JPH10186108A - Composite optical element and its production - Google Patents

Composite optical element and its production

Info

Publication number
JPH10186108A
JPH10186108A JP35074996A JP35074996A JPH10186108A JP H10186108 A JPH10186108 A JP H10186108A JP 35074996 A JP35074996 A JP 35074996A JP 35074996 A JP35074996 A JP 35074996A JP H10186108 A JPH10186108 A JP H10186108A
Authority
JP
Japan
Prior art keywords
optical element
base material
resin layer
resin
effective diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35074996A
Other languages
Japanese (ja)
Other versions
JP4060902B2 (en
Inventor
Satoshi Teramoto
諭 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP35074996A priority Critical patent/JP4060902B2/en
Publication of JPH10186108A publication Critical patent/JPH10186108A/en
Application granted granted Critical
Publication of JP4060902B2 publication Critical patent/JP4060902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent resin from being overflowed from a base material even when the feeding amount of resin is uneven, to remove the deterioration of optical performance such as ghost and flare and to compact each product. SOLUTION: In an optical element base material 2 for the composite optical element, an outside part from the optically effective diameter D of a face 2a on which a resin layer is to be formed has a shape obtained by removing a part 2d of the material 2 so that the volume of the material 2 is reduced from a shape obtained by extending the radius of curvature in the optically effective diameter D of the face 2a. At least a part for forming a resin layer on it out of a face 2b exposed after removing a part 2d of the material 2 is formed as a mirror and at the time of forming the resin layer, resin overflowed the face 2a is received by the face 2b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子基材上に
樹脂層を載置した複合型光学素子およびその製造方法に
関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a composite optical element in which a resin layer is mounted on an optical element substrate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来技術としては、特開平5−3379
59号公報に記載されている技術がある。一般に、複合
型光学素子を製造する際には、金型と基材により形成さ
れる樹脂層に隙間ができないように樹脂供給量を僅かに
多くし、基材からはみ出した樹脂を拭き取っている。し
かし、この拭き取り作業は、作業性が悪く、量産性に不
具合がある。そのため、特開平5−337959号公報
の技術は、複合型光学素子製造時に金型と基材により形
成される空間を広げるように、金型または基材の光学有
効径よりも外側に樹脂溜りを設け、この樹脂溜りに樹脂
を流入させるようにしている。このため、樹脂供給量に
バラツキがあっても樹脂が基材からはみ出すことがな
く、また樹脂の拭き取り作業も不要であり、連続して大
量に複合型光学素子を製造することができる。
2. Description of the Related Art As a prior art, Japanese Patent Application Laid-Open No. 5-3379
There is a technique described in JP-A-59-59. Generally, when manufacturing a composite optical element, the amount of resin supplied is slightly increased so that no gap is formed between the mold and the resin layer formed by the base material, and the resin protruding from the base material is wiped off. However, this wiping operation is poor in workability and has a problem in mass productivity. For this reason, the technology disclosed in Japanese Patent Application Laid-Open No. Hei 5-337959 discloses a technique in which a resin pool is formed outside the optically effective diameter of a mold or a substrate so as to widen a space formed by the mold and the substrate when manufacturing a composite optical element. And the resin is allowed to flow into the resin reservoir. For this reason, even if the supply amount of the resin varies, the resin does not protrude from the base material, and the work of wiping the resin is not required, so that a large number of composite optical elements can be manufactured continuously.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来技術には
次のような欠点がある。基材の有効径外の部分は、心取
り加工により形成するため、基材に樹脂溜りを設ける場
合も、心取り加工により一体的に加工するのが一般的で
ある。つまり、基材の樹脂溜り部分の表面状態は、研磨
面のような鏡面ではなく、光線透過率の悪いスリ面とな
る。ところが、このスリ面は光学有効径外にあるもの
の、スリ面で光線の乱反射を引き起こすと、その影響は
光学有効径外だけではなく、光学有効径内にも及ぶ。こ
のため、ゴーストやフレア等の光学性能の劣化が発生す
るという問題点がある。
However, the prior art has the following disadvantages. Since the portion of the base material outside the effective diameter is formed by centering, even when a resin reservoir is provided on the base, it is common to integrally work by centering. In other words, the surface state of the resin pool portion of the base material is not a mirror surface such as a polished surface, but a surface having a poor light transmittance. However, even though the pick-up surface is out of the effective optical diameter, if light is irregularly reflected on the pick-up surface, the influence extends not only outside the optical effective diameter but also into the optical effective diameter. Therefore, there is a problem that optical performance such as ghost and flare is deteriorated.

【0004】また、金型に樹脂溜りを設ける場合は、光
線の乱反射等が発生しないため、光学性能の劣化はない
が、樹脂溜りを設けた部分に流入した樹脂が突起とな
り、製造した複合型光学素子の光軸方向の厚さが増す。
従って、製品のコンパクト化を妨げるという問題点につ
ながる。
In the case where the resin pool is provided in the mold, the optical performance is not deteriorated because irregular light reflection or the like does not occur. However, the resin flowing into the portion where the resin pool is provided becomes a projection, and the manufactured composite mold is formed. The thickness of the optical element in the optical axis direction increases.
Therefore, it leads to a problem of hindering product downsizing.

【0005】本発明は、上記従来技術の問題点に鑑みて
なされたもので、樹脂供給量のバラツキがあっても、樹
脂が基材からはみ出すことがなく、かつゴーストやフレ
ア等の光学性能の劣化がなく、さらに製品をコンパクト
にすることができる複合型光学素子およびその製造方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art. Even if there is a variation in the amount of supplied resin, the resin does not protrude from the base material and the optical performance such as ghost and flare is not improved. It is an object of the present invention to provide a composite optical element which can be made compact without deterioration and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、第1の発明に係る複合型光学素子は、光学素子基材
の表面にエネルギー硬化型の樹脂層を載置した複合型光
学素子において、前記光学素子基材は、前記樹脂層を載
置する面の光学有効径よりも外側が前記面の光学有効径
内の曲率半径を延長した形状に対して前記基材の体積が
減少するように基材の一部を除去した形状であるととも
に、前記基材の一部を除去した後に露呈する面の少なく
とも樹脂層を載置する部分が鏡面であることを特徴とす
る。
To achieve the above object, a composite optical element according to a first aspect of the present invention is a composite optical element in which an energy-curable resin layer is mounted on the surface of an optical element substrate. In the optical element substrate, the volume of the substrate decreases with respect to a shape in which the outside of the optical effective diameter of the surface on which the resin layer is mounted has an extended radius of curvature within the optical effective diameter of the surface. As described above, the base material has a shape in which a part of the base material is removed, and at least a part on which the resin layer is placed on the surface exposed after removing the part of the base material is a mirror surface.

