferred embodiment, the negative electrode active material layer 64 may include a conductive material. Thereby, the electronic conductivity between negative electrode active materials can be improved, and the high-rate charge / discharge characteristic of a battery can be improved. From the viewpoint of improving the electronic conductivity between the negative electrode active materials, the conductive material is disposed on the surface of the secondary material (typically, the surface of the secondary material is covered with the conductive material). It is preferably present in the negative electrode active material layer 64, and more preferably, the secondary material and the conductive material are in a form in which the conductive material is fixed to the surface of the secondary material by a physical method (typically mechano-fusion). It exists in the negative electrode active material layer 64.
In addition, the said electrically conductive material can use the thing similar to what is used for the conventional secondary battery without a restriction | limiting in particular. For example, carbon materials such as carbon powder and carbon fiber are exemplified as suitable ones. As the carbon powder, carbon powders such as various carbon blacks (for example, acetylene black, carbon black, ketjen black) and graphite powder can be used. One kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.

上記負極活物質層64全体に占める上記副材の含有割合は、負極活物質層64中の全固形分100質量%に対して3質量%以上である。負極活物質層64に含まれる副材の含有割合を上記の範囲とすることで、負極活物質層64内に副材を含有することによる負極の圧縮弾性率増大効果を高いレベルで発揮することができる。一方で、負極活物質層64内に存在する副材の割合が多すぎると、負極活物質どうしの電子伝導性が低下する虞がある。このため、負極活物質層64全体に占める副材の含有割合の上限は、負極活物質層64中の全固形分100質量%に対して20質量%以下とすることができる。
なお、上記導電材を使用する場合、上記負極活物質層64全体に占める該導電材の含有割合が多すぎると、電池容量が低下する虞がある。このため、上記負極活物質層64中に存在する上記導電材の含有割合は特に限定されないが、例えば、負極活物質層64中の全固形分100質量%に対して2質量%以下(好ましくは1質量%以上2質量%以下)とし得る。
The content ratio of the secondary material in the entire negative electrode active material layer 64 is 3% by mass or more with respect to 100% by mass of the total solid content in the negative electrode active material layer 64. By exhibiting the content ratio of the secondary material contained in the negative electrode active material layer 64 within the above range, the effect of increasing the compression elastic modulus of the negative electrode due to the inclusion of the secondary material in the negative electrode active material layer 64 is exhibited at a high level. Can do. On the other hand, if the proportion of the secondary material present in the negative electrode active material layer 64 is too large, the electron conductivity between the negative electrode active materials may be reduced. For this reason, the upper limit of the content ratio of the secondary material in the entire negative electrode active material layer 64 can be 20% by mass or less with respect to 100% by mass of the total solid content in the negative electrode active material layer 64.
In addition, when using the said electrically conductive material, when there is too much content rate of this electrically conductive material in the said whole negative electrode active material layer 64, there exists a possibility that battery capacity may fall. For this reason, the content ratio of the conductive material present in the negative electrode active material layer 64 is not particularly limited. For example, it is 2% by mass or less (preferably with respect to 100% by mass of the total solid content in the negative electrode active material layer 64). 1 mass% or more and 2 mass% or less).

上記負極60を構成する上記負極集電体62としては、例えば銅箔等を好適に使用し得る。また、負極活物質層64は、活物質および導電材以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、スチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。   As the negative electrode current collector 62 constituting the negative electrode 60, for example, a copper foil or the like can be suitably used. Moreover, the negative electrode active material layer 64 can contain components other than the active material and the conductive material, such as a binder and a thickener. As the binder, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) can be used.

上記正極50は、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って形成された少なくとも正極活物質を含む正極活物質層54を備える。
上記正極集電体52としては、例えばアルミニウム箔等が挙げられる。また、上記正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5、LiFePO等)が挙げられる。正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、アセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、PVDF等を使用し得る。
The positive electrode 50 includes a positive electrode active material layer 54 including at least a positive electrode active material formed along the longitudinal direction on one or both surfaces (here, both surfaces) of a long positive electrode current collector 52.
Examples of the positive electrode current collector 52 include an aluminum foil. Examples of the positive electrode active material include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn). 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiFePO 4, etc.). The positive electrode active material layer 54 can include components other than the active material, such as a conductive material and a binder. As the conductive material, carbon black such as acetylene black (AB) and other (such as graphite) carbon materials can be suitably used. PVDF or the like can be used as the binder.

セパレータ70としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂を主体に構成された多孔性シート(フィルム)が挙げられる。かかるセパレータは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。   Examples of the separator 70 include a porous sheet (film) mainly composed of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a separator may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer).

