JPH10188696A - 酸化物超電導線材及びその接合方法 - Google Patents

酸化物超電導線材及びその接合方法

Info

Publication number
JPH10188696A
JPH10188696A JP9232117A JP23211797A JPH10188696A JP H10188696 A JPH10188696 A JP H10188696A JP 9232117 A JP9232117 A JP 9232117A JP 23211797 A JP23211797 A JP 23211797A JP H10188696 A JPH10188696 A JP H10188696A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting wire
tape
wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9232117A
Other languages
English (en)
Inventor
Michiya Okada
道哉 岡田
Keiji Fukushima
敬二 福島
Kazuhide Tanaka
和英 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9232117A priority Critical patent/JPH10188696A/ja
Publication of JPH10188696A publication Critical patent/JPH10188696A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】 【課題】酸化物超電導線の多芯構造を有する酸化物超電
導テープ線材同士の良好な超電導接続状態を実現可能と
する。 【解決手段】テープ状の金属被覆された多芯酸化物超電
導線材の接続において、線材の長さ方向に該線材の超電
導結晶のC軸が実質的に配向しており、かつ、接合部に
おいて、線材の長手方向の端面が互いに接し、かつ接合
部において、酸化物超電導結晶のC面を連続的に配向さ
せる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、酸化物系超電導体
をマグネットや送電ケーブルなどの大電流の通電を必要
とする酸化物超電導線材,製造方法およびその接合方法
に関するものである。具体的には、超電導送電ケーブ
ル,ブスバー,長尺導体,永久電流スイッチ素子,大型
マグネット,核磁気共鳴分析装置,医療用磁気共鳴診断
装置,超電導電力貯蔵装置,磁気分離装置,磁場中単結
晶引き上げ装置,冷凍機冷却超電導マグネット装置,超
電導エネルギー貯蔵,超電導発電機,核融合炉用マグネ
ット,加速器,電流リード等の機器構成において、酸化
物超電導体の超電導現象を利用して、100A以上の大
きな機器通信電流を利用する際に用いられる酸化物系超
電導線材において広く適用することができる。
【0002】
【従来の技術】超電導材料として実用化されているもの
としては、NbTi,Nb3Sn 等の金属系超電導体が
知られており、これらの線材に関する超電導接続技術は
完成されている。一方、酸化物超電導体を接続する技術
については、現在までに様々な方法が提案されている。
例えば、(1)特開平1−24379号,(2)特開平1−17384
号,(3)特開平3−242384 号,(4)特開平3−25447
3 号等が知られている。
【0003】
【発明が解決しようとする課題】しかしながら、公知の
核接続方法では、以下に述べるような問題を有してお
り、いずれも不十分である。まず、上記(1)(2)の方
法では、接続部分が固相反応で構成されるため、超電導
体の配向性及び緻密度が低く、十分な臨界電流密度を得
ることが困難であった。
【0004】一方、上記(3)及び(4)の方法はBi
−2212系酸化物を用いており、部分溶融凝固を行っ
て緻密で配向した組織を得るものである。Bi−221
2結晶では溶融してから結晶化するので、配向した大き
な結晶が成長し、超電導接続に有利である。なお、溶融
状態から結晶化する場合に、介在物を挿入する方法が一
般に用いられる。例えば、(3)においてはこのよう
な、接続部に介在物として前駆体又は仮焼体の粉末を配
置して大気中で熱処理する方法が示されている。しか
し、この方法では、酸化物超電導体と仮焼粉末との熱処
理温度が条件にもよるが、両者の溶融温度が概ね10度
程度異なるため良好な接続を得ることが困難であった。
また、この介在物のみを溶融させたのでは、液層から成
長した結晶が、被接続体であるBi−2212と十分に
接続され難い。従って、最近では、介在物と被接続体を
一体化して結晶化させる方法も検討されている。例え
ば、(4)の方法ではBi−2212を主として含有する
酸化物超電導体の接続領域部の一部に、仮焼体と同一組
成の酸化物仮焼粉末を介在させた状態で加熱し、部分溶
融する。しかし、この方法では、仮焼体粉末とBi−2
212相の混合の比率によって溶融温度が変化しやすい
こと、及び構成が単芯線材を想定したものであって、近
年、急速に技術開発が進んできた多芯線材の接続方法に
ついては全く考慮されていない。例えば、発明者らが鋭
意研究することで最近開発した高性能のテープ状線材
は、酸化物超電導線材の中で、現在最も高い臨界電流を
得ている線材の一つである。この詳細は例えば、ジャパ
ニーズ・ジャーナル・オブ・アップライド・フィジック
ス第34巻,1995年,第4770頁〜4773頁に
記載されている。一例として代表的なテープ厚形状であ
る厚さ0.1mm ,テープ幅5mmの55芯の線材を接続し
ようとする場合、超電導体はBi−2212単一相から
なり、その超電導体コアの厚みは5〜10ミクロン程度
であって、(4)の発明のように各コアに介在物を均一
に挿入する操作を処置することは事実上困難であると共
に、充填粉末に仮焼体を含むBi−2212相を用いる
と十分な性能が得られないという問題があった。また、
この様な多芯線材は、溶融凝固する際に、結晶核が介在
物を起点として発生しやすいため、接続箇所に介在物を
加えると、接続部分の結晶配向性が、線材内部に比べて
低下して、接続部分のJcが低下するという欠点があっ
た。この様な現象は、特に多芯線材を用いた溶融凝固に
よる接続において特有の現象である。その理由は、多芯
線材の場合は銀と超電導体が交互に積層された断面構成
であり、一方、介在物層はこのような多芯構造を有しな
いためである。本発明はこうした状況の下に達成された
ものであって、その目的は多芯構造を有する酸化物超電