【0007】また、第2の発明に係る複合型光学素子の
製造方法は、光学素子基材の表面にエネルギー硬化型の
樹脂を供給し、前記基材と金型とを相対的に接近させる
ことにより樹脂を押し広げて金型と基材との間に所望の
樹脂層を形成した後、エネルギーの照射により樹脂層を
硬化させ、硬化した樹脂層と金型を剥離して所望の樹脂
層を有する複合型光学素子を製造する複合型光学素子の
製造方法において、前記樹脂層を載置する面の光学有効
径よりも外側が、前記面の光学有効径内の曲率半径を延
長した形状に対して前記基材の体積が減少するように基
材の一部を除去した形状であるとともに、前記基材の一
部を除去した後に露呈する面の少なくとも樹脂層を載置
する部分が鏡面である光学素子基材を用いることを特徴
とする。
In the method for manufacturing a composite optical element according to a second aspect of the present invention, an energy-curable resin is supplied to the surface of the optical element substrate, and the substrate and the mold are relatively brought close to each other. After forming the desired resin layer between the mold and the base material by spreading the resin by, the resin layer is cured by irradiation of energy, and the cured resin layer and the mold are separated to form the desired resin layer. In the method of manufacturing a composite optical element for manufacturing a composite optical element having, the outer side of the optical effective diameter of the surface on which the resin layer is mounted is a shape in which the radius of curvature within the optical effective diameter of the surface is extended. The shape of the base material is partially removed so that the volume of the base material is reduced, and at least the portion on which the resin layer is placed on the surface exposed after removing the part of the base material is a mirror surface. It is characterized by using an optical element substrate.

【0008】すなわち、第1の発明に係る複合型光学素
子の光学素子基材は、前記樹脂層を載置する面の光学有
効径よりも外側を、前記面の光学有効径内の曲率半径を
延長した形状に対して前記基材の体積が減少するように
基材の一部を除去した形状にするとともに、前記基材の
一部を除去した後に露呈する面の少なくとも樹脂層を載
置する部分を、鏡面にしている。
That is, in the optical element substrate of the composite optical element according to the first invention, the radius of curvature within the optical effective diameter of the surface outside the optical effective diameter of the surface on which the resin layer is mounted is set. A part of the base material is removed so that the volume of the base material is reduced with respect to the extended shape, and at least a resin layer on a surface exposed after removing the part of the base material is placed. The part is mirrored.

【0009】また、第2の発明に係る複合型光学素子の
製造方法は、樹脂層を載置する面の光学有効径よりも外
側が、前記面の光学有効径内の曲率半径を延長した形状
に対して前記基材の体積が減少するように基材の一部を
除去した形状であるとともに、前記基材の一部を除去し
た後に露呈する面の少なくとも樹脂層を載置する部分が
鏡面である光学素子基材の前記面上に樹脂を供給する。
前記光学素子基材と金型とを相対的に接近させることに
より樹脂を押し広げて所望の樹脂層を形成した後、エネ
ルギーの照射により樹脂層を硬化させ、硬化した樹脂層
と金型を剥離させて所望の樹脂層を有する複合型光学素
子を製造する。
Further, in the method for manufacturing a composite optical element according to the second invention, the outer side of the optical effective diameter of the surface on which the resin layer is mounted has a shape in which the radius of curvature within the optical effective diameter of the surface is extended. The base material has a shape in which a part of the base material is removed so that the volume of the base material is reduced, and at least a part on which a resin layer is placed on a surface exposed after removing the part of the base material is a mirror surface. The resin is supplied onto the surface of the optical element substrate that is
After forming the desired resin layer by spreading the resin by relatively approaching the optical element substrate and the mold, the resin layer is cured by irradiation with energy, and the cured resin layer and the mold are separated. Thus, a composite optical element having a desired resin layer is manufactured.

【0010】[0010]

【発明の実施の形態】本発明の複合型光学素子およびそ
の製造方法を図1に基づいて説明する。図1に示すよう
に、基材2は、樹脂層を載置する面2aの光学有効径D
よりも外側が、前記樹脂層を載置する面2a側の光学有
効径D内の曲率半径をそのまま延長した形状とは異なる
形状となっている。ここでは、基材2の中心軸Oに対し
て垂直方向に基材2の外縁部を除去(図に示す鎖線部2
dを除去)して、平面2bを形成している。従って、基
材2の体積は、基材2の光学有効径D内の曲率半径をそ
のまま延長した形状(鎖線部2dを含む基材2の形状)
に対して、減少している。つまり、基材2の面2aに供
給する樹脂の樹脂供給量にバラツキがあっても、光学有
効径D外においてバラツキを吸収することができ、樹脂
が基材2からはみ出すことを防止することができる。ま
た、樹脂供給量のバラツキを吸収するためのスペースを
広げる際に、金型の樹脂押圧面(光学面)1aの形状を
変更していないので、複合型光学素子自体の体積が増加
することはない。従って、製品のコンパクト化を妨げる
ようなことはない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A composite optical element and a method for manufacturing the same according to the present invention will be described with reference to FIG. As shown in FIG. 1, the substrate 2 has an optical effective diameter D of a surface 2a on which the resin layer is placed.
The outer side is a shape different from the shape obtained by directly extending the radius of curvature within the optical effective diameter D on the surface 2a side on which the resin layer is mounted. Here, the outer edge portion of the base material 2 is removed in a direction perpendicular to the central axis O of the base material 2 (a chain line portion 2 shown in the drawing).
d is removed) to form the plane 2b. Therefore, the volume of the substrate 2 is a shape obtained by directly extending the radius of curvature within the optical effective diameter D of the substrate 2 (the shape of the substrate 2 including the chain line portion 2d).
On the contrary. That is, even if the amount of the resin supplied to the surface 2a of the substrate 2 varies, the variation can be absorbed outside the optical effective diameter D, and the resin can be prevented from protruding from the substrate 2. it can. In addition, since the shape of the resin pressing surface (optical surface) 1a of the mold is not changed when expanding the space for absorbing the variation in the resin supply amount, the volume of the composite optical element itself does not increase. Absent. Therefore, there is no hindrance to the downsizing of the product.