特に限定するものではないが、本実施態様において、上記正極50は、正極集電体52の幅方向片側の縁部に沿って正極活物質層54が形成されずに正極集電体52が露出した正極活物質層非形成部分53が設定される。また、上記負極60も同様に、負極集電体62の幅方向片側の縁部に沿って負極活物質層64が形成されずに負極集電体62が露出した負極活物質層非形成部分63が設定される。そして、図2に示すように、上記捲回電極体20は、上記正極活物質層非形成部分53と上記負極活物質層非形成部分63とが捲回軸方向の両端から外方にはみ出すように重ねあわされて捲回されたものであり得る。そして、図2に示すように、正極活物質層非形成部分53と正極端子42(例えばアルミニウム製)が正極集電板42aを介して電気的に接続され、負極活物質層非形成部分63と負極端子44(例えばニッケル製)が負極集電板44aを介して電気的に接続され得る。なお、正負極集電板42a,44aと正負極活物質層非形成部分53、63(典型的には正負極集電体52,62)とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。   Although not particularly limited, in the present embodiment, the positive electrode 50 has the positive electrode current collector 52 exposed without forming the positive electrode active material layer 54 along the edge on one side in the width direction of the positive electrode current collector 52. The positive electrode active material layer non-formed portion 53 is set. Similarly, in the negative electrode 60, the negative electrode active material layer non-formed portion 63 in which the negative electrode current collector 62 is exposed without forming the negative electrode active material layer 64 along the edge on one side in the width direction of the negative electrode current collector 62. Is set. As shown in FIG. 2, the wound electrode body 20 has the positive electrode active material layer non-formed part 53 and the negative electrode active material layer non-formed part 63 protruding outward from both ends in the wound axis direction. It may have been rolled over and rolled up. Then, as shown in FIG. 2, the positive electrode active material layer non-forming portion 53 and the positive electrode terminal 42 (for example, made of aluminum) are electrically connected via the positive electrode current collector plate 42a, and the negative electrode active material layer non-forming portion 63 The negative electrode terminal 44 (for example, made of nickel) can be electrically connected through the negative electrode current collector plate 44a. The positive and negative electrode current collector plates 42a and 44a and the positive and negative electrode active material layer non-forming portions 53 and 63 (typically the positive and negative electrode current collectors 52 and 62) are respectively formed by, for example, ultrasonic welding, resistance welding, or the like. Can be joined.

電解液の性状は特に限定されないが、典型的には、有機溶媒(非水溶媒)中に支持塩を含有する非水電解液であり得る。
非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のうちの1種を単独で、あるいは2種以上を適宜組み合わせて(例えばECとEMCとDMCとを3:4:3の体積比で含む混合溶媒)用いることができる。支持塩としては、例えばLiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を用いることができる。支持塩の濃度は、例えば0.7mol/L以上1.3mol/L以下(好ましくは凡そ1.0mol/L)である。
The property of the electrolytic solution is not particularly limited, but can typically be a nonaqueous electrolytic solution containing a supporting salt in an organic solvent (nonaqueous solvent).
As the non-aqueous solvent, for example, one kind of ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), etc. may be used alone or in two kinds. The above can be combined as appropriate (for example, a mixed solvent containing EC, EMC, and DMC at a volume ratio of 3: 4: 3). As the supporting salt, for example, a lithium salt (preferably LiPF 6 ) such as LiPF 6 , LiBF 4 , or LiClO 4 can be used. The concentration of the supporting salt is, for example, 0.7 mol / L or more and 1.3 mol / L or less (preferably about 1.0 mol / L).

ここで開示する二次電池は各種用途に利用可能であるが、ハイレート充放電に優れた電池であることを特徴とする。したがって、このような特徴を活かして、例えば車両に搭載される駆動用電源に用いられる二次電池として好適に用いることができる。車両の種類は特に限定されないが、例えばプラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)、電気トラック、原動機付自転車、電動アシスト自転車、電動車いす、電気鉄道等が挙げられる。   Although the secondary battery disclosed here can be used for various applications, it is characterized by being a battery excellent in high-rate charge / discharge. Therefore, taking advantage of such characteristics, it can be suitably used as a secondary battery used for a driving power source mounted on a vehicle, for example. The type of vehicle is not particularly limited, and examples thereof include plug-in hybrid vehicles (PHV), hybrid vehicles (HV), electric vehicles (EV), electric trucks, motorbikes, electric assist bicycles, electric wheelchairs, electric railways, and the like. .

以下、本発明に関する実施例(試験例)を説明するが、本発明をかかる実施例(試験例)に示すものに限定することを意図したものではない。   EXAMPLES Examples (test examples) relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples (test examples).

以下の材料、プロセスによって、例1〜例21にかかるリチウム二次電池を構築した。なお、各例に係る電池について、後述のハイレート充放電試験に供する電池と限界電流確認試験に供する電池を別に用意した。   A lithium secondary battery according to Examples 1 to 21 was constructed by the following materials and processes. In addition, about the battery which concerns on each example, the battery used for the below-mentioned high-rate charge / discharge test and the battery used for a limit current confirmation test were prepared separately.