導テープ線材同士の良好な超電導接続状態を実現可能な
新規な超電導接続構造とその形成方法を提供することに
ある。
【0005】
【課題を解決するための手段】上記目的は、扁平断面形
状を有し、かつ金属被覆された多芯酸化物超電導線材の
接続構造において、該線材の長さ方向に該酸化物超電導
結晶のC軸が実質的に配向しており、かつ、該接合部に
おいて、該線材の長手方向の端面が互いに接し、かつ、
該接合部において、酸化物超電導結晶のC面が連続的に
配向せしめることにより達成できる。なお、この場合、
介在物などは基本的に用いる必要はないが、本発明の接
続構造を維持できる範囲内で、接続端面での結晶成長を
促進する助剤、例えば銀などを接続部に極微量添加する
ことを特に妨げるものではない。また、本発明では線材
に充填する酸化物超電導粉末は単一相に合成された酸化
物粉末を利用する。
【0006】また、超電導接続部を有する長尺の多芯酸
化物超電導導体において、該接続部の臨界電流密度が、
1000A/mm2 であって、かつ臨界電流が100A以
上とすることによって達成できる。
【0007】また、該線材がテープ状であって、かつ、
テープ上面から見たテープの端面が長さ方向に対して垂
直とすることによって達成できる。
【0008】また、該超電導接合構造において、該線材
がテープ状であって、かつ、テープ上面から見たテープ
の端面が長さ方向に対して角度を持たせしめることによ
って達成できる。
【0009】また、該超電導接合構造において、該線材
がテープ状であって、かつ、テープ側面から見たテープ
の端面が長さ方向に対して角度を持っていることによっ
て達成できる。
【0010】また、該超電導接合構造において、該線材
がテープ状であって、かつ、テープ側面かつテープ上面
から見たテープの端面が長さ方向に対して角度を持たせ
しめることによって達成できる。
【0011】また、該超電導接合構造において、該線材
の素線の厚みが0.1mm以上0.3mm以下とすることによ
って達成できる。
【0012】また、該超電導接合構造において、該線材
の該金属被覆材が銀又は銀−金合金、又はこれらを母材
としてマグネシウム,ニッケル,アルミニウム又はこれ
らの2つ以上の酸化物を微細に分散した合金とすること
によって達成できる。
【0013】また、該超電導接合構造において、該酸化
物超電導体が主としてBi2Sr2Ca2Cu1x 相とす
ることによって達成できる。
【0014】また、該超電導接合方法において、酸化物
超電導線を製作する工程,線材端部が互いに接するよう
に配置する工程,線材及び接合部を部分溶融する工程か
らなり、熱処理によって互いに接した多数本の超電導フ
ィラメント同士の結晶を連続的に超電導接合することに
よって達成できる。
【0015】また、該超電導接合法を利用し、かつ、複
数本の該酸化物超電導テープを束ねた断面構成からなる
酸化物超電導導体の接続方法において、各テープ線材は
テープ面を利用して層状に積層され、かつ、各層毎に特
許請求の範囲第9項記載の超電導接合法を利用して接合
され、かつ該接合部は上下に位置するテープ線材の接合
位置と互いに重ならないように配置することによって達
成できる。
【0016】また、該接続を構成する一方の線材の被覆
材が銀であって、他方の線材の被覆材が銀−金合金で構
成され、少なくとも該銀−金合金に被覆された超電導体
に重量で0.01% 以上10%以下の銀を添加せしめる
ことにより、異なる被覆材による酸化物超電導体の溶融
温度を概ね同一にすることによって達成できる。
【0017】
【発明の実施の形態】酸化物超電導体の発見以来、その
線材化と電力機器応用をめざした活発な研究開発がなさ
れてきた。酸化物超電導体は従来の超電導体と比較して
超電導転移温度(以下Tcと略す)及び上部臨界磁界
(以下Hc2 と略す)が遥かに高いという特徴を有し、
様々な分野への応用が期待されている。例えば、Bi系
超電導体ではTcが概ね85KのBi2Sr2Ca1Cu2
x(以下Bi−2212と略す)、及びTcが概ね10
5Kの(Bi,Pb)2Sr2Ca2Cu3x(以下Bi−22
23と略す)が知られており、大容量の導体として、例え
ば電力機器への応用が有望視されている。
【0018】これらの酸化物超電導体を銀パイプに充填
した後、テープ状に加工し、これをコイル状に巻いて熱
処理したり、或いは熱処理後にコイル状に巻くなどして
超電導マグネットやケーブルが試作されており、研究開
発が盛んに実施されている。また、上述したような銀シ
ーステープ線材をBi−2212系超電導体を用いて製
造するに当たっては、一般に次のような方法が用いられ
る。まず、粉末状のBi−2212を予め用意し、これ
を銀パイプに充填してからテープ状に緻密化加工する。
その後、昇温して部分溶融熱処理を施し、徐冷しながら
緻密で配向した良好なテープ線材を製作する。
【0019】一方、Bi−2223系線材においては、
粉末を銀パイプに充填した後に熱処理と加工を複数回繰
り返しながら、緻密で配向化した結晶組織を得る。この
場合、Bi−2223相を形成する反応は概ね固相反応
であるため上述したBi−2212系と比較して結晶粒
径が小さく、また、異相が多く存在する。その結果、極
低温度領域においては、Bi−2212系の線材に比べ
て臨界電流密度(以下Jcと略す)がやや低くなる。
【0020】例えば超電導体を核磁気共鳴分析装置(以
下NMRと略す)等の時間的に極めて安定な磁場を必要
とする応用に供する場合には、超電導接合は必須であ
り、超電導接合の良否によって超電導電流の減衰が大き
く影響される。また、送電ケーブルのように極めて長尺
の導体長さを必要とする場合においても、ケーブル送電
システム全体のエネルギー損失に占める接続部の損失を
可能な限り低減しなければ、場合によってはシステムが
成立しないこともあり得る。また、コイル内部に接続部
分を有する大型の超電導マグネットでは接続部分の性能
が悪く、発熱によってコイル性能が損なわれることもあ
る。よって、良好な超電導接続状態を達成することは非
常に重要である。
【0021】本発明の超電導接合法は広く超電導機器に
適用することが可能であって、例えば、超電導送電ケー
ブル,ブスバー,長尺導体,永久電流スイッチ素子,大
型マグネット,核磁気共鳴分析装置,医療用磁気共鳴診
断装置,超電導電力貯蔵装置,磁気分離装置,磁場中単
結晶引上装置,冷凍機冷却超電導マグネット装置などに
利用することができる。
【0022】また、該酸化物超電導線材において、該酸
化物超電導体がBi−2212系であることが望ましい
が、酸化物超電導体に広く適用可能であって、一例とし