【0011】また、本発明の複合型光学素子およびその
製造方法は、光学有効径D外において図1に示すよう
に、基材2の樹脂層を載置する面2a側の形状を変更
し、かつ形状変更後に露呈する面、すなわち平面2bを
鏡面等の光線が規則的に透過する面に仕上げている。従
って、形状変更後に露呈する面、すなわち平面2bにお
いて、光線の乱反射は発生せず、光学有効径D内におい
て光学性能の劣化につながるゴーストやフレアは発生し
ない。
Further, in the composite optical element and the method of manufacturing the same according to the present invention, as shown in FIG. 1, the shape of the surface of the substrate 2 on which the resin layer is placed is changed outside the optical effective diameter D, The surface exposed after the shape change, that is, the flat surface 2b is finished to a surface such as a mirror surface through which light beams are regularly transmitted. Accordingly, on the surface exposed after the shape change, that is, on the plane 2b, irregular reflection of light does not occur, and no ghost or flare that leads to deterioration of optical performance occurs within the optical effective diameter D.

【0012】[発明の実施の形態1]本発明の実施の形
態1を図2〜図6に基づいて説明する。図2および図3
は複合型光学素子の光学素子基材を示す図、図4〜図6
は複合型光学素子の製造工程を示す図である。
[First Embodiment of the Invention] A first embodiment of the present invention will be described with reference to FIGS. 2 and 3
FIG. 4 is a view showing an optical element substrate of a composite optical element, and FIGS.
FIG. 3 is a diagram showing a manufacturing process of the composite optical element.

【0013】本発明の実施の形態1では、図2に示すよ
うに、光学素子基材として両面に凹面を形成したガラス
製の基材12を用い、片面にエネルギー硬化型樹脂とし
ての紫外線硬化型樹脂(以下、樹脂と称する)15から
なる樹脂層を硬化させて複合型光学素子を構成する。基
材12は、直径Rが25mm、光学有効径Dが19.5
mmで、直径20mmまでは曲率半径15mmの凹面と
した樹脂層を載置する研磨面(以下、成形面と称する)
12aが片面(図において上面)に形成され、直径20
mmよりも外側(外縁部)に基材12の中心軸Oに対し
て垂直な平面12bが形成されている。この平面12b
は、図3に示すように、成形面12aの曲率半径を基材
12の外周部まで延長して得られる形状部分である鎖線
部12dを除去して形成したものであり、従って基材1
2の体積は減少している。つまり、基材12の直径Rま
で成形面12aを形成する場合と比較して、光学有効径
D外において、基材12の体積減少分だけ樹脂15を充
填する空間が増大するので、平面12bにまで樹脂15
を広げることができ、樹脂供給量のバラツキに対して有
利である。また、平面12bは研磨により粗さRa=
0.020μmの鏡面に仕上げられており、平面12b
の外観は、光源と観察者の間に基材12を置いて観察し
た場合に、スリ面のように光源の形状を認識できないも
のではなく、光源の形状をはっきりと認識できるレベル
となっている。従って、基材12の樹脂層13(図4〜
図6参照)が載置される成形面12aおよび平面12b
の一部を透過する光線は、光学有効径D内の成形面12
aのみならず、平面12bにおいても乱反射を起こすこ
とはない。
In the first embodiment of the present invention, as shown in FIG. 2, a glass substrate 12 having concave surfaces formed on both sides is used as an optical element substrate, and an ultraviolet curable resin as an energy curable resin is used on one surface. A composite optical element is formed by curing a resin layer made of resin (hereinafter, referred to as resin) 15. The base material 12 has a diameter R of 25 mm and an optical effective diameter D of 19.5.
Polished surface on which a resin layer having a concave surface with a radius of curvature of 15 mm up to a diameter of 20 mm is placed (hereinafter referred to as a molding surface).
12a is formed on one surface (the upper surface in the figure) and has a diameter of 20
A plane 12b perpendicular to the center axis O of the base material 12 is formed outside (outer edge) of the base 12b. This plane 12b
As shown in FIG. 3, is formed by removing a dashed line portion 12d which is a shape portion obtained by extending the radius of curvature of the molding surface 12a to the outer peripheral portion of the base material 12.
2 has a reduced volume. That is, as compared with the case where the molding surface 12a is formed up to the diameter R of the base material 12, the space for filling the resin 15 outside the optically effective diameter D is increased by the volume reduction of the base material 12, so that the flat surface 12b Up to 15 resin
Can be widened, which is advantageous for the variation in the resin supply amount. The flat surface 12b has a roughness Ra =
It is mirror-finished to 0.020 μm and has a flat surface 12b
When the substrate 12 is observed between the light source and the observer, the shape of the light source cannot be recognized as in the case of a pick-up surface, but is at a level at which the shape of the light source can be clearly recognized. . Therefore, the resin layer 13 of the substrate 12 (FIGS.
Molding surface 12a and flat surface 12b on which the
Are transmitted through the molding surface 12 within the optical effective diameter D.
In addition to a, irregular reflection does not occur on the plane 12b.

【0014】一方、基材12の成形面12aの反対面
(図において下面)は、凹状の非成形面(樹脂層13を
載置しない面)12cで、基材12の外周部まで形成さ
れた曲率半径100mmの研磨面となっており、また基
材12の中心軸O上の厚さは3mmである。なお、基材
12は予め公知の方法によりシランカップリング剤によ
り基材12と樹脂層13の密着性を向上するための処理
がなされている。さらに、成形面12a上に供給する樹
脂15の供給量は、その供給量にバラツキが生じた場合
においても、樹脂層13の最外周部が光学有効径D以上
に到達し、かつ基材12の外周部からはみ出さないよう
に予め設定されている。
On the other hand, the opposite surface (lower surface in the figure) of the molding surface 12a of the substrate 12 is a concave non-molding surface (surface on which the resin layer 13 is not placed) 12c, and is formed up to the outer peripheral portion of the substrate 12. The polished surface has a radius of curvature of 100 mm, and the thickness of the substrate 12 on the central axis O is 3 mm. The base material 12 has been previously subjected to a treatment for improving the adhesion between the base material 12 and the resin layer 13 by a known method using a silane coupling agent. Further, the supply amount of the resin 15 supplied on the molding surface 12a is such that the outermost peripheral portion of the resin layer 13 reaches the optical effective diameter D or more even if the supply amount varies, and It is set in advance so as not to protrude from the outer peripheral portion.