[リチウム二次電池の構築]
<例1>
以下の材料およびプロセスで正極を作製した。まず、正極活物質として、平均粒子径(D50が5μmのLiNi1/3Co1/3Mn1/3(LNCM)を準備した。次いで、該LNCMと、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、LNCM:AB:PVdF=92:5:3の質量比でN−メチルピロリドン(NMP)と混合し、ペースト状(スラリー状)の正極活物質層形成用組成物を調製した。この組成物を、平均厚み15μmの長尺状のアルミニウム箔(正極集電体)の両面に塗布した。このとき、正極集電体の幅方向の一端に沿って帯状に正極活物質層非形成部分を残しつつ、正極活物質層形成用組成物の付与面が、長尺方向に対向する幅方向の長さが100mmである帯状となるように均一に塗布した。そして、上述のとおりに正極活物質層形成用組成物を付与した正極集電体を、乾燥、プレスすることにより、正極集電体上に正極活物質層を有する正極を作製した。このとき、正極活物質層の平均厚みが80μmとなるようプレス条件を調整した。
[Construction of lithium secondary battery]
<Example 1>
A positive electrode was produced with the following materials and processes. First, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) having an average particle size (D 50 of 5 μm) was prepared as a positive electrode active material. Next, the LNCM and acetylene black ( AB) and polyvinylidene fluoride (PVdF) as a binder are mixed with N-methylpyrrolidone (NMP) at a mass ratio of LNCM: AB: PVdF = 92: 5: 3 to obtain a paste-like (slurry) positive electrode A composition for forming an active material layer was prepared, and this composition was applied to both sides of a long aluminum foil (positive electrode current collector) having an average thickness of 15 μm, with one end in the width direction of the positive electrode current collector. The positive electrode active material layer non-formation portion is left in a band shape along the surface, and the application surface of the composition for forming the positive electrode active material layer is uniform so as to be a band shape having a length of 100 mm in the width direction facing the longitudinal direction. Apply to The positive electrode current collector provided with the composition for forming a positive electrode active material layer as described above was dried and pressed to produce a positive electrode having a positive electrode active material layer on the positive electrode current collector. The press conditions were adjusted so that the average thickness of the positive electrode active material layer was 80 μm.

次に、以下の材料およびプロセスで負極を作製した。まず、負極活物質としての黒鉛(C)と、副材としてのアルミナとを準備した。ここで、上記黒鉛は平均粒子径(D50)が10μmのものを用い、アルミナ(Al)は平均粒子径(D50)が2μmのものを用いた。次いで、黒鉛(C)と、アルミナ(Al)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘材としてのカルボキシルメチルセルロース(CMC)とを、C:Al:SBR:CMC=96:3:0.5:0.5の質量比で水中に分散させてペースト状(スラリー状)の負極活物質層形成用組成物を調製した。この組成物を、平均厚み10μmmの長尺状の銅箔(負極集電体)の両面に帯状に塗布した。このとき、負極集電体の幅方向の一端に沿って帯状に負極活物質層非形成部分を残しつつ、負極活物質層形成用組成物の付与面が、長尺方向に対向する幅方向の長さが105mmである帯状となるように均一に塗布した。そして、上述のとおりに負極活物質層形成用組成物を付与した負極集電体を、乾燥、プレスすることにより、負極集電体上に負極活物質層を有する負極を作製した。このとき、負極活物質層の多孔度が45%となり、且つ、負極活物質層の平均厚みが74μmとなるようプレス条件を調整した。 Next, a negative electrode was produced by the following materials and processes. First, graphite (C) as a negative electrode active material and alumina as a secondary material were prepared. Here, graphite having an average particle diameter (D 50 ) of 10 μm was used, and alumina (Al 2 O 3 ) having an average particle diameter (D 50 ) of 2 μm was used. Next, graphite (C), alumina (Al 2 O 3 ), styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener, C: Al 2 O 3 : SBR: A paste-like (slurry) negative electrode active material layer forming composition was prepared by dispersing in water at a mass ratio of CMC = 96: 3: 0.5: 0.5. This composition was applied in a strip shape on both sides of a long copper foil (negative electrode current collector) having an average thickness of 10 μm. At this time, the application surface of the negative electrode active material layer forming composition is in the width direction opposite to the longitudinal direction while leaving the negative electrode active material layer non-formed portion in a strip shape along one end in the width direction of the negative electrode current collector. It was uniformly applied so as to form a belt having a length of 105 mm. And the negative electrode collector which provided the composition for negative electrode active material layer formation as mentioned above was dried and pressed, and the negative electrode which has a negative electrode active material layer on a negative electrode collector was produced. At this time, the pressing conditions were adjusted so that the porosity of the negative electrode active material layer was 45% and the average thickness of the negative electrode active material layer was 74 μm.

上述の方法で作製した正極および負極を、セパレータ2枚を介して長尺方向に重ねあわせ、長尺方向に捲回した後に押しつぶして拉げることで扁平形状の捲回電極体を作製した。ここで、上記セパレータとしては、平均厚みが24μmであって、多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成された三層構造のものを用いた。   The positive electrode and the negative electrode manufactured by the above-described method were overlapped in the longitudinal direction via two separators, wound in the longitudinal direction, and then crushed and ablated to produce a flat wound electrode body. Here, as the separator, a three-layer structure having an average thickness of 24 μm and a porous polypropylene layer formed on both sides of the porous polyethylene layer was used.

次いで、上記捲回電極体と非水電解液とを角型の電池ケース(アルミニウム製)の内部に収容し、例1にかかるリチウム二次電池を構築した。なお、上記非水電解液としてはECとDMCとEMCとをEC:DMC:EMC=3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させた非水電解液を用いた。 Next, the wound electrode body and the nonaqueous electrolytic solution were accommodated in a rectangular battery case (made of aluminum), and a lithium secondary battery according to Example 1 was constructed. As the non-aqueous electrolyte, a mixed solvent containing EC, DMC, and EMC at a volume ratio of EC: DMC: EMC = 3: 3: 4, and LiPF 6 as a supporting salt at a concentration of 1.0 mol / L. The non-aqueous electrolyte dissolved in (1) was used.