てはBi−2223系またはタリウム系超電導体であっ
てもよく、例えば、 Tl−Ba−Ca−Cu−O系 Tl1.5-2.2−Ba1.5-2.2−Cu0.5-1.3−O5-7 Tl1.5-1.2−Ba1.5-2.2−Ca0.5-1.3−Cu1.5-2.3
−O7-9 Tl1.5-2.2−Ba1.5-2.3−Ca1.5-2.3−Cu2.5-3.3
−O9-11 Tl0.5-1.2−Ba1.5-2.2−Cu0.5-1.3−O4-6 Tl0.5-1.2−Ba1.5-2.2−Ca0.5-1.2−Cu1.5-2.3
−O6-8 Tl0.5-1.2−Ba1.5-2.2−Ca2.5-3.2−Cu3.5-4.3
−O8−10 Tl−Sr−Ca−Cu−O系 Tl1.5−2.2−Sr1.5-2.2−Cu0.5-1.3−O
5-7 Tl1.5-1.2−Sr1.5-2.2−Ca0.5-1.3−Cu1.5-2.3
−O7-9 Tl1.5-2.2−Sr1.5-2.3−Ca1.5-2.3−Cu2.5-3.3
−O9-11 Tl0.5-1.2−Sr1.5-2.2−Cu0.5-1.3−O4-6 Tl0.5-1.2−Sr1.5-2.2−Ca0.5-1.2−Cu1.5-2.3
−O6-8 Tl0.5-1.2−Sr1.5-2.2−Ca2.5-3.2−Cu3.5-4.3
−O8-10 Tl−Ba−Sr−Ca−Cu−O系 Tl1.5-2.2−(Bax−Sr1-x)1.5-2.2−Cu0.5-1.3
−O5-7 Tl1.5-1.2−(Bax−Sr1-x)1.5-2.2−Ca0.5-1.3
−Cu1.5-2.3−O7-9 Tl1.5-2.2−(Bax−Sr1-x)1.5-2.3−Ca1.5-2.3
−Cu2.5-3.3−O9-11 Tl0.5-1.2−(Bax−Sr1-x)1.5-2.2−Cu0.5-1.3
−O4-6 Tl0.5-1.2−(Bax−Sr1-x)1.5-2.2−Ca0.5-1.2
−Cu1.5-2.3−O6-8 Tl0.5-1.2−(Bax−Sr1-x)1.5-2.2−Ca2.5-3.2
−Cu3.5-4.3−O8-10 x=0.1〜0.9 Tl−Pb−Sr−Ca−Cu−O系 (Tly−Pb1-y)1.5-2.2−Sr1.5-2.2−Cu0.5-1.3
−O5-7 (Tly−Pb1-y)1.5-1.2−Sr1.5-2.2−Ca0.5-1.3
−Cu1.5-2.3−O7-9 (Tly−Pb1-y)1.5-2.2−Sr1.5-2.3−Ca1.5-2.3
−Cu2.5-3.3−O9-11 (Tly−Pb1-y)0.5-1.2−Sr1.5-2.2−Cu0.5-1.3
−O4-6 (Tly−Pb1-y)0.5-1.2−Sr1.5-2.2−Ca0.5-1.2
−Cu1.5-2.3−O6-8 (Tly−Pb1-y)0.5-1.2−Sr1.5-2.2−Ca2.5-3.2
−Cu3.5-4.3−O8-10 y=0.1〜0.9 Tl−Pb−Ba−Sr−Ca−Cu−O系 (Tly−Pb1-y)1.5-2.2−(Bax−Sr1-x)1.5-2.2
Cu0.5-1.3−O5-7 (Tly−Pb1-y)1.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca0.5-1.3−Cu1.5-2.3−O7-9 (Tly−Pb1-y)1.5-2.2−(Bax−Sr1-x)1.5-2.3
Ca1.5-2.3−Cu2.5-3.3−O9-11 (Tly−Pb1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Cu0.5-1.3−O4-6 (Tly−Pb1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca0.5-1.2−Cu1.5-2.3−O6-8 (Tly−Pb1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca2.5-3.2−Cu3.5-4.3−O8-10 x=0.1〜0.9 y=0.1〜0.9 Bi−Sr−Ca−Cu−O系 Bi1.5-2.2−Sr1.5-2.2−Cu0.5-1.3−O5-7 Bi1.5-1.2−Sr1.5-2.2−Ca0.5-1.3−Cu1.5-2.3
−O7-9 Bi1.5-2.2−Sr1.5-2.3−Ca1.5-2.3−Cu2.5-3.3
−O9-11 Bi−Pb−Sr−Ca−Cu−O系 (Biy−Pb1-y)1.5-2.2−Sr1.5-2.2−Cu0.5-1.3
−O5-7 (Biy−Pb1-y)1.5-1.2−Sr1.5-2.2−Ca0.5-1.3
−Cu1.5-2.3−O7-9 (Biy−Pb1-y)1.5-2.2−Sr1.5-2.3−Ca1.5-2.3
−Cu2.5-3.3−O9-11 y=0.1〜0.9 Ln−Ba−Cu−O系 Ln1.5-2.3−Cu0.5-1.3−O4-6 Ln0.5-1.3−Ba1.5-2.3Cu2.5-3.3−O6-8 Ln:Y,Sc,La,Ac,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Lu Ln−Sr−Cu−O系 Ln0.5-1.3−Sr1.5-2.3Cu2.5-3.3−O6-8 Ln:Y,Sc,La,Ac,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Lu Bi−Sr−Y−Cu−O系 (Bi1-xCux)−Sr2−(Y1-yCuy)−Cu2−O6-8 x=0.1〜0.9 y=0.1〜0.9 Ba−Ca−Cu−O系 Cu0.5-1.2−Ba1.5-2.2−Cu0.5-1.3−O4-6 Cu0.5-1.2−Ba1.5-2.2−Ca0.5-1.2−Cu1.5-2.3
6-8 Cu0.5-1.2−Ba1.5-2.2−Ca2.5-3.2−Cu3.5-4.3
−O8-10 (Agx,Cu1-x)0.5-1.2−Ba1.5-2.2−Cu0.5-1.3
−O4-6 (Agx,Cu1-x)0.5-1.2−Ba1.5-2.2−Ca0.5-1.2
−Cu1.5-2.3−O6-8 (Agx,Cu1-x)0.5-1.2−Ba1.5-2.2−Ca2.5-3.2
−Cu3.5-4.3−O8-10 x=0〜1 Sr−Ca−Cu−O系 Cu0.5-1.2−Sr1.5-2.2−Cu0.5-1.3−O4-6 Cu0.5-1.2−Sr1.5-2.2−Ca0.5-1.2−Cu1.5-2.3
−O6-8 Cu0.5-1.2−Sr1.5-2.2−Ca2.5-3.2−Cu3.5-4.3
−O8-10 (Agx,Cu1-x)0.5-1.2−Sr1.5-2.2−Cu0.5-1.3
−O4-6 (Agx,Cu1-x)0.5-1.2−Sr1.5-2.2−Ca0.5-1.2