【0015】次に、図2および図4〜図6を用いて複合
型光学素子の製造方法を説明する。複合型光学素子の製
造には、図4に示すような所望の樹脂層13の表面13
aを形成するための光学面11aを有し、直径が22m
mで、かつ中心軸が基材2の中心軸Oと同一で上下動自
在に保持された金型11を用いる。
Next, a method of manufacturing a composite optical element will be described with reference to FIG. 2 and FIGS. To manufacture the composite optical element, the surface 13 of the desired resin layer 13 as shown in FIG.
a having an optical surface 11a for forming a
A mold 11 is used which has the same central axis as the central axis O of the base material 2 and is vertically movable.

【0016】まず、図2に示すように、樹脂15を基材
12の成形面12a上に必要量(前記した予め設定され
た量)供給する。次に、金型11を下降させて基材12
の成形面12aに近づけ、金型11の光学面11aで成
形面12a上の樹脂15を外周方向に押し広げる。そし
て、図4に示すように、基材12の成形面12aと金型
11の光学面11aとの間で広げられた樹脂15が所望
の厚さの樹脂層13を形成する位置で金型11の下降を
停止する。このときの樹脂層13の形状は、中心軸O上
の厚さが0.1mm、表面13aの曲率半径が13m
m、光学有効径Dが19.5mmである。そして、樹脂
層13の最外周部は、基材12の成形面12aよりも外
側に到達して、基材12の平面12b上にある。つま
り、基材12と金型11により形成される空間を広げる
ように、基材12の光学有効径D外の形状を変更してい
るので、樹脂15が基材12の直径Rよりもはみ出さな
いのである。
First, as shown in FIG. 2, a required amount of the resin 15 is supplied onto the molding surface 12a of the base material 12 (the previously set amount). Next, the mold 11 is moved down to
, And the resin 15 on the molding surface 12a is pushed outward by the optical surface 11a of the mold 11 in the outer peripheral direction. Then, as shown in FIG. 4, the resin 15 spread between the molding surface 12a of the base material 12 and the optical surface 11a of the mold 11 forms the resin 11 at a position where the resin layer 13 having a desired thickness is formed. Stop descending. At this time, the shape of the resin layer 13 is such that the thickness on the central axis O is 0.1 mm and the radius of curvature of the surface 13a is 13 m.
m, and the optical effective diameter D is 19.5 mm. The outermost peripheral portion of the resin layer 13 reaches the outside of the molding surface 12a of the base material 12 and is on the plane 12b of the base material 12. That is, since the shape of the substrate 12 outside the optical effective diameter D is changed so as to widen the space formed by the substrate 12 and the mold 11, the resin 15 protrudes beyond the diameter R of the substrate 12. There is no.

【0017】次に、基材12の下方から不図示の紫外線
照射手段により紫外線を樹脂層13の全面に照射して樹
脂層13の硬化を開始する。その結果、エネルギーの照
射が完了した時点では金型11、基材12および硬化し
た樹脂層13が一体となった密着体が形成される。
Next, ultraviolet rays are applied to the entire surface of the resin layer 13 from below the base material 12 by ultraviolet irradiation means (not shown) to start curing of the resin layer 13. As a result, when the energy irradiation is completed, a close contact body in which the mold 11, the base material 12, and the cured resin layer 13 are integrated is formed.

【0018】その後、前記密着体を上昇させると、図5
に示すように、予め基材12の平面12bの一部の上方
に設けられていた剥離用の部材14の先端が基材12の
平面12bに面接触する。ここで、平面12bに接触す
る剥離用の部材14の下部は、基材12の平面12bと
平行な平面14aに形成されている。そして、基材12
の平面12a上の剥離用の部材14の平面14aが接触
した部分にまず荷重が集中し、その後荷重が基材12全
体に分散する。さらに、前記密着体の上昇を続けると、
図6に示すように、容易かつ瞬時に金型11から基材1
2と樹脂層13とが一体となった複合型光学素子16が
剥離されて、所望の複合型光学素子16が得られる。
Thereafter, when the contact body is raised, FIG.
As shown in (2), the tip of the peeling member 14 previously provided above a part of the plane 12b of the substrate 12 comes into surface contact with the plane 12b of the substrate 12. Here, the lower portion of the peeling member 14 that comes into contact with the flat surface 12b is formed on a flat surface 14a parallel to the flat surface 12b of the base material 12. And the base material 12
The load is first concentrated on a portion of the peeling member 14 on the flat surface 12a where the flat surface 14a is in contact, and then the load is dispersed throughout the base material 12. Further, if the contact body continues to rise,
As shown in FIG. 6, the base material 1 is easily and instantaneously removed from the mold 11.
The composite optical element 16 in which the resin layer 2 and the resin layer 13 are integrated is peeled off, and a desired composite optical element 16 is obtained.

【0019】本発明の実施の形態1によれば、樹脂15
の供給量にバラツキがあっても、樹脂15が光学有効径
D以上に到達し、かつ基材12の外周部からはみ出すこ
とがなく、また光線の乱反射によるゴーストやフレア等
の光学性能の劣化につながるような不具合が発生しない
複合型光学素子16を得ることができる。さらに、樹脂
供給量のバラツキを吸収するためのスペースを確保する
ことによる、複合型光学素子自体の体積増加がなく、製
品をコンパクトにすることができる。
According to the first embodiment of the present invention, the resin 15
The resin 15 reaches the optical effective diameter D or more and does not protrude from the outer peripheral portion of the substrate 12 even if there is a variation in the supply amount of It is possible to obtain the composite optical element 16 which does not cause a connected defect. Further, by securing a space for absorbing the variation in the resin supply amount, there is no increase in the volume of the composite optical element itself, and the product can be made compact.

【0020】[発明の実施の形態2]本発明の実施の形
態2を図7〜図9に基づいて説明する。図7は本実施の
形態2の複合型光学素子の光学素子基材を示す図、図8
は複合型光学素子製造の一工程を示す図、図9は複合型
光学素子を示す図である。
[Second Embodiment of the Invention] A second embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a view showing an optical element substrate of the composite optical element according to the second embodiment, and FIG.
FIG. 9 is a view showing one process of manufacturing a composite optical element, and FIG. 9 is a view showing a composite optical element.

【0021】本発明の実施の形態2では、図7に示すよ
うに、光学素子基材として一方が凹面、他方が凸面に形
成されたガラス製の基材22を用い、凹面にエネルギー
硬化型樹脂としての紫外線硬化型樹脂(以下、樹脂と称
する)25からなる樹脂層を硬化させて、図9に示す複
合型光学素子26を構成する。
In Embodiment 2 of the present invention, as shown in FIG. 7, a glass substrate 22 having one concave surface and the other convex surface is used as the optical element substrate, and the energy-curable resin is formed on the concave surface. By curing a resin layer made of an ultraviolet curable resin (hereinafter, referred to as a resin) 25 as above, a composite optical element 26 shown in FIG. 9 is formed.