<例2〜11、例14〜21>
副材として表1に記載の材質および平均粒子径のものを用い(例14〜17は副材を用いない)、負極活物質層に含まれる副材の含有割合(即ち、負極活物質層形成用組成物に混合する副材の割合)を表1に示す割合に変更し、負極活物質層の多孔度および平均厚みが表1に示す厚みとなるようにプレス条件を適宜変更した以外は、例1と同様の材料およびプロセスにて、例2〜11および例14〜21に係るリチウム二次電池を作製した。ここで、表1中の副材の含有量(質量%)は、負極活物質層に含まれる固形分量の合計100質量%に対する副材の含有割合を示す。このとき、負極活物質層形成用組成物中に混合する副材の割合(X)は、負極活物質(ここでは黒鉛(C))と副材(ここではアルミナ(Al))とが、C:Al=(99−X):Xの質量比となるように変更した。
<Examples 2 to 11 and Examples 14 to 21>
The materials and average particle diameters shown in Table 1 were used as the secondary material (Examples 14 to 17 do not use the secondary material), and the content ratio of the secondary material contained in the negative electrode active material layer (that is, formation of the negative electrode active material layer) Except that the press conditions were appropriately changed so that the porosity and average thickness of the negative electrode active material layer were the thicknesses shown in Table 1. Lithium secondary batteries according to Examples 2 to 11 and Examples 14 to 21 were produced using the same materials and processes as in Example 1. Here, the content (mass%) of the secondary material in Table 1 indicates the content ratio of the secondary material relative to the total 100 mass% of the solid content contained in the negative electrode active material layer. At this time, the ratio (X) of the secondary material mixed in the negative electrode active material layer forming composition is such that the negative electrode active material (here, graphite (C)) and secondary material (here, alumina (Al 2 O 3 )) There, C: Al 2 O 3 = (99-X): was changed so that the X mass ratio.

<例12、13>
負極活物質層(即ち負極活物質層形成用組成物)に導電材としてのアセチレンブラック(AB)を表1に示す割合で含有させ、負極活物質層に含まれる副材の含有割合(即ち、負極活物質層形成用組成物に混合する副材の割合)を表1に示す割合に変更し、負極活物質層の多孔度および平均厚みが表1に示す厚みとなるようにプレス条件を適宜変更した以外は、例8と同様の材料およびプロセスにより、例12、13に係るリチウム二次電池を作製した。ここで、表1中の導電材の含有量(質量%)は、負極活物質層に含まれる固形分量の合計100質量%に対する導電材の含有割合を示す。このとき、負極活物質層形成用組成物中に混合する副材の割合(X)および導電材の割合(Y)は、負極活物質(ここでは黒鉛(C))と副材(ここではアルミナ(Al))と導電材(ここではアセチレンブラック(AB))とが、C:Al:AB=(99−X−Y):X:Yの質量比となるように変更した。
なお、例12および例13では、アルミナ(Al)とアセチレンブラック(AB)とを所定の質量比(例12はAl:AB=10:1、例13はAl:AB=10:2)で混合し、回転数2000rpm、処理時間40分の条件でメカノフュージョンさせることでアルミナの表面がアセチレンブラックでコートされたものを使用した。
<Examples 12 and 13>
The negative electrode active material layer (that is, the composition for forming the negative electrode active material layer) contains acetylene black (AB) as a conductive material in the ratio shown in Table 1, and the content ratio of the secondary material included in the negative electrode active material layer (that is, The ratio of the secondary material mixed in the negative electrode active material layer forming composition) is changed to the ratio shown in Table 1, and the press conditions are appropriately set so that the porosity and average thickness of the negative electrode active material layer are the thicknesses shown in Table 1. Except for the changes, lithium secondary batteries according to Examples 12 and 13 were produced by the same materials and processes as in Example 8. Here, content (mass%) of the electrically conductive material in Table 1 shows the content rate of the electrically conductive material with respect to 100 mass% of the total amount of solid content contained in a negative electrode active material layer. At this time, the proportion of the secondary material (X) and the proportion of the conductive material (Y) mixed in the negative electrode active material layer forming composition are as follows: negative electrode active material (here, graphite (C)) and secondary material (here, alumina) (Al 2 O 3 )) and the conductive material (here acetylene black (AB)) are changed to have a mass ratio of C: Al 2 O 3 : AB = (99−X−Y): X: Y. did.
In Examples 12 and 13, alumina (Al 2 O 3 ) and acetylene black (AB) are mixed at a predetermined mass ratio (Example 12 is Al 2 O 3 : AB = 10: 1, Example 13 is Al 2 O 3 : AB = 10: 2), and the surface of alumina was coated with acetylene black by mechanofusion under the conditions of a rotational speed of 2000 rpm and a treatment time of 40 minutes.