−Cu1.5-2.3−O6-8 (Agx,Cu1-x)0.5-1.2−Sr1.5-2.2−Ca2.5-3.2
−Cu3.5-4.3−O8-10 x=0〜1 Hg−Ba−Ca−Cu−O系 Hg1.5-2.2−Ba1.5-2.2−Cu0.5-1.3−O5-7 Hg1.5-1.2−Ba1.5-2.2−Ca0.5-1.3−Cu1.5-2.3
−O7-9 Hg1.5-2.2−Ba1.5-2.3−Ca1.5-2.3−Cu2.5-3.3
−O9-11 Hg0.5-1.2−Ba1.5-2.2−Cu0.5-1.3−O4-6 Hg0.5-1.2−Ba1.5-2.2−Ca0.5-1.2−Cu1.5-2.3
−O6-8 Hg0.5-1.2−Ba1.5-2.2−Ca2.5-3.2−Cu3.5-4.3
−O8-10 Hg−Sr−Ca−Cu−O系 Hg1.5-2.2−Sr1.5-2.2−Cu0.5-1.3−O5-7 Hg1.5-1.2−Sr1.5-2.2−Ca0.5-1.3−Cu1.5-2.3
−O7-9 Hg1.5-2.2−Sr1.5-2.3−Ca1.5-2.3−Cu2.5-3.3
−O9-11 Hg0.5-1.2−Sr1.5-2.2−Cu0.5-1.3−O4-6 Hg0.5-1.2−Sr1.5-2.2−Ca0.5-1.2−Cu1.5-2.3
−O6-8 Hg0.5-1.2−Sr1.5-2.2−Ca2.5-3.2−Cu3.5-4.3
−O8-10 Hg−Ba−Sr−Ca−Cu−O系Hg1.5-2.2−(B
x−Sr1-x)1.5-2.2−Cu0.5-1.3−O5-7 Hg1.5-1.2−(Bax−Sr1-x)1.5-2.2−Ca0.5-1.3
−Cu1.5-2.3−O7-9 Hg1.5-2.2−(Bax−Sr1-x)1.5-2.3−Ca1.5-2.3
−Cu2.5-3.3−O9-11 Hg0.5-1.2−(Bax−Sr1-x)1.5-2.2−Cu0.5-1.3
−O4-6 Hg0.5-1.2−(Bax−Sr1-x)1.5-2.2−Ca0.5-1.2
−Cu1.5-2.3−O6-8 Hg0.5-1.2−(Bax−Sr1-x)1.5-2.2−Ca2.5-3.2
−Cu3.5-4.3−O8-10 x=0.1〜0.9 Hg−Pb−Sr−Ca−Cu−O系 (Hgy−Pb1-y)1.5-2.2−Sr1.5-2.2−Cu0.5-1.3
−O5-7 (Hgy−Pb1-y)1.5-1.2−Sr1.5-2.2−Ca0.5-1.3
−Cu1.5-2.3−O7-9 (Hgy−Pb1-y)1.5-2.2−Sr1.5-2.3−Ca1.5-2.3
−Cu2.5-3.3−O9-11 (Hgy−Pb1-y)0.5-1.2−Sr1.5-2.2−Cu0.5-1.3
−O4-6 (Hgy−Pb1-y)0.5-1.2−Sr1.5-2.2−Ca0.5-1.2
−Cu1.5-2.3−O6-8 (Hgy−Pb1-y)0.5-1.2−Sr1.5-2.2−Ca2.5-3.2
−Cu3.5-4.3−O8-10 y=0.1〜0.9 Hg−Pb−Ba−Sr−Ca−Cu−O系 (Hgy−Pb1-y)1.5-2.2−(Bax−Sr1-x)1.5-2.2
Cu0.5-1.3−O5-7 (Hgy−Pb1-y)1.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca0.5-1.3−Cu1.5-2.3−O7-9 (Hgy−Pb1-y)1.5-2.2−(Bax−Sr1-x)1.5-2.3
Ca1.5-2.3−Cu2.5-3.3−O9-11 (Hgy−Pb1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Cu0.5-1.3−O4-6 (Hgy−Pb1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca0.5-1.2−Cu1.5-2.3−O6-8 (Hgy−Pb1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca2.5-3.2 −Cu3.5-4.3−O8-10 x=0.1〜0.9 y=0.1〜0.9 Hg−Tl−Ba−Ca−O系 (Hgy−Tl1-y)1.5-2.2−(Bax−Sr1-x)1.5-2.2
Cu0.5-1.3−O5-7 (Hgy−Tl1-y)1.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca0.5-1.3−Cu1.5-2.3−O7-9 (Hgy−Tl1-y)1.5-2.2−(Bax−Sr1-x)1.5-2.3
Ca1.5-2.3−Cu2.5-3.3−O9-11 (Hgy−Tl1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Cu0.5-1.3−O4-6 (Hgy−Tl1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca0.5-1.2−Cu1.5-2.3−O6-8 (Hgy−Tl1-y)0.5-1.2−(Bax−Sr1-x)1.5-2.2
Ca2.5-3.2−Cu3.5-4.3−O8-10 x=0〜1 y=0.1〜0.9 などの超伝導材料に適用できる。
【0023】また、該酸化物超電導線材において、該金
属被覆材が銀又は金、或いはこれらの一種又は二種を母
材とする合金、或いは添加物として微量のマグネシウ
ム,チタン,ニッケル,銅を含む銀又は金合金であるこ
とにより、引張強さを概ね3倍程度高めることが可能で
あって、機械的強度を高める機能を付与せしめることが
できる。
【0024】また、該酸化物超電導接続を有する超電導
マグネットの製造方法において、接続部分を含むコイル
巻線工程の後に、熱処理を施すことにより、局所的な機
械的歪みを受けない、長尺にわたって超電導を保持でき
る線材を実現し、永久電流マグネットを達成できる効果
がある。
【0025】発明者らは、酸化物超電導体の電力機器へ
の応用をめざして、これまで主として線材の通電性能向
上に注力してきた。その結果、例えば、Bi−2212
系の19〜55芯線材によって、臨界電流密度が30T
の外部磁界中で1800A/mm2 にも達する非常に高い
電流密度を有する線材を提供できる技術を開発してき
た。しかし、従来知られている方法によってこの線材を
接続しようとしても、数多くの問題が発生して、接続部
分で一桁近く臨界電流密度が低下してしまい、優れた線
材の特性を接続部で得ることができなかった。そこで、
発明者らは、鋭意研究を重ね、高性能の多芯テープ状線
材の本来の通電特性を損なうことなく、超電導線同士を