【0022】基材22は、直径Rが20mm、光学有効
径Dが16.5mmで、直径17mmまでは曲率半径7
0mmの凹面からなる樹脂層23を載置する研磨面(以
下、成形面と称する)22aが形成されるとともに、直
径17mmよりも外側(外縁部)は基材22の中心軸O
に対して垂直な平面22bが形成されている。この平面
22bは、前記実施の形態1と同様に、成形面22aの
曲率半径を基材22の外周部まで延長して得られる形状
部分(図3の鎖線部12dと同様)を除去して形成して
ある。従って、基材22の直径Rまで成形面22aを形
成する場合と比較して、光学有効径D外において、基材
22の体積減少分だけ樹脂25を充填する空間が増大す
るので、樹脂供給量のバラツキに対して有利である。ま
た、平面22bは#1200の砥石で研削することによ
り粗さRa=0.050μmの鏡面に仕上げられてお
り、平面22bの外観は、光源と観察者の間に基材22
を置いて観察した場合に、スリ面のように光源の形状を
認識できないものではなく、光源の形状をはっきりと認
識できるレベルとなっている。従って、基材22の樹脂
層23を載置する成形面22aおよび平面22bの一部
を透過する光線は、光学有効径D内の成形面22aのみ
ならず、平面22bにおいても乱反射を起こすことはな
い。
The substrate 22 has a diameter R of 20 mm, an optical effective diameter D of 16.5 mm, and a radius of curvature of 7 up to a diameter of 17 mm.
A polished surface (hereinafter, referred to as a molding surface) 22a on which the resin layer 23 having a concave surface of 0 mm is placed is formed, and the center axis O of the base material 22 is located outside (outer edge) of the base material 22 outside a diameter of 17 mm.
A plane 22b perpendicular to the plane is formed. This flat surface 22b is formed by removing a shape portion obtained by extending the radius of curvature of the molding surface 22a to the outer peripheral portion of the base material 22 (similar to the dashed line portion 12d in FIG. 3) as in the first embodiment. I have. Therefore, as compared with the case where the molding surface 22a is formed up to the diameter R of the base material 22, the space for filling the resin 25 outside the optically effective diameter D is increased by the volume reduction of the base material 22, so that the resin supply amount This is advantageous for variations in The flat surface 22b is finished to a mirror surface with a roughness Ra = 0.050 μm by grinding with a # 1200 grindstone.
When observing with, the shape of the light source cannot be recognized as in the case of a pick-up surface, and the level of the light source can be clearly recognized. Therefore, light rays that pass through a part of the molding surface 22a on which the resin layer 23 of the base material 22 is mounted and a part of the flat surface 22b will not cause irregular reflection not only on the molding surface 22a within the optical effective diameter D but also on the flat surface 22b. Absent.

【0023】一方、基材22の成形面22aの反対面
(図において下面)は、凸状の非成形面(樹脂層23を
載置しない面)22cに形成され、基材22の外周部ま
で形成された曲率半径30mmの研磨面となっている。
この基材22の中心軸O上の厚さは5mmである。な
お、基材22は予め公知の方法によりシランカップリン
グ剤により基材22と樹脂層23の密着性を向上するた
めの処理がなされている。さらに、成形面22a上に供
給する樹脂25の供給量は、供給量にバラツキが生じた
場合においても、樹脂層23の最外周部が光学有効径D
以上に到達し、かつ基材22の外周部からはみ出さない
ように予め設定されている。
On the other hand, the opposite surface (lower surface in the figure) of the molding surface 22a of the substrate 22 is formed as a convex non-molding surface (surface on which the resin layer 23 is not placed) 22c. The formed polished surface has a radius of curvature of 30 mm.
The thickness of the base material 22 on the central axis O is 5 mm. The base material 22 has been previously subjected to a treatment for improving the adhesion between the base material 22 and the resin layer 23 by a known method using a silane coupling agent. Further, the supply amount of the resin 25 supplied on the molding surface 22a is such that the outermost peripheral portion of the resin layer 23 has an optical effective diameter D even when the supply amount varies.
It is set in advance so that it reaches the above and does not protrude from the outer peripheral portion of the base material 22.

【0024】次に、図7〜図9を用いて複合型光学素子
の製造方法を説明する。複合型光学素子の製造には、図
8に示すように、所望の樹脂層23表面23aを形成す
るための光学面21aを有し、直径が19mmで、かつ
中心軸が基材22の中心軸Oと同一で上下動自在に保持
された金型21を用いる。
Next, a method of manufacturing a composite optical element will be described with reference to FIGS. In the manufacture of the composite optical element, as shown in FIG. 8, an optical surface 21a for forming a desired resin layer 23 surface 23a is provided, the diameter is 19 mm, and the central axis is the central axis of the base material 22. A mold 21 is used, which is the same as O and is held up and down freely.

【0025】まず、図7に示すように、樹脂25を基材
22の成形面22a上に必要量供給する。次に、金型2
1を下降させて光学面21aを成形面22aに近づけ、
光学面21aで成形面22a上の樹脂25を外周方向に
押し広げる。そして、図8に示すように、基材22の成
形面22aと金型21の光学面21aとの間で広げられ
た樹脂25が所望の厚さの樹脂層23を形成する位置で
金型21の下降を停止する。このときの樹脂層23の形
状は、中心軸O上の厚さが0.2mm、表面23aの曲
率半径が50mm、光学有効径Dが16.5mmであ
る。そして、樹脂層23の最外周部は、基材22の成形
面22aよりも外側に到達して、基材22の平面22b
上にある。つまり、基材22と金型21により形成され
る空間を広げるように、基材22の光学有効径D外の形
状を変更しているので、樹脂25が基材22の直径Rよ
りもはみ出さないのである。
First, as shown in FIG. 7, a required amount of resin 25 is supplied onto the molding surface 22a of the substrate 22. Next, mold 2
1 is lowered to bring the optical surface 21a closer to the molding surface 22a,
The resin 25 on the molding surface 22a is pushed outward in the outer peripheral direction by the optical surface 21a. Then, as shown in FIG. 8, the resin 25 spread between the molding surface 22a of the base material 22 and the optical surface 21a of the mold 21 forms a resin layer 23 at a position where the resin layer 23 having a desired thickness is formed. Stop descending. At this time, the shape of the resin layer 23 is such that the thickness on the central axis O is 0.2 mm, the radius of curvature of the surface 23a is 50 mm, and the optical effective diameter D is 16.5 mm. Then, the outermost peripheral portion of the resin layer 23 reaches the outside of the molding surface 22a of the base material 22, and the flat surface 22b of the base material 22
It is above. That is, since the shape of the substrate 22 outside the optical effective diameter D is changed so as to widen the space formed by the substrate 22 and the mold 21, the resin 25 protrudes beyond the diameter R of the substrate 22. There is no.