[圧縮弾性率の測定]
上記各例にかかる電池の構築に用いた負極の圧縮弾性率を以下の方法で測定した。即ち、各例に係る負極(負極活物質層が形成された部分)から5cm×5cmの正方形の測定用サンプルを50枚切り出し、積層した。そして、これら積層した測定用サンプルをSUS板の間に挟み、オートグラフ精密万能試験機にて該負極の厚み方向に所定の荷重を印加したときの該積層サンプルの厚みの変化量を測定した。そして、以下の式:圧縮弾性率(kN/mm)=荷重(kN)/厚みの変化量(mm);により負極の圧縮弾性率(N1)を算出した。また、セパレータの圧縮弾性率(N2)も上記負極の場合と同様の方法で測定した。また、負極の圧縮弾性率(N1)とセパレータの圧縮弾性率(N2)との比(N1/N2)を算出した。結果を表1の該当欄に示す。
[Measurement of compression modulus]
The compression modulus of the negative electrode used for the construction of the battery according to each of the above examples was measured by the following method. That is, 50 measurement samples of 5 cm × 5 cm square were cut out from the negative electrode according to each example (part where the negative electrode active material layer was formed) and laminated. These laminated measurement samples were sandwiched between SUS plates, and the amount of change in the thickness of the laminated sample was measured when a predetermined load was applied in the thickness direction of the negative electrode with an autograph precision universal testing machine. Then, the compression modulus (N1) of the negative electrode was calculated by the following formula: compression modulus (kN / mm) = load (kN) / thickness change (mm). Moreover, the compression elastic modulus (N2) of the separator was also measured by the same method as that for the negative electrode. Moreover, the ratio (N1 / N2) of the compression elastic modulus (N1) of the negative electrode and the compression elastic modulus (N2) of the separator was calculated. The results are shown in the corresponding column of Table 1.

[初期抵抗(IV抵抗)の測定]
上述のとおりに構築した各例に係る電池について、初期抵抗を以下の条件で測定した。SOC60%の充電状態に調整した電池を、25℃の温度条件下において、20Cのレートで10秒間の定電流放電(CC放電)を行って、電圧降下量(V)を算出した。そして、電圧降下量の値(V)を、対応する電流値(I)で除してIV抵抗(mΩ)を算出し、その平均値を初期電池抵抗とした。
なお、「1C」とは理論容量より予測した電池容量(Ah)を1時間で充電できる電流値を意味し、例えば電池容量が1Ahの場合は1C=1Aである。
[Measurement of initial resistance (IV resistance)]
The initial resistance of the battery according to each example constructed as described above was measured under the following conditions. The battery adjusted to the SOC 60% charge state was subjected to constant current discharge (CC discharge) for 10 seconds at a rate of 20 C under a temperature condition of 25 ° C., and the voltage drop (V) was calculated. Then, the value (V) of the voltage drop amount was divided by the corresponding current value (I) to calculate the IV resistance (mΩ), and the average value was used as the initial battery resistance.
“1C” means a current value at which the battery capacity (Ah) predicted from the theoretical capacity can be charged in one hour. For example, when the battery capacity is 1 Ah, 1C = 1A.

[ハイレート充放電試験]
次いで、上述のとおりに初期電池抵抗を測定した各例に係る電池について、25℃の温度条件下において充放電を2000サイクル繰り返す充放電サイクル試験を行い、該サイクル試験後の電池抵抗増加率を測定した。
上記充放電サイクル試験は、30Cの充電レートで10秒間の定電流充電(CC充電)を行い、その後10秒間休止し、次いで1Cの放電レートで300秒の定電流放電(CC放電)を行い、その後10秒間休止する充放電を1サイクルとした。
そして、上記充放電サイクル試験後の各例に係る電池の電池抵抗(IV抵抗)を上記初期抵抗の測定と同様の方法で測定し、IV抵抗の増加率(%)を算出した。そして、例14のIV抵抗増加率を100としたときの相対値を算出し、各例のIV抵抗増加率(相対値)とした。結果を表1の該当欄に示す。
[High rate charge / discharge test]
Next, for the batteries according to the respective examples in which the initial battery resistance was measured as described above, a charge / discharge cycle test was repeated for 2000 cycles under a temperature condition of 25 ° C., and the battery resistance increase rate after the cycle test was measured. did.
The charge / discharge cycle test is carried out with a constant current charge (CC charge) for 10 seconds at a charge rate of 30 C, then paused for 10 seconds, and then with a constant current discharge (CC discharge) for 300 seconds at a discharge rate of 1 C, Thereafter, charging / discharging for 10 seconds was defined as one cycle.
And the battery resistance (IV resistance) of the battery which concerns on each example after the said charging / discharging cycle test was measured by the method similar to the measurement of the said initial resistance, and the increase rate (%) of IV resistance was computed. And the relative value when IV resistance increase rate of Example 14 was set to 100 was calculated, and it was set as IV resistance increase rate (relative value) of each example. The results are shown in the corresponding column of Table 1.