接合する方法を見いだしたのでここにまとめた。
【0026】本発明において、多芯線材は扁平断面形状
を有し、かつ金属被覆され、その接続構造において、該
線材の長さ方向に該酸化物超電導結晶のC軸が実質的に
配向しており、かつ、該接合部において、該線材の長手
方向の端面が互いに接し、かつ、該接合部において、酸
化物超電導結晶のC面が連続的に配向している。この様
な特殊な接続構造を実現できたことによって、臨界電流
密度が、30T中において1800A/mm2 と、非常に
高い性能を有する多芯線材の臨界電流を実質的に損なう
ことのない超電導接続が実現した。この様な超電導接続
部を有する長尺の多芯酸化物超電導導体においては、該
接続部の臨界電流密度が、概ね1000A/mm2 以上で
あることを実験的に確認したが、接続部分の臨界電流密
度の上限は測定できていない。線材自身の特性が今後向
上することによって、更に向上することが期待できる。
また、確認された臨界電流は電流値で概ね100A以上
であり、大部分は300A以上と極めて高いことを実験
的に確認できた。
【0027】また、発明者らは、接続部分のマクロな幾
何学的構成についても検討し、該線材がテープ状であっ
て、かつ、テープ上面から見たテープの端面が長さ方向
に対して垂直とすると良好な臨界電流特性が得られ易い
ことが分かった。また、該超電導接合構造において、該
線材がテープ状であって、かつ、テープ上面から見たテ
ープの端面が長さ方向に対して角度を持たせしめること
によって、熱歪みや機械的な歪みに対する劣化が防止さ
れ、接続部の寿命と信頼性向上に顕著な効果があること
を見いだした。また、この様な効果は、該超電導接合構
造において、該線材がテープ状であって、かつ、テープ
側面から見たテープの端面が長さ方向に対して角度を持
っている場合や、該超電導接合構造において、該線材が
テープ状であって、かつ、テープ側面かつテープ上面か
ら見たテープの端面が長さ方向に対して角度を持たせし
めた場合においても同様の効果があることを見いだし
た。発明者らが開発した高性能の線材の形状は概ね素線
の厚みが0.1mm以上0.3mm以下である。よって各接続
要素の厚みは、発明者らが実験的に確認した範囲内で、
実験に用いたテープ厚みと一致する。従って、この範囲
外については実験的に確認がとれていないことを付記す
るが、本発明がこの範囲に限定されるものではない。
【0028】また、発明者らは、該超電導接合構造にお
いて、該線材の該金属被覆材が銀又は銀−金合金、又は
これらを母材としてマグネシウム,ニッケル,アルミニ
ウム、又はこれらの2つ以上の酸化物を微細に分散した
合金とすることによって全体の強度を向上せしめること
が可能であることを見いだした。
【0029】更に発明者らは、該超電導接合構造におい
て、該酸化物超電導体が主としてBi2Sr2Ca2Cu1
x 相とすることが望ましいことを見いだした。
【0030】また、発明者らは、該超電導テープの接合
方法において、酸化物超電導テープを製作する工程,線
材端部が互いに接するように配置する工程、線材及び接
合部を部分溶融する工程からなり、熱処理によって互い
に接した多数本の超電導フィラメント同士の結晶を連続
的に超電導接合することで、扁平断面形状を有し、かつ
金属被覆され、その接続構造において、該線材の長さ方
向に該酸化物超電導結晶のC軸が実質的に配向してお
り、かつ、該接合部において、該線材の長手方向の端面
が互いに接し、かつ、該接合部において、酸化物超電導
結晶のC面が連続的に配向した接続部を構成できること
を明らかにした。
【0031】また、この様な接合法を利用した複数本の
該酸化物超電導テープを束ねた断面構成からなる酸化物
超電導導体の接続方法においては、各テープ線材はテー
プ面を利用して層状に積層され、かつ、各層毎に上述し
た超電導接合法を利用して接合する際に、該接続部が上
下に位置するテープ線材の接合位置と互いに重ならない
ように配置することによって、優れた特性を発揮できる
ことが分かった。
【0032】また、発明者らは、シース材料が異なるこ
とによって、超電導相の部分溶融温度が異なる場合、例
えば、接続を構成する一方の線材の被覆材が銀であっ
て、他方の線材の被覆材が銀−10重量%金合金で構成
されている場合、溶融温度の高い該銀−金合金に被覆さ
れた超電導体に重量で0.01% 以上10%以下、好ま
しくは0.1% 以上1%以下、更に好ましくは0.3%
〜0.7%の銀を添加せしめることにより、銀−金合金
に被覆された酸化物超電導体の溶融温度を銀被覆材と概
ね同一温度に低下せしめ、その違いの影響を無視できる
程度に低減できることを見いだし、異なるシース材質に
おける多芯線材の超電導接合を達成できる顕著な効果が
あることを見いだした。
【0033】ところで、部分溶融時には液相が生成する
が、この液相が接続部から漏れると、接続部の臨界電流
密度が低下したり、テープ線材をコイル状に巻いたとき
に隣接するテープ間で短絡を生じて発生する磁場の大き
さを低下させたりすることがある。しかし、本発明にお
いては接合部に介在物としての仮焼体などを用いること
がないため、外部に漏れ出る液相を生じることはない。
本発明においては、溶融凝固過程において、つき合わさ
れた一対の多芯線材の端部から、結晶のC面が、あたか
も川の両岸から橋を渡すがごとく成長し、連続したC面
のフィラメントが構成される。
【0034】本発明の超電導接合法は広く超電導機器に
適用することが可能であって、例えば、超電導送電ケー
ブル,ブスバー,長尺導体,永久電流スイッチ素子,大
型マグネット,核磁気共鳴分析装置,医療用磁気共鳴診
断装置,超電導電力貯蔵装置,磁気分離装置,磁場中単
結晶引上装置,冷凍機冷却超電導マグネット装置などに
利用することにより、機器の高効率化を達成できる効果
があるほか、液体ヘリウムの損失量の低減、また、冷凍
機冷却においては、冷凍能力の低減、更に、永久電流ス
イッチとして用いた場合には、大容量でかつ長時間の安
定な永久電流が実現できる効果がある。また、本接続技
術を用いることによって、線材を多数本連続的に接続し
て行くことで、原理的には無限長い線材を構成できるよ
うになるため、超電導送電ケーブル等に応用することに
よって、長距離の都市間などでの電力の送電においてロ
スを低減できる効果がある。
【0035】以下、望ましい実施例を説明する。
【0036】[実施例1]Bi,Sr,Ca,Cuの化
学量論組成比が、モル比で2:2:1:2となるように
合成した粉末を予め用意した。粉末X線回折によって、
ほぼ完成な単一相が得られたことを確認した後、銀パイ
プに充填し、19芯、及び55芯の多芯線材加工を行っ
た後、テープ状に成形した。
【0037】次に、これらの多芯テープを長さ方向に4
0〜100mmずつ切断した。なお、切断の際に、切り口
の断面構成が乱れないように十分注意した。特に、多芯
線材のフィラメントがつぶれたり、切断した切り口が平
滑であるかを十分確認することが重要である。これらの
点に問題がある試料については、更に必要に応じて端部
について機械研磨,化学研磨などを施した。
【0038】次に、図1に示すように、作製した一対の
多芯線材1,2を同一の材質のテープ3の上面を利用し
てつき合わせた。ここで、シース材4には銀を用いてお
り、超電導フィラメント5は19又は55芯のものを用
いた。これを、酸化雰囲気として、純酸素雰囲気中で8
60℃〜900℃の温度範囲内で部分溶融熱処理(具体
的には、880℃,15分間)後、徐冷した。酸化雰囲
気としては、純酸素雰囲気が特に望ましいが、10%か
ら100%の酸素濃度範囲で実施されるのが望ましい。
また、部分溶融熱処理は、800℃〜900℃、5分間
から60分間の範囲で行われるのが望ましい。
【0039】熱処理後の接続部の微細構造を図2に模式
的に示す。ここでは、接続部6の近傍のみ拡大して示し
た。溶融凝固によって粒成長しかつ配向することによっ
て、シース材4に被覆された超電導フィラメント5は緻
密な組織が得られる。ここで、接続部6においては、線
材1及び2の間隔が十分に近ければ(略100μm以下
が望ましい。)、部分溶融プロセスによって、各フィラ
メントに関し、左右の線材端部から中央に向かって成長
してきた結晶が互いに結合することによってC軸が連続
して構成されるようになる。比較のために、この試料の
熱処理前の断面の様子を図3に模式的に示した。図にお
いて、酸化物超電導体は機械加工(線引加工や圧延加工
等)によって、粉砕・緻密化された組織である。この試
料を部分溶融熱処理することで、図2のごとくの断面形
状を有する接続構造が得られる。この様な接続が得られ
た場合、液体ヘリウム中での接続部分の臨界電流は45
0Aであり、超電導体の断面積あたり、4500A/mm
2 の臨界電流密度を示した。この結果、接続部分の臨界
電流密度は超電導線材自身の値とほぼ一致した。
【0040】[実施例2]実施例1と同様の方法でテー
プ状の線材を製作した。しかるのちに、図4に模式的に
示したような接続部分を製作し、同様の方法で部分溶融
熱処理した。ここで、線材1と線材2の間に接続間距離
dを与え、dをパラメータとして臨界電流密度との関連
を調査した。この結果を、図5に示す。図から、接続間
距離dが0.25mm 程度までは臨界電流密度をほとんど
低下させることなく、良好な接続を維持できることが分
かり、0.4mm 程度までやや電流を低下させるもののな
お1000A/mm2 以上の高い電流密度が維持できるこ
とが分かる。本発明においては、多芯テープ状線材の端
部を突き合わせた後に部分溶融熱処理を施して接続を形
成する。従って、プロセス上、突き合わせ部分の距離を
ゼロに近づけることが有効であるが、実際には物理的に
近づけることが可能な距離には限界があり、ある距離の
ギャップを生じてしまう。図5の関係から、このギャッ
プは、好ましくは0.4mm 以内、更に好ましくは0.2m
m 以内であることが分かる。
【0041】[実施例3]テープ状線材の接続部分に
は、機械的或いは熱的な歪みが集中しやすい。特に、長
さ方向の突っ張り歪みが加わった場合に、割れなどが生
じやすく、特性劣化が懸念される。図6,図7及び図8
にはこの様な特性劣化を防止する方法の一例を示す。何
れも、図1で示した接続の端面を、線材の長さ方向に対
して角度(略30度から略60度が望ましい。)をもた
せることによって、応力集中を緩和している。液体ヘリ
ウム温度と室温の熱サイクルを10回繰り返したときの
Jcは、熱サイクル前のJcに対して、図1の試料では
0.75 であるのに対して、図6では0.82 、図7及
び図8では1.0と全く劣化は認められなかった。
【0042】[実施例4]図9及び図10には複数枚の
テープ状線材を積層した例を示す。両図は、共に、積層
したテープを側面から観察した状態の模式図である。図
9においては接続箇所7を上下のテープ間で互いに位置
をずらせている。一方、図10においては、3枚のテー
プを同じ位置で接続している。図10の構成において
は、線材の長さ方向の歪みを受けた場合に機械的に弱
く、また、部分溶融した際に、液相成分が上下のテープ
で混ざり合って、接続部分の配向性が低下してしまうこ
とがある。これに対して、図9のごとく、複数枚のテー
プを交互に接続して行くことで、機械的歪みを低減でき
るばかりでなく、結晶の配向性も高めることができ、J
cが向上する。液体ヘリウム温度と室温(25℃)の熱
サイクルを10回繰り返した後のJcは、熱サイクル前
のJcに対して、図9の試料では1であるのに対して、
図10では0.3 と著しく低下し、また、熱サイクル前
の臨界電流は図10の試料が270A、図9の試料は1
200Aであった。
【0043】[実施例5]図11には、シース材質の異
なる多芯テープ線を接続した一例を示す。線材は実施例
1と同様の方法で製作した。この例では、超電導体のシ
ース材として銀1、及び銀−10重量%金合金8の2種
類を用いた。この様な異種金属シースの接続は、例えば
超電導マグネットと永久電流スイッチ、或いは、超電導
送電ケーブルと超電導限流器,超電導トランス,超電導
電流リードなどとの接続に用いられる。その理由は、合
金シースにおいては、シース材の電気抵抗が大きくま
た、熱伝導度が小さいため、超電導限流器,超電導トラ
ンス,超電導電流リード,超電導永久電流スイッチなど
においては銀よりも優れているためである。
【0044】また、超電導マグネットシステムにおい
て、永久電流スイッチと超電導コイルとの間の超電導線
同士の接続による超電導接続が可能となったため、永久
電流モードでの超電導接続が可能となり、永久電流モー
ドでのマグネット運転が可能となった。これにより、従
来酸化物系超電導体では不可能であった永久電流のマグ
ネット運転が可能となった。
【0045】図14に、超電導マグネットシステムの概
略構成図の一例を示す。クライオスタット11内の冷却
媒体である液体ヘリウム12中に、超電導マグネット1
3と永久電流スイッチ素子14が納められている。超電
導マグネット13と永久電流スイッチ素子14とは、本
明細書で開示される構成・方法で超電導線を同士を接続
することにより接続される。さらに、その接続部分とク
ライオスタット外部にあるコイル励磁用電源15が、コ
イル用電流リード16を介して接続されている。永久電
流スイッチ素子14は、ヒータ用電流リード17,18
を介してヒータ用電源19と接続された永久電流スイッ
チ加熱用ヒータ20,21を備える。また、クライオス
タット11には、液体ヘリウム液面計22が取り付けら
れている。
【0046】図11の合金8において、金の量は概ね1
0重量%程度が望ましいが、1%〜20%の範囲で広く
使用できる。図6においては銀−10重量%金合金シー
ステープを図に示すように配置し、実施例1と同様の方
法で部分溶融熱処理を施した。なお、銀−10重量%金
合金シーステープにおいては、酸化物超電導体の融点が
銀シースの場合と比較して約10℃高い特徴がある。従
って、両者の溶融温度の差のため部分溶融による良好な
接続が得られにくい。この現象を克服するため、銀−1
0重量%金合金シーステープに充填するBi−2212
粉末に微量の銀粉末を添加することが好ましい。銀の粒
径は概ね1〜10ミクロン程度が望ましく、形態として
は金属或いは酸化銀の形で添加しても良い。また、添加
量はBi−2212に対して、重量で0.01% 以上1
0%以下が好ましく、更に好ましくは0.1% 以上1%
以下が好ましい。銀は添加量が少なすぎると効果が生じ
ず、また、添加量が多すぎでも効果は少なく、逆に超電
導の電流パスを遮断して弊害を生じる。添加する銀の量
はシース材質に応じて最適な値を選定するべきである
が、例えば、銀−10重量%金合金の場合でも、概ね
0.5% 程度の添加が望ましく、更に、銀の分布に変動
があると溶融温度が変化しやすいので、十分に均質に混
合しておく必要がある。混合には、ボールミル等が用い
られる。
【0047】また、該線材の該金属被覆材として銀又は
銀−金合金を母材としてマグネシウム,ニッケル,アル
ミニウム、又はこれらの2つ以上の酸化物を微細に分散
した合金を用いることもできる。この様な合金(即ち、
0.1〜100μm の粒径の酸化物を重量で略0.1〜
5% 、母材中に微細分散することで強化した銀合金)
を利用することによって、線材及びシステムを構成する
機器の機械的強度を高めることができるようになる。
【0048】[比較例1]図12及び図13に比較例を
示す。図12において、銀シース多芯テープ状線材1及
び2は銀シーステープ線3上で、実施例1と類似の方法
で接続されているが、線材1と2の間に充填材9を挿入
している。ここでは、線材1,2,3及び充填材9には
化学量論組成のBi−2212仮焼体粉末を用いた。ま
た、1と2の間隔は0.5mm とした。この試料を部分溶
融熱処理した結果を図13に模式的に示す。図から明ら
かなように、溶融凝固によって緻密な充填材10が得ら
れたが、配向性は著しく悪い。この試料の臨界電流は6
0A、臨界電流密度は670A/mm2 であった。
【0049】
【発明の効果】酸化物超電導線材の多芯線材の大容量の
接続ができるようになり、臨界電流密度で1000A/
mm2 以下、臨界電流で300ないし500Aの通電が可
能となった。また、超電導マグネットシステムにおい
て、永久電流スイッチと超電導コイルとの超電導接続が
可能となったため、永久電流モードでの超電導接続が可
能となり、永久電流モードでのマグネット運転が可能と
なった。
【図面の簡単な説明】
【図1】本発明の実施例の酸化物超電導線材の模式図。
【図2】本発明の実施例の酸化物超電導線材の接続部分
の模式図。
【図3】本発明の実施例の酸化物超電導線材の断面図。
【図4】本発明の実施例の酸化物超電導線材の接続部分
の模式図。
【図5】本発明の実施例の酸化物超電導線材の特性図。
【図6】本発明の実施例の酸化物超電導線材の模式図。
【図7】本発明の実施例の酸化物超電導線材の模式図。
【図8】本発明の実施例の酸化物超電導線材の模式図。
【図9】本発明の実施例の酸化物超電導線材の接続部分
の模式図。
【図10】本発明の実施例の酸化物超電導線材の接続部
分の模式図。
【図11】本発明の実施例の酸化物超電導線材の接続部
分の模式図。
【図12】本発明の実施例の酸化物超電導線材の接続部
分の模式図。
【図13】本発明の実施例の酸化物超電導線材の接続部
分の模式図。
【図14】本発明の実施例の超電導マグネットシステム
の概略図。
【符号の説明】
1,2…多芯線材、3…テープ、4…シース材、5…超
電導フィラメント、6…接続部、7…接続個所、8…合
金、9,10…充填材。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 12/10 ZAA H01R 4/68 ZAA H01R 4/68 ZAA C04B 35/00 ZAAK

Claims (13)

    【特許請求の範囲】
  1. 【請求項1】扁平断面形状を有し、かつ金属被覆された
    多芯酸化物超電導線材であって、該線材の長さ方向に酸
    化物超電導結晶のC軸が実質的に配向しており、かつ、
    該線材の接合部において、該線材の長手方向の端面が互
    いに接し、酸化物超電導結晶のC面が連続的に配向して
    いることを特徴とする酸化物超電導線材。
  2. 【請求項2】超電導接続部を有する多芯酸化物超電導線
    材であって、該超電導接続部の臨界電流密度が1000
    A/mm2 以上であって、臨界電流が100A以上である
    ことを特徴とする酸化物超電導線材。
  3. 【請求項3】請求項1あるいは2に記載の酸化物超電導
    線材において、該酸化物超電導線材がテープ状であっ
    て、かつ、テープ上面から見たテープの端面が長さ方向
    に対して垂直であることを特徴とする酸化物超電導線
    材。
  4. 【請求項4】請求項1あるいは2に記載の酸化物超電導
    線材において、該酸化物超電導線材がテープ状であっ
    て、かつ、テープ上面から見たテープの端面が長さ方向
    に対して角度を持っていることを特徴とする酸化物超電
    導線材。
  5. 【請求項5】請求項1あるいは2に記載の酸化物超電導
    線材において、該酸化物超電導線材がテープ状であっ
    て、かつ、テープ側面から見たテープの端面が長さ方向
    に対して角度を持っていることを特徴とする酸化物超電
    導線材。
  6. 【請求項6】請求項1あるいは2に記載の酸化物超電導
    線材において、該酸化物超電導線材がテープ状であっ
    て、かつ、テープ側面かつテープ上面から見たテープの
    端面が長さ方向に対して角度を持っていることを特徴と
    する酸化物超電導線材。
  7. 【請求項7】請求項1あるいは2に記載の酸化物超電導
    線材において、該酸化物超電導線材の素線の厚みが0.
    1mm ないし0.3mm であることを特徴とする酸化物超
    電導線材。
  8. 【請求項8】請求項1あるいは2に記載の酸化物超電導
    線材において、該酸化物超電導線材の金属被覆材が銀又
    は銀−金合金、又はこれらを母材としてマグネシウム,
    ニッケル,アルミニウム又はこれらの2つ以上の酸化物
    を微細に分散した合金であることを特徴とする酸化物超
    電導線材。
  9. 【請求項9】請求項1あるいは2に記載の酸化物超電導
    線材において、該酸化物超電導線材がBi2Sr2Ca2
    Cu1x 相であることを特徴とする酸化物超電導線
    材。
  10. 【請求項10】酸化物超電導線を製作する工程と、線材
    端部が互いに接するように配置する工程と、線材及び接
    合部を部分溶融する工程を有し、熱処理によって互いに
    接した多数本の超電導フィラメント同士の結晶を連続的
    に超電導接合することを特徴とする酸化物超電導線材の
    製造方法。
  11. 【請求項11】複数本の酸化物超電導テープを束ねた断
    面構成からなる酸化物超電導線材の接続方法であって、
    各テープ線材はテープ面を利用して層状に積層され、か
    つ、各層ごとに接合され、かつ接合部は上下に位置する
    テープ線材の接合位置と互いに重ならないように配置さ
    れたことを特徴とする酸化物超電導線材の接合方法。
  12. 【請求項12】請求項11に記載の該酸化物超電導線材
    の接合方法において、該酸化物超電導線材を構成する一
    方の線材の被覆材が銀であって、他方の線材の被覆材が
    銀−金合金で構成され、少なくとも該銀−金合金に被覆
    された超電導体に重量で0.01%ないし10%の銀を添加
    せしめることにより、異なる被覆材による酸化物超電導
    線材の溶融温度をほぼ等しくしたことを特徴とする酸化
    物超電導線材の接合方法。
  13. 【請求項13】請求項1あるいは2に記載の酸化物超電
    導線材を、線材として用いたことを特徴とする超電導マ
    グネットシステム。
JP9232117A 1996-08-30 1997-08-28 酸化物超電導線材及びその接合方法 Pending JPH10188696A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9232117A JPH10188696A (ja) 1996-08-30 1997-08-28 酸化物超電導線材及びその接合方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-229700 1996-08-30
JP22970096 1996-08-30
JP9232117A JPH10188696A (ja) 1996-08-30 1997-08-28 酸化物超電導線材及びその接合方法

Publications (1)

Publication Number Publication Date
JPH10188696A true JPH10188696A (ja) 1998-07-21

Family

ID=26528943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9232117A Pending JPH10188696A (ja) 1996-08-30 1997-08-28 酸化物超電導線材及びその接合方法

Country Status (1)

Country Link
JP (1) JPH10188696A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524198A (ja) * 2003-12-31 2007-08-23 スーパーパワー インコーポレイテッド 超伝導体物品、及びそれを製造および使用する方法
US7268099B1 (en) * 1995-04-14 2007-09-11 United States Of America As Represented By The Secretary Of The Air Force Enclosed ceramic filament
JP2016537611A (ja) * 2013-10-04 2016-12-01 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH 直接的に連続したさらなるバンドセグメントによってそれぞれがオーバーラップした連結バンドセグメントを有する超伝導構造からなる巻線を有する超伝導マグネットコイルを含むnmr分光計

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268099B1 (en) * 1995-04-14 2007-09-11 United States Of America As Represented By The Secretary Of The Air Force Enclosed ceramic filament
JP2007524198A (ja) * 2003-12-31 2007-08-23 スーパーパワー インコーポレイテッド 超伝導体物品、及びそれを製造および使用する方法
JP2016537611A (ja) * 2013-10-04 2016-12-01 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH 直接的に連続したさらなるバンドセグメントによってそれぞれがオーバーラップした連結バンドセグメントを有する超伝導構造からなる巻線を有する超伝導マグネットコイルを含むnmr分光計

Similar Documents

Publication Publication Date Title
US7126060B2 (en) Low resistance conductors, processes of production thereof, and electrical members using same
US7774035B2 (en) Superconducting articles having dual sided structures
EP0371410B1 (en) Joining of high-temperature oxide superconductors
CA2622384A1 (en) High temperature superconducting wires and coils
CA2617210A1 (en) Architecture for high temperature superconductor wire
US6133814A (en) Oxide superconductor wire material and method for jointing the same together
US5786304A (en) Joining product of oxide superconducting material and process for producing the same
JP2636049B2 (ja) 酸化物超電導体の製造方法および酸化物超電導線材の製造方法
JP2002373534A (ja) 超電導線材とその作製方法及びそれを用いた超電導マグネット
WO1990013919A1 (en) Production of high temperature superconducting materials
JP4010404B2 (ja) 超電導線材およびその製法
US5882536A (en) Method and etchant to join ag-clad BSSCO superconducting tape
JPH10188696A (ja) 酸化物超電導線材及びその接合方法
JP3357820B2 (ja) 接続装置および超電導マグネット
JP3522306B2 (ja) Bi系酸化物超電導線およびその製造方法
JP4011131B2 (ja) テープ状酸化物超電導線材ならびにそれを用いた超電導マグネットおよび電流リード
JP4414617B2 (ja) 低抵抗導体、その製造方法、電流リード、電力供給用ケーブル、コイル、磁場発生装置、変圧器及び交流電源
JP4925639B2 (ja) Re123系酸化物超電導体とその製造方法
JPH0982446A (ja) 超電導線材の超電導接続方法
JPH0917249A (ja) 酸化物超電導線材及びその製造方法
JP2951419B2 (ja) 大容量酸化物超電導導体の製造方法
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
JPH0888117A (ja) 冷凍機冷却型超電導コイル装置用電流リード
Sato Processing of High Tc Conductors: The Compound Bi, Pb (2223)
JPH0950718A (ja) 希土類系酸化物超電導材料およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207