【0026】以後、エネルギーを樹脂層23の全面に照
射して金型21と基材22および硬化した樹脂層23が
一体となった密着体を形成する工程、および金型21か
ら基材22と樹脂層23とが一体となった図9に示すよ
うな複合型光学素子26を剥離する工程は、実施の形態
1と同じである。
Thereafter, a step of irradiating the entire surface of the resin layer 23 with energy to form a close contact body in which the mold 21 and the base material 22 and the cured resin layer 23 are integrated, and The step of peeling off the composite optical element 26 integrated with the resin layer 23 as shown in FIG. 9 is the same as in the first embodiment.

【0027】本発明の実施の形態2の製造方法による
と、樹脂25の供給量にバラツキがあっても、樹脂25
が光学有効径D以上に到達し、かつ基材22の外周部か
ら樹脂25がはみ出すことがなく、また光線の乱反射に
よるゴーストやフレア等の光学性能の劣化につながるよ
うな不具合が発生しない複合型光学素子26を得ること
ができる。さらに、樹脂供給量のバラツキを吸収するた
めのスペースを確保することによる、複合型光学素子自
体の体積増加がなく、製品をコンパクトにすることがで
きる。
According to the manufacturing method of the second embodiment of the present invention, even if the supply amount of the resin 25 varies,
Does not reach the optically effective diameter D or more, and the resin 25 does not protrude from the outer peripheral portion of the base material 22, and does not cause a defect such as ghost or flare caused by irregular reflection of light rays, which leads to deterioration of optical performance. The optical element 26 can be obtained. Further, by securing a space for absorbing the variation in the resin supply amount, there is no increase in the volume of the composite optical element itself, and the product can be made compact.

【0028】なお、本発明の実施の形態2では、平面2
2bを#1200の砥石で研削することにより鏡面に仕
上げているが、本実施の形態はこれに限定するものでは
なく、#1000〜#2000の砥石で研削すれば、鏡
面を得ることができる。
In the second embodiment of the present invention, the plane 2
Although 2b is finished to a mirror surface by grinding with a # 1200 grindstone, the present embodiment is not limited to this, and a mirror surface can be obtained by grinding with a # 1000 to # 2000 grindstone.

【0029】また、前記本発明の実施の形態1,2で
は、基材12,22の外縁部の形状を平面12b、22
bに形成した場合を説明したが、光学有効径D外におい
て樹脂15,25を充填する空間が増大する形状であれ
ば、平面に限られず、例えば凹面であってもよい。
In the first and second embodiments of the present invention, the shape of the outer edges of the substrates 12 and 22 is changed to the planes 12 b and 22.
Although the case where it is formed in b has been described, the shape is not limited to a flat surface and may be a concave surface, for example, as long as the space for filling the resins 15 and 25 outside the optical effective diameter D increases.

【0030】さらに、前記各実施の形態1,2では、光
学素子基材としてガラス製の基材、エネルギー硬化型樹
脂として紫外線硬化型樹脂を用いた場合を説明したが、
これに限られず、プラスチック製の基材や熱硬化型樹脂
または他の電子線硬化型樹脂を用いても同様な効果が得
られる。
Further, in each of the first and second embodiments, a case has been described in which a glass substrate is used as the optical element substrate and an ultraviolet curable resin is used as the energy curable resin.
The present invention is not limited to this, and similar effects can be obtained by using a plastic substrate, a thermosetting resin, or another electron beam-curable resin.

【0031】また、基材12,22の光学有効径D外に
おける平面12a,22aを鏡面に作成する方法とし
て、研磨、研削を用いているが、本発明はこれに限定す
るものではなく、ガラスプレス等、他の方法を用いて鏡
面を作成しても同様な効果が得られる。
As a method for forming the mirror surfaces of the flat surfaces 12a and 22a outside the optically effective diameter D of the base materials 12 and 22, polishing and grinding are used. The same effect can be obtained even if a mirror surface is created by using another method such as pressing.

【0032】[比較例]比較例では、図10に示す基材
32を用いて、複合型光学素子を製造した。基材32
は、実施の形態2と同様な形状の成形面32aを有し、
樹脂35を押し広げて形成した樹脂層を載置する成形面
32aの光学有効径D外には、基材32の中心軸Oに対
して垂直な平面32bが#800の砂による砂摺り加工
により、粗さRa=0.200μmのスリ面に仕上げら
れている。ここで、平面32bの外観は、光源と観察者
の間に基材32を置いて観察した場合に、光源の形状を
認識できないレベルである。
Comparative Example In a comparative example, a composite optical element was manufactured using the substrate 32 shown in FIG. Substrate 32
Has a molding surface 32a having a shape similar to that of the second embodiment,
Outside the optically effective diameter D of the molding surface 32a on which the resin layer formed by spreading the resin 35 is placed, a plane 32b perpendicular to the central axis O of the base material 32 is sanded with sand of # 800 sand. , With a roughness Ra = 0.200 μm. Here, the appearance of the flat surface 32b is at a level at which the shape of the light source cannot be recognized when the base material 32 is placed between the light source and the observer for observation.

【0033】次に、本発明の実施の形態2と同様の工程
により、基材32を用いて複合型光学素子を製造し、実
施の形態2で製造した複合型光学素子26と光学性能を
比較した。その結果、実施の形態2の場合よりフレアが
多く、実用上に問題があるレベルであった。
Next, a composite optical element is manufactured using the base material 32 by the same steps as in the second embodiment of the present invention, and the optical performance is compared with that of the composite optical element 26 manufactured in the second embodiment. did. As a result, there was more flare than in the case of the second embodiment, which was at a level where there was a problem in practical use.