[限界電流値確認試験]
また、上述のとおりに構築した各例に係る電池について、所定の充放電レートでのパルス充放電サイクル試験後に電池容量を高く(初期電池容量の95%以上)維持できなくなる電流値(以下、該電流値を限界電流値という)を測定した。
まず各例に係る電池の初期の電池容量(初期電池容量)を測定した。−10℃の温度条件下、各例の電池に対し、CCCV充電(4.1V、レート0.2C)を行った後、CCCV放電(3.0V、レート0.2C)を行った。この時の放電容量を測定し、初電池期容量(初期電池容量)(Ah)とした。各例に係る電池の初期電池容量は、何れも5Ahであった。
次に、−10℃の温度条件下において、所定の充放電レート(C)での充放電を200サイクル繰り返すパルス充放電サイクルを1セットとして、充放電レートを変更して複数セットのパルス充放電を行った。かかるパルス充放電サイクルの充放電パターンは、所定の充電レート(C)で10秒間の定電流充電(CC充電)を行い、その後10秒間休止し、次いで所定の放電レート(C)で10秒間の定電流放電(CC放電)を行い、その後10秒間休止する充放電を1サイクルとした。このとき、上記充放電レート(C)は10Cから開始して、1セット毎に2Cずつ充放電レートを増大させた。そして、パルス充放電1セット毎に電池容量を上記初期電池容量の測定と同様の方法で測定し、初期電池容量の95%に相当する電池容量を維持できる最大パルス電流値を限界電流値とした。そして、例14の限界電流値を100としたときの相対値を算出し、各例の限界電流値(相対値)とした。結果を表1の該当欄に示す。
[Limit current check test]
In addition, for the batteries according to each example constructed as described above, the current value (hereinafter referred to as the battery capacity) that cannot be maintained high (95% or more of the initial battery capacity) after the pulse charge / discharge cycle test at a predetermined charge / discharge rate. The current value is referred to as the limiting current value).
First, the initial battery capacity (initial battery capacity) of the battery according to each example was measured. CCCV charge (4.1V, rate 0.2C) was performed on the battery of each example under a temperature condition of −10 ° C., and then CCCV discharge (3.0V, rate 0.2C) was performed. The discharge capacity at this time was measured and used as the initial battery period capacity (initial battery capacity) (Ah). The initial battery capacity of the batteries according to each example was 5 Ah.
Next, under a temperature condition of −10 ° C., a set of pulse charging / discharging cycles in which charging / discharging at a predetermined charging / discharging rate (C X ) is repeated 200 cycles is set as one set, and a plurality of sets of pulse charging / discharging are changed. Discharge was performed. Discharge pattern of such pulses charge and discharge cycles, a constant current charging for 10 seconds at a predetermined charge rate (C X) (CC charging), and a pause of 10 seconds, then at a predetermined discharge rate (C X) 10 Charging / discharging which performed constant current discharge (CC discharge) for 1 second, and stopped for 10 seconds after that was made into 1 cycle. At this time, the charge / discharge rate (C X ) started from 10C, and the charge / discharge rate was increased by 2C for each set. Then, for each set of pulse charge / discharge, the battery capacity is measured by the same method as the measurement of the initial battery capacity, and the maximum pulse current value that can maintain the battery capacity corresponding to 95% of the initial battery capacity is defined as the limit current value. . And the relative value when the limiting current value of Example 14 was set to 100 was calculated, and it was set as the limiting current value (relative value) of each example. The results are shown in the corresponding column of Table 1.

Figure 2017174664
Figure 2017174664

表1に示すように、例1〜9に係る電池は、例14〜19と比較して、低いIV抵抗増加率と高い限界電流値とが両立された。即ち、ここで開示する二次電池は、優れたハイレート充放電特性を実現し得る電池であることが確認された。
また、負極活物質層の多孔度が45%以上である例3、6、8は、負極活物質層の多孔度が40%の例19と比較してハイレート充放電後のIV抵抗増加率が小さく、限界電流値が高かった。そして、これら例3、6、8にかかる電池は、負極活物質層の多孔度が大きいほどハイレート充放電後のIV抵抗の増加が小さく、限界電流値が高くなる傾向にあった。一方で、負極活物質層の多孔度が57%である例21は、負極活物質層の多孔度が55%である例8と比較して、ハイレート充放電後のIV抵抗の増加率が大きく、限界電流値が低かった。即ち、負極活物質層の多孔度の好適範囲は45%以上55%以下であることを確認した。
例8、9、20の結果から、粒子径が2μm以上5μm以下の副材を使用することで、ハイレートサイクル後のIV抵抗の増大を低減し得ることを確認した。即ち、副材の粒子径の好適範囲は2μm以上5μm以下であった。
また、例10、11の結果から、ベーマイトおよび水酸化アルミニウムをアルミナと同様に副材として好適に使用し得ることを確認した。
さらに、例12、13の結果から、負極活物質層内に導電材を含む(ここでは、導電材でコートされた副材を使用する)ことで、ハイレート充放電特性をさらに高いレベルで実現し得ることを確認した。
As shown in Table 1, the batteries according to Examples 1 to 9 achieved both a low IV resistance increase rate and a high limit current value as compared with Examples 14 to 19. That is, it was confirmed that the secondary battery disclosed here is a battery that can realize excellent high-rate charge / discharge characteristics.
In addition, Examples 3, 6, and 8 in which the porosity of the negative electrode active material layer is 45% or more have an IV resistance increase rate after high-rate charge / discharge compared to Example 19 in which the porosity of the negative electrode active material layer is 40%. It was small and the limit current value was high. In the batteries according to Examples 3, 6, and 8, the increase in the IV resistance after high-rate charge / discharge was small and the limit current value tended to be higher as the porosity of the negative electrode active material layer was larger. On the other hand, Example 21 in which the porosity of the negative electrode active material layer is 57% has a larger increase rate of IV resistance after high-rate charge / discharge than Example 8 in which the porosity of the negative electrode active material layer is 55%. The limit current value was low. That is, it was confirmed that the preferable range of the porosity of the negative electrode active material layer was 45% or more and 55% or less.
From the results of Examples 8, 9, and 20, it was confirmed that an increase in IV resistance after a high rate cycle can be reduced by using a secondary material having a particle size of 2 μm or more and 5 μm or less. That is, the preferable range of the particle size of the secondary material was 2 μm or more and 5 μm or less.
Further, from the results of Examples 10 and 11, it was confirmed that boehmite and aluminum hydroxide can be suitably used as a secondary material in the same manner as alumina.
Further, from the results of Examples 12 and 13, by including a conductive material in the negative electrode active material layer (here, a secondary material coated with a conductive material is used), the high rate charge / discharge characteristics are realized at a higher level. Confirmed to get.