【0034】なお、上記した具体的実施の形態から次の
ような構成の技術的思想が導き出される。 (1)光学素子基材の表面にエネルギー硬化型の樹脂層
を載置した複合型光学素子において、前記光学素子基材
は、前記樹脂層を載置する面の光学有効径よりも外側が
前記面の光学有効径内の曲率半径を延長した形状に対し
て前記基材の体積が減少するように基材の一部を凹ませ
た形状であるとともに、この凹ませて露呈した面の少な
くとも樹脂層を載置する部分が鏡面であることを特徴と
する複合型光学素子。
The technical idea having the following configuration is derived from the specific embodiment. (1) In a composite optical element in which an energy-curable resin layer is mounted on the surface of an optical element substrate, the optical element substrate has an outer surface with respect to an optical effective diameter of a surface on which the resin layer is mounted. The base material has a shape in which a part of the base material is depressed so that the volume of the base material is reduced with respect to the shape in which the radius of curvature within the optical effective diameter of the surface is extended, and at least the resin on the surface exposed by the depression A composite optical element, wherein a portion on which the layer is mounted is a mirror surface.

【0035】(2)光学素子基材の表面にエネルギー硬
化型の樹脂層を載置した複合型光学素子において、前記
光学素子基材は、前記樹脂層を載置する面の光学有効径
よりも外側が前記面の光学有効径内の曲率半径を延長し
た形状に対して前記基材の体積が減少するように基材の
一部を除去した形状であるとともに、前記基材の一部を
除去した後に露呈する面の少なくとも樹脂層を載置する
部分が粗さRa=0.020〜0.050μmの鏡面で
あることを特徴とする複合型光学素子。
(2) In a composite optical element in which an energy-curable resin layer is mounted on the surface of an optical element substrate, the optical element substrate is larger than the optical effective diameter of the surface on which the resin layer is mounted. The outside has a shape in which a part of the base material is removed so that the volume of the base material is reduced with respect to the shape in which the radius of curvature within the optical effective diameter of the surface is extended, and a part of the base material is removed. A composite optical element, characterized in that at least a portion on which the resin layer is placed on the surface exposed after the etching is a mirror surface having a roughness Ra of 0.020 to 0.050 μm.

【0036】(3)前記鏡面は、光学素子基材の中心軸
に対して垂直な平面としたことを特徴とする複合型光学
素子。
(3) The composite optical element, wherein the mirror surface is a plane perpendicular to the central axis of the optical element base material.

【0037】(4)光学素子基材の表面にエネルギー硬
化型の樹脂を供給し、前記基材と金型とを相対的に接近
させることにより樹脂を押し広げて金型と基材との間に
所望の樹脂層を形成した後、エネルギーの照射により樹
脂層を硬化させ、硬化した樹脂層と金型を剥離して所望
の樹脂層を有する複合型光学素子を製造する複合型光学
素子の製造方法において、前記樹脂層を載置する面の光
学有効径よりも外側が、前記面の光学有効径内の曲率半
径を延長した形状に対して前記基材の体積が減少するよ
うに基材の一部を除去した形状であるとともに、前記基
材の一部を除去した後に露呈する面の少なくとも樹脂層
を載置する部分が粗さRa=0.020〜0.050μ
mの鏡面である光学素子基材を用いることを特徴とする
複合型光学素子の製造方法。
(4) An energy-curable resin is supplied to the surface of the optical element substrate, and the resin is spread out by relatively bringing the substrate and the mold closer to each other so that the resin is spread between the mold and the substrate. After forming a desired resin layer, the resin layer is cured by irradiation of energy, and the cured resin layer and the mold are separated to produce a composite optical element having a desired resin layer. In the method, the outer side of the optical effective diameter of the surface on which the resin layer is mounted, the base material such that the volume of the base material is reduced with respect to a shape having an extended radius of curvature within the optical effective diameter of the surface. It has a shape with a part removed, and at least a part on which a resin layer is placed on a surface exposed after removing a part of the base material has a roughness Ra = 0.020 to 0.050 μm.
A method for producing a composite optical element, comprising using an optical element substrate having a mirror surface of m.

【0038】前記(2)〜(4)によれば、鏡面は光源
の形状をはっきりと認識できる粗さであり、樹脂層を載
置する面および鏡面を透過する光線は乱反射を起こすこ
とがなくなり、光線の乱反射によるゴーストやフレア等
の光学性能の劣化がない複合型光学素子を得ることがで
きる。
According to the above (2) to (4), the mirror surface has such a roughness that the shape of the light source can be clearly recognized, and light transmitted through the surface on which the resin layer is mounted and the mirror surface does not cause irregular reflection. Further, a composite optical element free from deterioration of optical performance such as ghost and flare due to irregular reflection of light rays can be obtained.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係る請求
項1の複合型光学素子によれば、樹脂層の形成の際に光
学有効径内から出た樹脂が基材の一部を除去した面に載
置されるため、光学素子基材から樹脂がはみ出すことな
く、また基材の一部を除去した面を鏡面にしたので光線
の乱反射によるゴーストやフレア等の光学性能の劣化が
なくなる効果を奏する。
As described above, according to the composite optical element of the first aspect of the present invention, when the resin layer is formed, the resin coming out of the effective optical diameter removes a part of the substrate. The optical element substrate is placed on the surface, so that the resin does not protrude from the optical element substrate, and the surface from which a part of the substrate has been removed is made a mirror surface, so that optical performance deterioration such as ghost and flare due to irregular reflection of light rays is eliminated It works.

【0040】また、本発明に係る請求項2の複合型光学
素子の製造方法によれば、光学素子基材から樹脂がはみ
出すことなく光学有効径以上に到達し、光線の乱反射に
よるゴーストやフレア等の光学性能の劣化がなくなる複
合型光学素子を得ることができる効果を奏する。
According to the method for manufacturing a composite optical element of the second aspect of the present invention, the resin reaches the optical effective diameter or more without protruding from the optical element base material, and ghosts and flares due to irregular reflection of light rays. Thus, there is an effect that it is possible to obtain a composite optical element in which the optical performance is not deteriorated.

【0041】さらに、樹脂供給量のバラツキを吸収する
ためのスペースを確保することによる複合型光学素子自
体の体積増加がないため、製品をコンパクトにすること
ができる。
Further, since there is no increase in the volume of the composite optical element itself due to securing a space for absorbing variations in the resin supply amount, the product can be made compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合型光学素子に用いる光学素子基材
を示す図である。
FIG. 1 is a view showing an optical element substrate used for a composite optical element of the present invention.

【図2】本発明の実施の形態1に用いる光学素子基材を
示す図である。
FIG. 2 is a diagram showing an optical element substrate used in the first embodiment of the present invention.

【図3】本発明の実施の形態1に用いる光学素子基材を
示す図である。
FIG. 3 is a diagram showing an optical element substrate used in the first embodiment of the present invention.