以上、本発明の具体例を詳細に説明したが、上記実施形態及び実施例は例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, the said embodiment and Example are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
30 電池ケース
32 電池ケース本体
34 蓋体
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極
52 正極集電体
53 正極活物質層非形成部分
54 正極活物質層
60 負極
62 負極集電体
63 負極活物質層非形成部分
64 負極活物質層
70 セパレータ
100 二次電池(非水電解液二次電池)
20 Winding electrode body 30 Battery case 32 Battery case main body 34 Cover body 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plate 50 Positive electrode 52 Positive electrode current collector 53 Positive electrode active material layer non-formation part 54 Positive electrode Active material layer 60 Negative electrode 62 Negative electrode current collector 63 Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 70 Separator 100 Secondary battery (nonaqueous electrolyte secondary battery)

Claims (1)

少なくとも正極活物質を含む正極活物質層を有する正極と、少なくとも負極活物質を含む負極活物質層を有する負極と、該正負極を電気的に隔離するセパレータと、を備えた二次電池であって、
前記負極活物質層は、前記負極活物質よりも圧縮弾性率が高い副材を、負極活物質層の全固形分100質量%に対して3質量%以上20質量%以下の含有割合で含んでおり、
前記負極活物質層の多孔度が、45%以上55%以下であり、
前記負極の厚み方向の圧縮弾性率が、前記セパレータの厚み方向の圧縮弾性率の1.2倍以上3.3倍以下である、二次電池。
A secondary battery comprising: a positive electrode having a positive electrode active material layer containing at least a positive electrode active material; a negative electrode having a negative electrode active material layer containing at least a negative electrode active material; and a separator for electrically isolating the positive and negative electrodes. And
The negative electrode active material layer contains a secondary material having a higher compression modulus than that of the negative electrode active material in a content ratio of 3% by mass to 20% by mass with respect to 100% by mass of the total solid content of the negative electrode active material layer. And
The porosity of the negative electrode active material layer is 45% or more and 55% or less,
A secondary battery in which a compression elastic modulus in a thickness direction of the negative electrode is 1.2 times or more and 3.3 times or less of a compression elastic modulus in a thickness direction of the separator.
JP2016060122A 2016-03-24 2016-03-24 Secondary battery Active JP6587105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060122A JP6587105B2 (en) 2016-03-24 2016-03-24 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060122A JP6587105B2 (en) 2016-03-24 2016-03-24 Secondary battery

Publications (2)

Publication Number Publication Date
JP2017174664A true JP2017174664A (en) 2017-09-28
JP6587105B2 JP6587105B2 (en) 2019-10-09

Family

ID=59971437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060122A Active JP6587105B2 (en) 2016-03-24 2016-03-24 Secondary battery

Country Status (1)

Country Link
JP (1) JP6587105B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043179A (en) * 2016-10-19 2018-04-27 도요타 지도샤(주) Method for producing negative electrode and secondary battery, and secondary battery
JP2019075275A (en) * 2017-10-16 2019-05-16 トヨタ自動車株式会社 Lithium ion secondary battery
JP2020021551A (en) * 2018-07-30 2020-02-06 トヨタ自動車株式会社 All-solid battery and manufacturing method thereof
CN111525088A (en) * 2019-02-01 2020-08-11 丰田自动车株式会社 Negative electrode for lithium ion secondary battery
WO2021153291A1 (en) * 2020-01-30 2021-08-05 パナソニック株式会社 Nonaqueous electrolyte secondary cell and secondary cell module
CN113258033A (en) * 2020-02-12 2021-08-13 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and secondary battery module
CN113258034A (en) * 2020-02-12 2021-08-13 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and secondary battery module
US11228024B2 (en) 2016-11-25 2022-01-18 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the same
CN115039276A (en) * 2020-01-31 2022-09-09 松下控股株式会社 Nonaqueous electrolyte secondary battery and secondary battery module
JP7383501B2 (en) 2020-01-16 2023-11-20 パナソニックホールディングス株式会社 Power storage device and power storage module
JP7463418B2 (en) 2022-02-22 2024-04-08 プライムプラネットエナジー&ソリューションズ株式会社 Anode active material, anode using said anode active material, and method for producing anode active material
CN113258033B (en) * 2020-02-12 2024-06-04 松下控股株式会社 Nonaqueous electrolyte secondary battery and secondary battery assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321301A (en) * 1995-05-26 1996-12-03 Sanyo Electric Co Ltd Lithium secondary battery
JPH10188957A (en) * 1996-12-20 1998-07-21 Sanyo Electric Co Ltd Lithium secondary battery
JPH10255807A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JPH11307100A (en) * 1998-02-18 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2000285966A (en) * 1999-03-29 2000-10-13 Toshiba Corp Lithium secondary battery and its manufacture
JP2007184261A (en) * 2005-12-06 2007-07-19 Matsushita Battery Industrial Co Ltd Lithium-ion secondary battery
JP2008262768A (en) * 2007-04-11 2008-10-30 Nec Tokin Corp Lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321301A (en) * 1995-05-26 1996-12-03 Sanyo Electric Co Ltd Lithium secondary battery
JPH10188957A (en) * 1996-12-20 1998-07-21 Sanyo Electric Co Ltd Lithium secondary battery
JPH10255807A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JPH11307100A (en) * 1998-02-18 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2000285966A (en) * 1999-03-29 2000-10-13 Toshiba Corp Lithium secondary battery and its manufacture
JP2007184261A (en) * 2005-12-06 2007-07-19 Matsushita Battery Industrial Co Ltd Lithium-ion secondary battery
JP2008262768A (en) * 2007-04-11 2008-10-30 Nec Tokin Corp Lithium ion secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043179A (en) * 2016-10-19 2018-04-27 도요타 지도샤(주) Method for producing negative electrode and secondary battery, and secondary battery
KR101980974B1 (en) 2016-10-19 2019-05-21 도요타 지도샤(주) Method for producing negative electrode and secondary battery, and secondary battery
US11011738B2 (en) 2016-10-19 2021-05-18 Toyota Jidosha Kabushiki Kaisha Method for producing negative electrode and secondary battery, and secondary battery
US11527746B2 (en) 2016-11-25 2022-12-13 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the same
US11228024B2 (en) 2016-11-25 2022-01-18 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the same
JP2019075275A (en) * 2017-10-16 2019-05-16 トヨタ自動車株式会社 Lithium ion secondary battery
JP2020021551A (en) * 2018-07-30 2020-02-06 トヨタ自動車株式会社 All-solid battery and manufacturing method thereof
CN111525088A (en) * 2019-02-01 2020-08-11 丰田自动车株式会社 Negative electrode for lithium ion secondary battery
CN111525088B (en) * 2019-02-01 2023-08-11 丰田自动车株式会社 Negative electrode for lithium ion secondary battery
JP7383501B2 (en) 2020-01-16 2023-11-20 パナソニックホールディングス株式会社 Power storage device and power storage module
CN115023851A (en) * 2020-01-30 2022-09-06 松下控股株式会社 Nonaqueous electrolyte secondary battery and secondary battery module
WO2021153291A1 (en) * 2020-01-30 2021-08-05 パナソニック株式会社 Nonaqueous electrolyte secondary cell and secondary cell module
CN115039276A (en) * 2020-01-31 2022-09-09 松下控股株式会社 Nonaqueous electrolyte secondary battery and secondary battery module
CN113258034A (en) * 2020-02-12 2021-08-13 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and secondary battery module
CN113258033A (en) * 2020-02-12 2021-08-13 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and secondary battery module
JP7383510B2 (en) 2020-02-12 2023-11-20 パナソニックホールディングス株式会社 Non-aqueous electrolyte secondary batteries and secondary battery modules
JP7403337B2 (en) 2020-02-12 2023-12-22 パナソニックホールディングス株式会社 Non-aqueous electrolyte secondary batteries and secondary battery modules
CN113258033B (en) * 2020-02-12 2024-06-04 松下控股株式会社 Nonaqueous electrolyte secondary battery and secondary battery assembly
CN113258034B (en) * 2020-02-12 2024-06-04 松下控股株式会社 Nonaqueous electrolyte secondary battery and secondary battery assembly
JP7463418B2 (en) 2022-02-22 2024-04-08 プライムプラネットエナジー&ソリューションズ株式会社 Anode active material, anode using said anode active material, and method for producing anode active material

Also Published As

Publication number Publication date
JP6587105B2 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6587105B2 (en) Secondary battery
JP5828346B2 (en) Lithium secondary battery
KR101721300B1 (en) Nonaqueous electrolyte secondary battery
JP5668993B2 (en) Sealed nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2013080379A1 (en) Lithium secondary battery and method for manufacturing same
JP6176500B2 (en) Secondary battery, method for producing the same, and method for producing negative electrode sheet used in the battery
JP2015125832A (en) Manufacturing method for electrode for secondary battery
JP2010160982A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery
EP3127176B1 (en) Nonaqueous electrolyte secondary battery
WO2012017537A1 (en) Lithium ion secondary battery
JP5585834B2 (en) Lithium ion secondary battery
CN107026281B (en) Lithium ion secondary battery
WO2011114433A1 (en) Lithium secondary battery
JP5765574B2 (en) Secondary battery, method for producing the same, and method for producing negative electrode sheet used in the battery
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
JP6894201B2 (en) Non-aqueous electrolyte secondary battery
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP2013069579A (en) Lithium ion secondary battery and manufacturing method therefor
JP5234373B2 (en) Lithium ion secondary battery
JP5692605B2 (en) Non-aqueous electrolyte secondary battery
JP2015153535A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6735036B2 (en) Lithium ion secondary battery
JP2017130317A (en) Nonaqueous electrolyte secondary battery having wound electrode body
JP6919809B2 (en) Non-aqueous electrolyte lithium ion battery
JP2021077531A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190828

R151 Written notification of patent or utility model registration

Ref document number: 6587105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250