【図4】本発明の実施の形態1における樹脂層を形成す
る工程を示す図である。
FIG. 4 is a view showing a step of forming a resin layer according to the first embodiment of the present invention.

【図5】本発明の実施の形態1における金型と複合型光
学素子を剥離する工程を示す図である。
FIG. 5 is a view showing a step of separating the mold and the composite optical element according to the first embodiment of the present invention.

【図6】本発明の実施の形態1における金型と複合型光
学素子を剥離した状態を示す図である。
FIG. 6 is a diagram showing a state in which the mold and the composite optical element according to Embodiment 1 of the present invention have been peeled off.

【図7】本発明の実施の形態2に用いる光学素子基材を
示す図である。
FIG. 7 is a diagram showing an optical element substrate used in Embodiment 2 of the present invention.

【図8】本発明の実施の形態2における樹脂層を形成す
る工程を示す図である。
FIG. 8 is a view showing a step of forming a resin layer according to the second embodiment of the present invention.

【図9】本発明の実施の形態2の複合型光学素子を示す
図である。
FIG. 9 is a diagram showing a composite optical element according to a second embodiment of the present invention.

【図10】比較例に用いる光学素子素材を示す図であ
る。
FIG. 10 is a diagram showing an optical element material used in a comparative example.

【符号の説明】[Explanation of symbols]

1,11 金型 1a,11a 光学面 2,12,22 光学素子基材 2a 樹脂層を載置する面 2b,12b,22b 平面 12a,22a 成形面 13,23 樹脂層 15,25 樹脂 16,26 複合型光学素子 1,11 Mold 1a, 11a Optical surface 2,12,22 Optical element substrate 2a Surface on which resin layer is placed 2b, 12b, 22b Plane 12a, 22a Molding surface 13,23 Resin layer 15,25 Resin 16,26 Composite optical element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学素子基材の表面にエネルギー硬化型
の樹脂層を載置した複合型光学素子において、 前記光学素子基材は、前記樹脂層を載置する面の光学有
効径よりも外側が前記面の光学有効径内の曲率半径を延
長した形状に対して前記基材の体積が減少するように基
材の一部を除去した形状であるとともに、 前記基材の一部を除去した後に露呈する面の少なくとも
樹脂層を載置する部分が鏡面であることを特徴とする複
合型光学素子。
1. A composite optical element in which an energy-curable resin layer is mounted on a surface of an optical element substrate, wherein the optical element substrate is outside an optical effective diameter of a surface on which the resin layer is mounted. Is a shape in which a part of the base material is removed so that the volume of the base material is reduced with respect to a shape in which the radius of curvature within the optical effective diameter of the surface is extended, and a part of the base material is removed. A composite optical element, wherein at least a portion of the surface exposed later on which the resin layer is placed is a mirror surface.
【請求項2】 光学素子基材の表面にエネルギー硬化型
の樹脂を供給し、前記基材と金型とを相対的に接近させ
ることにより樹脂を押し広げて金型と基材との間に所望
の樹脂層を形成した後、エネルギーの照射により樹脂層
を硬化させ、硬化した樹脂層と金型を剥離して所望の樹
脂層を有する複合型光学素子を製造する複合型光学素子
の製造方法において、 前記樹脂層を載置する面の光学有効径よりも外側が、前
記面の光学有効径内の曲率半径を延長した形状に対して
前記基材の体積が減少するように基材の一部を除去した
形状であるとともに、 前記基材の一部を除去した後に露呈する面の少なくとも
樹脂層を載置する部分が鏡面である光学素子基材を用い
ることを特徴とする複合型光学素子の製造方法。
2. An energy-curable resin is supplied to the surface of the optical element base material, and the resin is spread out by relatively bringing the base material and the mold closer to each other, so that the resin is spread between the mold and the base material. After forming a desired resin layer, the resin layer is cured by irradiation of energy, and the cured resin layer and the mold are separated to produce a composite optical element having the desired resin layer. In one embodiment, the outer side of the optical effective diameter of the surface on which the resin layer is mounted is reduced such that the volume of the base material is reduced with respect to a shape in which the radius of curvature within the optical effective diameter of the surface is extended. A composite optical element, wherein the optical element substrate has a shape in which a portion is removed, and at least a portion on which a resin layer is placed on a surface exposed after removing a part of the base material is a mirror surface. Manufacturing method.
JP35074996A 1996-12-27 1996-12-27 Composite optical element and method for manufacturing the same Expired - Fee Related JP4060902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35074996A JP4060902B2 (en) 1996-12-27 1996-12-27 Composite optical element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35074996A JP4060902B2 (en) 1996-12-27 1996-12-27 Composite optical element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10186108A true JPH10186108A (en) 1998-07-14
JP4060902B2 JP4060902B2 (en) 2008-03-12

Family

ID=18412610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35074996A Expired - Fee Related JP4060902B2 (en) 1996-12-27 1996-12-27 Composite optical element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4060902B2 (en)

Also Published As

Publication number Publication date
JP4060902B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
KR101020634B1 (en) Manufacturing method of lens having nanopattern
CN101144879A (en) Method for manufacturing optical element
JPH0313902A (en) Compound optical parts and production thereof
JPH035702A (en) Cemented lens or the like and its manufacture
JP2006263975A (en) Manufacturing method of optical element
JPH10186108A (en) Composite optical element and its production
JP4612801B2 (en) Mold, composite optical element manufacturing method, and composite optical element
JP2003222708A (en) Optical element and its manufacturing method
JP4481531B2 (en) Optical element
JP2007111958A (en) Method for manufacturing optical element and optical element molding
EP0675790B1 (en) Replication of optically flat surfaces
JP4187337B2 (en) Composite optical components
JP3847825B2 (en) Manufacturing method of optical transmitter array
JP2006177994A (en) Replica optical element
US6529677B2 (en) Method for formatting the facet of optical waveguide element for use in optical communication
JP4632942B2 (en) Optical element, optical unit, optical element manufacturing method, and optical unit manufacturing method
JP2000241608A (en) Resin bonded optical element and manufacture therefor
JP2003266450A (en) Optical element and manufacturing method therefor
JPH05107407A (en) Optical mirror
JP3544587B2 (en) Method for manufacturing composite optical element
JPH03200106A (en) Optical waveguide lens
EP1525947A1 (en) Method for finish-polishing
JP2724013B2 (en) 2P resin-How to make a glass stamper master
JP2008287054A (en) Composite optical element
JP3184658B2 (en) Composite optical element and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees