JP2003266450A - Optical element and manufacturing method therefor - Google Patents

Optical element and manufacturing method therefor

Info

Publication number
JP2003266450A
JP2003266450A JP2002074519A JP2002074519A JP2003266450A JP 2003266450 A JP2003266450 A JP 2003266450A JP 2002074519 A JP2002074519 A JP 2002074519A JP 2002074519 A JP2002074519 A JP 2002074519A JP 2003266450 A JP2003266450 A JP 2003266450A
Authority
JP
Japan
Prior art keywords
resin
mold
optical element
thickness
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002074519A
Other languages
Japanese (ja)
Inventor
Masaki Omori
正樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002074519A priority Critical patent/JP2003266450A/en
Publication of JP2003266450A publication Critical patent/JP2003266450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reconcile high releasability and high shape precision when a resin layer is molded on a substrate material. <P>SOLUTION: The resin layer 6, to which the shape of the molding surface of a mold 2 is transferred, is formed on the surface of the substrate material 4 to manufacture an optical element 7 that is an integrated body of the substrate material and the resin layer. The difference between the maximum and minimum values of the thickness in the normal line direction of the surface of the substrate material of the resin layer is set to 20-200 μm to mold the resin layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非球面を有するレン
ズや表面に微細な形状(凹凸)を有する素子、例えば回
折格子やフレネルレンズ、光ディスク基板などを製造す
る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a lens having an aspherical surface or an element having a fine shape (irregularities) on the surface thereof, for example, a diffraction grating, a Fresnel lens, an optical disk substrate or the like.

【0002】[0002]

【従来の技術】光学素子の製造方法には、ガラスの研
削、研摩による方法、型を用いた精密成形による方法、
熱可塑性樹脂の射出成形やプレス成形による方法等があ
り、機能やコスト、要求精度等により使い分けられてい
る。
2. Description of the Related Art Optical element manufacturing methods include glass grinding, polishing, precision molding using a mold,
There are methods such as injection molding and press molding of thermoplastic resin, which are properly used depending on the function, cost, required accuracy, and the like.

【0003】例えば、カメラ等に使用される結像系のレ
ンズの場合、球面レンズでは、温度、湿度等の環境変動
に関して性能劣化が少なく、経済的にも有利なガラスの
研削、研摩による方法が主に用いられ、非球面レンズで
は、型を用いたガラスの精密成形による方法が主に用い
られる。カメラでも、ファインダーに使用されるレンズ
は優れた結像性能を要求されないため、コスト面から樹
脂の射出成形により製造されることが多い。
For example, in the case of a lens of an image forming system used for a camera or the like, a spherical lens is an economically advantageous method of grinding and polishing, which has little performance deterioration due to environmental changes such as temperature and humidity. Mainly used for aspherical lenses, a method of precision molding of glass using a mold is mainly used. Even in cameras, lenses used for viewfinders are not required to have excellent imaging performance, and are often manufactured by resin injection molding from the viewpoint of cost.

【0004】また、直径が30mm以上の非球面レンズ
や表面に微細な凹凸形状を有する光学素子では、ガラス
基材の上に光エネルギー硬化型樹脂の薄層を成形し、硬
化させることにより所要の表面形状を形成する方法が用
いられる。
Further, in an aspherical lens having a diameter of 30 mm or more and an optical element having fine irregularities on the surface, a required layer is formed by molding a thin layer of a light energy curable resin on a glass substrate and curing the resin. A method of forming a surface profile is used.

【0005】大きな非球面レンズの場合、ガラスの精密
成形では形状精度が悪くなり、精度を確保しようとする
と成形時間が長くなりコスト高になる。微細な凹凸形状
を有する光学素子の場合も、ガラスでは離型時に凹凸部
が破壊するため製造できず、樹脂による製造が必須とな
るが、素子全体が樹脂では、環境変動に対する性能劣化
が大きく、樹脂部を薄層にする上記の方法によりその影
響を小さくするようにしている。
In the case of a large aspherical lens, the precision of shape is deteriorated in the precision molding of glass, and in order to secure the precision, the molding time becomes long and the cost becomes high. Even in the case of an optical element having a fine concavo-convex shape, it cannot be manufactured in glass because the concavo-convex portion is destroyed at the time of mold release, and it is indispensable to manufacture it with a resin. The influence is reduced by the above-mentioned method in which the resin portion is formed into a thin layer.

【0006】この光エネルギー硬化型樹脂の成形につい
て、特開平8−286003号公報では、樹脂層の偏肉
度(中心軸に平行な方向の樹脂層の最大厚をtmax、
最小厚をtminとした場合のtmax/tmin)が
最小となる場合の1.5倍以内になるように基材の曲率
半径を設定することにより、硬化時の樹脂内の応力を小
さくし、環境変化時の形状変化量を小さくする方法が提
案されている。
Regarding the molding of this light energy curable resin, in JP-A-8-286003, the unevenness of the resin layer (the maximum thickness of the resin layer in the direction parallel to the central axis is tmax,
By setting the radius of curvature of the base material such that tmax / tmin when the minimum thickness is tmin is within 1.5 times the minimum thickness, the stress in the resin during curing is reduced, and A method has been proposed in which the amount of shape change at the time of change is reduced.

【0007】[0007]

【発明が解決しようとする課題】光エネルギー硬化型の
樹脂の成形では基材に対して法線方向の樹脂厚の差が大
きいと形状精度が悪化する。これに対して、上記特開平
8−286003号公報では、偏肉度を小さくすること
により硬化時の樹脂内の応力を小さくする方法が示され
ているが、ここでは、中心軸上の樹脂厚により偏肉度の
下限値に限界があり、所要の形状精度が得られない場合
がある。また、偏肉度が小さすぎると離型性が悪くな
り、樹脂のワレや変形が発生し、それを防ぐのに離型剤
を使うと、型の耐久性が低下する。
In the molding of a light energy curing type resin, if there is a large difference in the resin thickness in the direction of the normal to the base material, the shape accuracy deteriorates. On the other hand, Japanese Patent Laid-Open No. 8-286003 discloses a method of reducing the stress in the resin during curing by reducing the thickness deviation, but here, the resin thickness on the central axis is set. Due to this, there is a limit to the lower limit of the thickness deviation, and the required shape accuracy may not be obtained. Further, if the thickness deviation is too small, the mold releasability deteriorates, and the resin is cracked or deformed. If a mold release agent is used to prevent this, the durability of the mold is reduced.

【0008】従って、本発明は上述した課題に鑑みてな
されたものであり、その目的は、基材に樹脂層を成形す
る場合に、良好な離型性と良好な形状精度の両立を図る
ことである。
Therefore, the present invention has been made in view of the above-mentioned problems, and an object thereof is to achieve both good releasability and good shape accuracy when molding a resin layer on a substrate. Is.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決し、
目的を達成するために、本発明に係わる光学素子の製造
方法は、基材の表面に、型の成形面の形状が転写された
樹脂層を形成することにより、前記基材と前記樹脂層が
一体化された光学素子を製造するための光学素子の製造
方法であって、前記樹脂層の前記基材表面の法線方向の
厚みの最大値と最小値の差を20μm以上200μm以
下に設定して、前記樹脂層を成形することを特徴として
いる。
[Means for Solving the Problems]
In order to achieve the object, the method for producing an optical element according to the present invention is such that the base material and the resin layer are formed on the surface of the base material by forming a resin layer on which the shape of the molding surface of the mold is transferred. An optical element manufacturing method for manufacturing an integrated optical element, wherein the difference between the maximum value and the minimum value of the thickness of the resin layer in the normal direction of the substrate surface is set to 20 μm or more and 200 μm or less. Then, the resin layer is molded.

【0010】また、この発明に係わる光学素子の製造方
法において、前記型の成形面が、高さ50μm以下の微
細な凹凸形状を有することを特徴としている。
Further, in the method of manufacturing an optical element according to the present invention, the molding surface of the mold has a fine concavo-convex shape having a height of 50 μm or less.

【0011】また、この発明に係わる光学素子の製造方
法において、前記型の成形面が、非球面形状を有するこ
とを特徴としている。
Further, in the method of manufacturing an optical element according to the present invention, the molding surface of the mold has an aspherical shape.

【0012】また、この発明に係わる光学素子の製造方
法において、前記基材は、ガラスからなることを特徴と
している。
In the method of manufacturing an optical element according to the present invention, the base material is made of glass.

【0013】また、この発明に係わる光学素子の製造方
法において、前記樹脂層を形成する樹脂は、光エネルギ
ー硬化型樹脂であることを特徴としている。
Further, in the method for manufacturing an optical element according to the present invention, the resin forming the resin layer is a light energy curable resin.

【0014】また、本発明に係わる光学素子は、上記の
製造方法により製造されたことを特徴としている。
The optical element according to the present invention is characterized by being manufactured by the above manufacturing method.

【0015】[0015]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below.

【0016】まず、本発明の実施形態の概要について説
明する。
First, an outline of an embodiment of the present invention will be described.

【0017】本発明の実施形態では、基材の法線方向の
樹脂厚の最大値と最小値の差を20μm以上とすること
により、基材の法線方向の応力を発生させて離型性の向
上を図り、樹脂厚の最大値と最小値の差を200μm以
下にすることにより応力分布を小さくし、形状精度の向
上を図る。
In the embodiment of the present invention, the difference between the maximum value and the minimum value of the resin thickness in the normal direction of the base material is set to 20 μm or more so that the stress in the normal direction of the base material is generated and the releasability is improved. And the difference between the maximum value and the minimum value of the resin thickness is set to 200 μm or less to reduce the stress distribution and improve the shape accuracy.

【0018】図11を用いてその作用を説明する。The operation will be described with reference to FIG.

【0019】図11(a)のような球面レンズ25(説
明をわかり易くするために球面レンズを用いる)を成形
する場合、図11(b)のように樹脂26の表面26a
より樹脂厚分だけ曲率半径の小さいガラス基材27を用
いると、樹脂厚の違いによる応力が発生せず樹脂表面の
型との形状差が0.1μm以下と非常に良好である。そ
の反面、ガラス基材に対して法線方向の応力があまり働
かず(ポアソン効果によりゼロではない)離型に大きな
荷重を必要とする。
When a spherical lens 25 as shown in FIG. 11A (a spherical lens is used for the sake of clarity) is molded, the surface 26a of the resin 26 as shown in FIG. 11B.
When the glass base material 27 having a smaller radius of curvature by the resin thickness is used, stress due to the difference in the resin thickness is not generated, and the difference in shape between the resin surface and the mold is 0.1 μm or less, which is very good. On the other hand, the stress in the normal direction does not work so much on the glass substrate (it is not zero due to the Poisson effect), and a large load is required for release.

【0020】これに対してガラス基材の曲率半径を図1
1(c)や(d)のようにすることにより、樹脂厚の違
いによりガラス基材の法線方向に応力差が発生し離型し
やすくなる。しかし、図11(e)のようにガラス基材
の曲率半径を樹脂面の曲率半径から大きく変化させる
と、硬化収縮時の法線方向の収縮差による応力により、
型との形状差が数μm以上となる。離型性は非常に良く
なるが、形状精度は悪化し、極端な場合には硬化収縮時
に離型してしまう。これに対して図11(c)や(d)
のように樹脂厚の最大値と最小値の差を200μm以下
にすることにより、形状精度の悪化を0.3μm以下に
抑えることができる。
On the other hand, the radius of curvature of the glass substrate is shown in FIG.
By adopting 1 (c) or (d), a difference in stress is generated in the normal direction of the glass substrate due to the difference in resin thickness, and mold release is facilitated. However, when the radius of curvature of the glass substrate is largely changed from the radius of curvature of the resin surface as shown in FIG. 11E, the stress due to the difference in shrinkage in the normal direction during curing shrinkage causes
The shape difference from the mold is several μm or more. The mold releasability is very good, but the shape accuracy is deteriorated, and in extreme cases, the mold is released at the time of curing shrinkage. On the other hand, FIG. 11 (c) and (d)
As described above, by setting the difference between the maximum value and the minimum value of the resin thickness to 200 μm or less, it is possible to suppress the deterioration of the shape accuracy to 0.3 μm or less.

【0021】更に、図12に示すような表面に微細な凹
凸を有する光学素子では、図11に示したような表面が
平滑なレンズより離型性が悪くなり、離型時凹凸部が破
壊されたり、変形したりする。よってガラス基板の曲率
半径を変更して、樹脂厚の差による応力により離型性を
向上させることは更に有効となる。ただ、凹凸が50μ
mを超えるとその効果だけでは凹凸部の破壊を抑えるこ
とはできない。
Further, in the optical element having fine irregularities on the surface as shown in FIG. 12, the releasability is worse than that of a lens having a smooth surface as shown in FIG. 11, and the irregularities at the time of release are destroyed. Or deformed. Therefore, it is more effective to change the radius of curvature of the glass substrate and improve the releasability due to the stress due to the difference in resin thickness. However, the unevenness is 50μ
If it exceeds m, the effect alone cannot suppress the breakage of the uneven portion.

【0022】本発明の実施形態の方法により成形された
光学素子は、離型性が良く、経済的で、かつ形状精度の
良好な光学素子となる。
The optical element molded by the method of the embodiment of the present invention is an optical element which has good releasability, is economical, and has good shape accuracy.

【0023】本発明の実施形態の方法により成形された
表面に微細な凹凸を有する光学素子は、凹凸部の破壊や
変形がない光学素子となる。
The optical element having fine irregularities on the surface formed by the method of the embodiment of the present invention is an optical element in which the irregularities are not destroyed or deformed.

【0024】(第1の実施形態)図1は、本発明の第1
の実施形態に係わる微細形状を表面に有する光学素子の
成形方法を示す概略図である。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
FIG. 6 is a schematic view showing a method of molding an optical element having a fine shape on its surface according to the embodiment of FIG.

【0025】図1において、1は型に滴下された光エネ
ルギー硬化型樹脂、2は成形に用いる型で、表面には図
2の拡大図に示すような深さ10μm、ピッチ50〜4
00μmで山頂点部を結ぶ面が平面である微細な凹凸が
形成されている。3は滴下に用いられるディスペンサ
ー、4はガラス基材、5は型にプレス転写された樹脂、
6は光エネルギー線(例えば紫外線)の照射により硬化
された樹脂層、7はガラス基材4の上に表面に微細形状
を有する樹脂層6が接合された成形品である。
In FIG. 1, 1 is a light energy curable resin dropped on a mold, 2 is a mold used for molding, and the surface has a depth of 10 μm and a pitch of 50 to 4 as shown in an enlarged view of FIG.
The fine concavo-convex is formed in which the surface connecting the peaks of the peaks is 00 μm and is a flat surface. 3 is a dispenser used for dropping, 4 is a glass base material, 5 is a resin press-transferred to a mold,
Reference numeral 6 is a resin layer cured by irradiation with light energy rays (for example, ultraviolet rays), and reference numeral 7 is a molded article in which the resin layer 6 having a fine shape is bonded on the surface of the glass substrate 4.

【0026】図1(a)に示すように、型2の上にディ
スペンサーにより所定量の光エネルギー硬化型樹脂(以
後、単に樹脂と呼ぶ)を滴下する。図1(b)に示すよ
うに、その上にガラス基材4をのせ、不図示の装置で加
圧し、型2の形状を樹脂に転写させる。このとき、ガラ
ス基材4の樹脂5と接触する面は凹状に曲率半径750
mmで加工されており、樹脂厚が中心で300μmにな
るように設定し、φ30mmの外周部で概ね150μm
となるようにする。
As shown in FIG. 1A, a predetermined amount of light energy curable resin (hereinafter simply referred to as resin) is dropped on the mold 2 by a dispenser. As shown in FIG. 1B, a glass base material 4 is placed thereon, and pressure is applied by an apparatus (not shown) to transfer the shape of the mold 2 to the resin. At this time, the surface of the glass base material 4 in contact with the resin 5 has a concave radius of curvature 750.
mm, the resin thickness is set to 300 μm at the center, and the outer diameter of φ30 mm is approximately 150 μm.
So that

【0027】またガラス基材4の樹脂5との接触面には
樹脂との密着性向上のためにシランカップリング処理が
施されている。その後、図1(c)に示すように、光エ
ネルギー線(ここでは紫外線)をガラス越しに樹脂に照
射し、硬化させる。そして、図1(d)に示すように、
ガラス基材4の周辺に不図示の装置で力を加えて樹脂を
型2から剥離させ、成形品7を得る。離型においては、
型とガラスは数百KPaの圧力で容易に剥離し、凹凸部
のワレや変形も無く、形状精度も良好であった。
A silane coupling treatment is applied to the contact surface of the glass substrate 4 with the resin 5 in order to improve the adhesion with the resin. After that, as shown in FIG. 1C, the resin is irradiated with light energy rays (here, ultraviolet rays) through the glass to be cured. Then, as shown in FIG.
A resin is peeled from the mold 2 by applying a force to the periphery of the glass substrate 4 with an apparatus (not shown) to obtain a molded product 7. In mold release,
The mold and the glass were easily peeled off under a pressure of several hundred KPa, and there was no cracking or deformation of the uneven portion, and the shape accuracy was good.

【0028】比較例として、ガラス基材に樹脂との接触
面が平面のものと、曲率半径を321.5mmに加工し
たものとを用い、樹脂の中心厚が300μmになるよう
に滴下時の樹脂量を変化させた以外は第1の実施形態と
同様に成形した。
As a comparative example, a glass substrate having a flat contact surface with the resin and a glass substrate having a radius of curvature of 321.5 mm were used, and the resin was dropped at a center thickness of 300 μm. Molding was performed in the same manner as in the first embodiment except that the amount was changed.

【0029】平面のガラス基材では離型に数MPa以上
の圧力を要し、凹凸部の一部が欠けていた。また、曲率
半径を321.5mmにしたものは、樹脂厚の最小値が
φ30の外周部で概ね50μmで膜厚差が250μmで
あり、離型は良好で凹凸部の欠けもなかったが、凹凸部
の頂点を結んだ面が型では平面であるのに、成形品では
数μm平面からずれていた。
With a flat glass substrate, a pressure of several MPa or more was required for mold release, and a part of the uneven portion was lacking. Further, in the case where the radius of curvature is 321.5 mm, the minimum value of the resin thickness is about 50 μm and the film thickness difference is 250 μm in the outer peripheral portion of φ30, the mold release is good, and the uneven portion is not chipped. Although the surface connecting the apexes of the part was a flat surface in the mold, it was deviated from a flat surface of several μm in the molded product.

【0030】以上のように、ガラス基材の法線方向の樹
脂厚の最大値と最小値の差を150μmとすることによ
り、離型性が悪いことによる微細な凹凸部の欠けや変形
が無く、形状精度も良好なガラス基材への樹脂の成形が
可能となった。
As described above, by setting the difference between the maximum value and the minimum value of the resin thickness in the normal line direction of the glass substrate to be 150 μm, there is no chipping or deformation of fine irregularities due to poor releasability. It is now possible to mold a resin on a glass substrate with good shape accuracy.

【0031】(第2の実施形態)図3は本発明の第2の
実施形態を示す図である。
(Second Embodiment) FIG. 3 is a diagram showing a second embodiment of the present invention.

【0032】図3において8は樹脂、9は成形に用いた
型で、表面には図4の拡大図に示すような深さ10μ
m、ピッチ50〜400μmで山頂点部を結ぶ面が平面
である微細な凹凸形状が形成されている。第1の実施形
態の型とは鋸歯の向きが逆になっている。10はガラス
基材で、11はガラス基材10の上に表面に微細形状を
有する樹脂層8’が接合された成形品である。樹脂の中
心厚が300μmで、φ30mmの外周部は厚さが概ね
150μmになっている。
In FIG. 3, 8 is a resin, 9 is a mold used for molding, and the surface has a depth of 10 μ as shown in the enlarged view of FIG.
A fine concavo-convex shape in which the surface connecting the peaks of the peaks is a plane is formed at m and a pitch of 50 to 400 μm. The direction of the saw teeth is opposite to that of the mold of the first embodiment. Reference numeral 10 is a glass base material, and 11 is a molded product in which a resin layer 8'having a fine shape is bonded to the surface of the glass base material 10. The center thickness of the resin is 300 μm, and the outer peripheral portion of φ30 mm has a thickness of about 150 μm.

【0033】第1の実施形態と同様な工程で型9とガラ
ス基材10を用いて成形したが、離型では、型と樹脂は
数百KPaから数MPaの圧力で容易に剥離し、凹凸部
のワレや変形も無く、形状精度も良好であった。しか
し、離型に要する力は第1の実施形態に対して若干大き
めであった。これは、本実施形態が第1の実施形態と比
較して、型表面の微細形状が、樹脂の化収縮時に垂直面
を挟み込むような形状であり、より離型困難な形状であ
るためである。
Molding was performed using the mold 9 and the glass substrate 10 in the same steps as in the first embodiment. However, in mold release, the mold and resin were easily peeled off at a pressure of several hundred KPa to several MPa, resulting in unevenness. There was no crack or deformation of the part, and the shape accuracy was good. However, the force required for mold release was slightly larger than that in the first embodiment. This is because, in this embodiment, the fine shape of the mold surface is such that a vertical surface is sandwiched during resin shrinkage as compared with the first embodiment, and the mold is more difficult to release. .

【0034】ここで、ガラス基材12の形状を図5に示
すようにし、樹脂厚を中心で150μm、外周部で30
0μmとなるようにすると、数十KPaで離型し、更に
離型性は良好となった。これは、樹脂の周辺が厚いため
に周辺により大きな引張り応力がかかり、離型しやすく
なったことによると思われる。
Here, the glass substrate 12 is shaped as shown in FIG. 5, and the resin thickness is 150 μm at the center and 30 at the outer peripheral portion.
When it was set to 0 μm, the mold release was performed at several tens of KPa, and the mold releasability was further improved. This is probably because the periphery of the resin is thick and a large tensile stress is applied to the periphery, which facilitates mold release.

【0035】以上のように、ガラス基材の法線方向の樹
脂厚に差を設けることにより、微細な凹凸部の欠けや変
形が無く、形状精度も良好なガラス基材への樹脂の成形
が可能となる。また樹脂厚を中心部より周辺の方が厚い
ように差を設けることにより、より離型性が向上する。
As described above, by forming a difference in the resin thickness in the normal direction of the glass substrate, there is no chipping or deformation of the fine irregularities, and the resin can be molded into a glass substrate having good shape accuracy. It will be possible. Further, by providing the resin thickness so that the peripheral portion is thicker than the central portion, the releasability is further improved.

【0036】(第3の実施形態)図6は本発明の第3の
実施形態を示す図である。
(Third Embodiment) FIG. 6 is a diagram showing a third embodiment of the present invention.

【0037】図6において13は樹脂、14は成形に用
いた型で、表面は図7に示すような基準の曲率半径24
mmから曲率半径の中心方向に最大10μm離れた部分
がある非球面形状をしている。15はガラス基材で樹脂
との接触面は曲率半径23.768mmに研摩してあ
る。16はガラス基材15の上に表面に非球面形状を有
する樹脂層13’が接合された成形品である。中心部で
樹脂厚が300μmで、最外周φ30mmのところでガ
ラス基材の法線方向の厚みが最小となり、180μmで
ある。第1の実施形態と同様な工程で、型14とガラス
基材15を用いて成形した。離型では、型と樹脂は数百
KPaの圧力で容易に剥離し、形状精度も型からのずれ
が0.1μmと良好であった。
In FIG. 6, 13 is a resin, 14 is a mold used for molding, and the surface has a standard radius of curvature 24 as shown in FIG.
It has an aspherical shape with a portion at a maximum distance of 10 μm from the center of the radius of curvature from mm. Reference numeral 15 is a glass base material, and the contact surface with the resin is polished to have a radius of curvature of 23.768 mm. Reference numeral 16 is a molded product in which a resin layer 13 ′ having an aspherical shape is bonded to the surface of the glass base material 15. The thickness of the resin is 300 μm in the central portion, and the thickness in the normal direction of the glass substrate is the minimum at the outermost circumference φ30 mm, which is 180 μm. Molding was performed using the mold 14 and the glass base material 15 in the same process as in the first embodiment. In the mold release, the mold and the resin were easily separated at a pressure of several hundred KPa, and the shape accuracy was good, with a deviation from the mold of 0.1 μm.

【0038】比較例として、ガラス基材に曲率半径が2
3.697mmのものと23.823mmのものを用
い、樹脂の中心厚が300μmになるように滴下時の樹
脂量を変化させた以外は第3の実施形態と同様に成形し
た。
As a comparative example, a glass substrate has a radius of curvature of 2
Molding was carried out in the same manner as in the third embodiment except that 3.697 mm and 23.823 mm were used and the amount of resin at the time of dropping was changed so that the center thickness of the resin was 300 μm.

【0039】曲率半径23.697mmのものは、ガラ
ス基材の法線方向の厚みが最小が中心の300μm、最
大が曲率半径24mmの中心方向に球面から10μm離
れた非球面部分で315μmで、樹脂厚差が15μmで
ある。曲率半径23.823mmのものは、ガラス基材
の法線方向の厚みが最大が中心の300μm、最小が最
外周の80μmで、樹脂厚差が220μmである。
In the case where the radius of curvature is 23.697 mm, the thickness of the glass substrate in the normal direction is 300 μm at the center, and the maximum is 315 μm at the aspherical portion 10 μm away from the spherical surface in the center direction with a radius of curvature of 24 mm. The thickness difference is 15 μm. In the case of a radius of curvature of 23.823 mm, the maximum thickness in the normal direction of the glass substrate is 300 μm at the center, the minimum is 80 μm at the outermost periphery, and the resin thickness difference is 220 μm.

【0040】曲率半径が23.697mmのガラス基材
では離型に数MPa以上の圧力を要し、樹脂の一部が型
に残っていた。また、曲率半径を23.823mmにし
たものは離型は良好で凹凸部の欠けもなかったが、形状
が型から2μmずれていた。
With a glass substrate having a radius of curvature of 23.697 mm, a pressure of several MPa or more was required for mold release, and a part of the resin remained in the mold. Further, the mold having a radius of curvature of 23.823 mm had a good mold release and had no irregularities, but the shape was deviated from the mold by 2 μm.

【0041】以上のように、ガラス基材の法線方向の樹
脂厚の最大値と最小値の差を120μmとすることによ
り、離型性が悪いことによる樹脂の型への残存が無く、
形状精度も良好なガラス基材への樹脂の成形が可能とな
った。
As described above, by setting the difference between the maximum value and the minimum value of the resin thickness in the normal direction of the glass base material to 120 μm, the resin does not remain in the mold due to the poor releasability.
It has become possible to mold a resin on a glass substrate with good shape accuracy.

【0042】(第4の実施形態)図8は、本発明の第4
の実施形態を示す図である。
(Fourth Embodiment) FIG. 8 shows a fourth embodiment of the present invention.
It is a figure which shows the embodiment of.

【0043】図8において17は樹脂、18は成形に用
いた型で、表面は図9に示すような基準の曲率半径50
mmから曲率半径の中心方向に最大150μm離れた部
分がある非球面形状をしている。19はガラス基材で樹
脂17との接触面は曲率半径49.867mmに研摩し
てある。20はガラス基材19の上に表面に非球面形状
を有する樹脂層17’が接合された成形品である。
In FIG. 8, 17 is a resin, 18 is a mold used for molding, and the surface has a standard radius of curvature 50 as shown in FIG.
It has an aspherical shape with a portion distant from the center of the radius of curvature by 150 μm at the maximum. Reference numeral 19 denotes a glass base material, and the contact surface with the resin 17 is polished to have a radius of curvature of 49.867 mm. Reference numeral 20 is a molded product in which a resin layer 17 'having an aspherical shape is bonded to the surface of the glass base material 19.

【0044】中心部で樹脂厚が100μmになるように
成形し、樹脂のガラス基材の法線方向の厚みが、中心が
最小で100μm、最大は曲率半径50mmの中心方向
に球面から150μm離れた非球面部分で280μmで
ある。
The resin was molded so that the thickness of the resin was 100 μm at the center, and the thickness of the resin in the normal direction of the glass substrate was 100 μm at the center and 150 μm away from the spherical surface in the center direction with a radius of curvature of 50 mm at the maximum. The aspherical surface portion has a thickness of 280 μm.

【0045】第1の実施形態と同様な工程で型18とガ
ラス19を用いて成形した。離型では、型と樹脂は数百
KPaの圧力で容易に剥離し、形状精度も型からのずれ
が0.1μmと良好であった。
Molding was performed using the mold 18 and the glass 19 in the same steps as in the first embodiment. In the mold release, the mold and the resin were easily separated at a pressure of several hundred KPa, and the shape accuracy was good, with a deviation from the mold of 0.1 μm.

【0046】以上のように、ガラス基材の法線方向の樹
脂厚の最大値と最小値の差を180μmとすることによ
り、離型性が悪いことによる樹脂の型への残存が無く、
形状精度も良好なガラス基材への樹脂の成形が可能とな
った。
As described above, by setting the difference between the maximum value and the minimum value of the resin thickness in the normal direction of the glass substrate to 180 μm, the resin does not remain in the mold due to poor releasability.
It has become possible to mold a resin on a glass substrate with good shape accuracy.

【0047】(第5の実施形態)図10は、本発明の第
5の実施形態を示す図である。
(Fifth Embodiment) FIG. 10 is a diagram showing a fifth embodiment of the present invention.

【0048】図10において、21は樹脂、22は成形
に用いた型で、中心部を原点として1.44X2+(Y−
30)2=302の楕円面をしている。23はガラス基材
で、24はガラス基材23の上に表面に楕円形状を有す
る樹脂層21’が接合された成形品である。ガラス基材
23の法線方向の厚みが中心部が最大で300μm、φ
40mmの最外周が最小で200μmである。
In FIG. 10, 21 is a resin, 22 is a mold used for molding, and 1.44X 2 + (Y-
30) 2 = 30 2 having an elliptical surface. Reference numeral 23 is a glass base material, and 24 is a molded product in which a resin layer 21 ′ having an elliptical shape is bonded to the surface of the glass base material 23. The thickness of the glass base material 23 in the normal direction is 300 μm at the center, and φ
The outermost circumference of 40 mm is a minimum of 200 μm.

【0049】第1の実施形態と同様な工程で型22とガ
ラス23を用いて成形した。離型では、型と樹脂は数百
KPaの圧力で容易に剥離し、形状精度も型からのずれ
が0.1μmと良好であった。
Molding was performed using the mold 22 and the glass 23 in the same process as in the first embodiment. In mold release, there are hundreds of molds and resins
It was easily peeled off under a pressure of KPa, and the shape accuracy was good with a deviation from the mold of 0.1 μm.

【0050】比較例としてガラス基材の曲率半径が2
2.386mmのものと22.807mmのものを用
い、樹脂の中心厚が300μmになるように滴下時の樹
脂量を変化させた以外は第5の実施形態と同様に成形し
た。
As a comparative example, the radius of curvature of the glass substrate is 2
Molding was performed in the same manner as in the fifth embodiment, except that the one having a diameter of 2.386 mm and the one having a diameter of 22.807 mm were used and the amount of resin at the time of dropping was changed so that the center thickness of the resin was 300 μm.

【0051】曲率半径22.386mmのものはガラス
基材の法線方向の厚みが最小部で290μmで樹脂厚差
が10μmであり、曲率半径22.807mmのものは
ガラス基材の法線方向の厚みが最小部で70μmで樹脂
厚差が230μmである。
The radius of curvature of 22.386 mm is 290 μm at the minimum thickness in the normal direction of the glass substrate and the resin thickness difference is 10 μm, and the radius of curvature of 22.807 mm is in the normal direction of the glass substrate. The minimum thickness is 70 μm and the resin thickness difference is 230 μm.

【0052】曲率半径が22.386mmのガラス基材
では離型に数MPa以上の圧力を要し、樹脂の一部が型
に残っていた。また、曲率半径を22.807mmにし
たものは離型は良好で凹凸部の欠けもなかったが、形状
が型から3μmずれていた。
With a glass substrate having a radius of curvature of 22.386 mm, a pressure of several MPa or more was required for mold release, and a part of the resin remained in the mold. Further, the mold having a radius of curvature of 22.807 mm had a good mold release and had no irregularities, but the shape was deviated from the mold by 3 μm.

【0053】ここで曲率半径22.386mmのガラス
基材を用い樹脂中心部を500μmになるようにして同
様に成形したところ、容易に離型し、形状も型からのず
れが0.2μmと良好であった。これは樹脂厚を変化さ
せることによりガラス基材の法線方向の樹脂厚の最大値
が中心部の500μm、最小値が外周部φ40mmで3
85μmでその差115μmになったためと考えられ
る。
When a glass base material having a radius of curvature of 22.386 mm was used to perform molding in the same manner so that the resin center portion was 500 μm, it was easily released and the shape was good with a deviation of 0.2 μm from the mold. Met. By changing the resin thickness, the maximum value of the resin thickness in the normal direction of the glass substrate is 500 μm in the central part, and the minimum value is 3 mm at the outer peripheral part φ40 mm.
It is considered that the difference became 115 μm at 85 μm.

【0054】以上のように、ガラス基材の法線方向の樹
脂厚の最大値と最小値の差を100μmとすることによ
り、離型性が悪いことによる樹脂の型への残存が無く、
形状精度も良好なガラス基材への樹脂の成形が可能とな
った。また、ガラス基材の曲率半径を変更せず、樹脂厚
を変更しても、ガラス基材の法線方向の樹脂厚の最大値
と最小値の差を20μm以上、200μm以下にするこ
とにより離型性や形状精度の向上を図れることが分かっ
た。
As described above, by setting the difference between the maximum value and the minimum value of the resin thickness in the normal direction of the glass base material to 100 μm, the resin does not remain in the mold due to poor releasability.
It has become possible to mold a resin on a glass substrate with good shape accuracy. Even if the resin thickness is changed without changing the radius of curvature of the glass base material, the difference between the maximum value and the minimum value of the resin thickness in the normal direction of the glass base material is set to 20 μm or more and 200 μm or less. It was found that the moldability and shape accuracy could be improved.

【0055】[0055]

【発明の効果】以上説明したように本発明によれば、離
型性がよく、形状精度も良好な光エネルギー硬化型樹脂
のガラス基材への接合成形ができ、微細な凹凸部を有す
る素子の凹凸部の欠けや樹脂の型への残存を抑えること
ができる。
As described above, according to the present invention, it is possible to form a light energy curable resin having a good mold releasability and a good shape accuracy on a glass substrate by bonding, and having a fine uneven portion. It is possible to suppress the chipping of the uneven portion and the residual resin in the mold.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態での成形工程を示す概略図であ
る。
FIG. 1 is a schematic view showing a molding process in a first embodiment.

【図2】第1の実施形態で用いる型表面の微細形状を示
す図である。
FIG. 2 is a diagram showing a fine shape of a mold surface used in the first embodiment.

【図3】第2の実施形態で用いる型とガラス基材及び成
形品を示す概略図である。
FIG. 3 is a schematic view showing a mold, a glass base material and a molded product used in the second embodiment.

【図4】第2の実施形態で用いる型表面の微細形状を示
す図である。
FIG. 4 is a view showing a fine shape of a mold surface used in the second embodiment.

【図5】第2の実施形態で用いるもうひとつのガラス基
材を示す概略図である。
FIG. 5 is a schematic view showing another glass substrate used in the second embodiment.

【図6】第3の実施形態で用いる型とガラス基材及び成
形品を示す概略図である。
FIG. 6 is a schematic view showing a mold, a glass base material and a molded product used in the third embodiment.

【図7】第3の実施形態で用いる型表面の形状を示す図
である。
FIG. 7 is a diagram showing a shape of a mold surface used in a third embodiment.

【図8】第4の実施形態で用いる型とガラス基材及び成
形品を示す概略図である。
FIG. 8 is a schematic view showing a mold, a glass base material and a molded product used in the fourth embodiment.

【図9】第4の実施形態で用いる型表面の形状を示す図
である。
FIG. 9 is a view showing the shape of the mold surface used in the fourth embodiment.

【図10】第5の実施形態で用いる型とガラス基材及び
成形品を示す概略図である。
FIG. 10 is a schematic view showing a mold, a glass base material and a molded product used in the fifth embodiment.

【図11】本発明の実施形態の作用を説明するガラス基
材と樹脂厚の組み合わせを示す図である。
FIG. 11 is a diagram showing a combination of a glass base material and a resin thickness for explaining the operation of the embodiment of the present invention.

【図12】表面に微細形状をもつ光学素子の概略図であ
る。
FIG. 12 is a schematic view of an optical element having a fine shape on the surface.

【符号の説明】[Explanation of symbols]

1,5,6,8,13,17,21,26,28,3
0,32 光エネルギー硬化型樹脂樹脂 2,9,14,18,22 型 3 ディスペンサー 4,10,12,15,19,23,27,29,3
1,33 ガラス基材 7,11,16,20,24 成形品 25,34 光学素子
1, 5, 6, 8, 13, 17, 21, 21, 26, 28, 3
0,32 Light energy curable resin 2,9,14,18,22 type 3 Dispenser 4,10,12,15,19,23,27,29,3
1,33 Glass base material 7,11,16,20,24 Molded article 25,34 Optical element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 5/18 G02B 5/18 // B29K 101:10 B29K 101:10 105:20 105:20 B29L 11:00 B29L 11:00 Fターム(参考) 2H049 AA03 AA33 AA40 AA45 AA70 4F202 AA44 AF01 AG03 AG05 AG26 AH73 CA09 CA11 CB01 CB13 CD02 CD18 CK11 CL02 CQ03 4F204 AA44 AD04 AG03 AG05 AG26 AH73 EA03 EA04 EB01 EB13 EB29 EF01 EF05 EF47 EK18 EK24 EK25 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G02B 5/18 G02B 5/18 // B29K 101: 10 B29K 101: 10 105: 20 105: 20 B29L 11: 00 B29L 11:00 F-term (reference) 2H049 AA03 AA33 AA40 AA45 AA70 4F202 AA44 AF01 AG03 AG05 AG26 AH73 CA09 CA11 CB01 CB13 CD02 CD18 CK11 CL02 CQ03 4F204 AA44 AD04 AG03 AG05 AG26 AH73 EA03 EF01 EB03 EA03 EA03 EA03 EA03 EA04 EA04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基材の表面に、型の成形面の形状が転写
された樹脂層を形成することにより、前記基材と前記樹
脂層が一体化された光学素子を製造するための光学素子
の製造方法であって、 前記樹脂層の前記基材表面の法線方向の厚みの最大値と
最小値の差を20μm以上200μm以下に設定して、
前記樹脂層を成形することを特徴とする光学素子の製造
方法。
1. An optical element for producing an optical element in which the base material and the resin layer are integrated by forming a resin layer on the surface of the base material, on which the shape of the molding surface of the mold is transferred. And a difference between the maximum value and the minimum value of the thickness of the resin layer in the normal direction of the surface of the base material is set to 20 μm or more and 200 μm or less,
A method for manufacturing an optical element, which comprises molding the resin layer.
【請求項2】 前記型の成形面が、高さ50μm以下の
微細な凹凸形状を有することを特徴とする請求項1に記
載の光学素子の製造方法。
2. The method of manufacturing an optical element according to claim 1, wherein the molding surface of the mold has a fine concavo-convex shape having a height of 50 μm or less.
【請求項3】 前記型の成形面が、非球面形状を有する
ことを特徴とする請求項1に記載の光学素子の製造方
法。
3. The method of manufacturing an optical element according to claim 1, wherein the molding surface of the mold has an aspherical shape.
【請求項4】 前記基材は、ガラスからなることを特徴
とする請求項1に記載の光学素子の製造方法。
4. The method for manufacturing an optical element according to claim 1, wherein the base material is made of glass.
【請求項5】 前記樹脂層を形成する樹脂は、光エネル
ギー硬化型樹脂であることを特徴とする請求項1に記載
の光学素子の製造方法。
5. The method of manufacturing an optical element according to claim 1, wherein the resin forming the resin layer is a light energy curable resin.
【請求項6】 請求項1乃至5のいずれか1項に記載の
製造方法により製造されたことを特徴とする光学素子。
6. An optical element manufactured by the manufacturing method according to claim 1.
JP2002074519A 2002-03-18 2002-03-18 Optical element and manufacturing method therefor Pending JP2003266450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074519A JP2003266450A (en) 2002-03-18 2002-03-18 Optical element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074519A JP2003266450A (en) 2002-03-18 2002-03-18 Optical element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003266450A true JP2003266450A (en) 2003-09-24

Family

ID=29203894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074519A Pending JP2003266450A (en) 2002-03-18 2002-03-18 Optical element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003266450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132265A1 (en) * 2005-06-07 2006-12-14 Sharp Kabushiki Kaisha Condensing photovoltaic power generation unit and condensing photovoltaic power generation system, and condensing lens, condensing lens structure, and production method of condensing lens structure
WO2012108457A1 (en) 2011-02-08 2012-08-16 浜松ホトニクス株式会社 Optical element and method of manufacturing same
WO2014024565A1 (en) 2012-08-06 2014-02-13 浜松ホトニクス株式会社 Optical element, and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132265A1 (en) * 2005-06-07 2006-12-14 Sharp Kabushiki Kaisha Condensing photovoltaic power generation unit and condensing photovoltaic power generation system, and condensing lens, condensing lens structure, and production method of condensing lens structure
US8237044B2 (en) 2005-06-07 2012-08-07 Sharp Kabushiki Kaisha Concentrating solar power generation unit, concentrating solar power generation apparatus, concetrating lens, concentrating lens structure, and method of manufacturing concentrating lens structure
WO2012108457A1 (en) 2011-02-08 2012-08-16 浜松ホトニクス株式会社 Optical element and method of manufacturing same
US9360599B2 (en) 2011-02-08 2016-06-07 Hamamatsu Photonics K.K. Optical element and method of manufacturing same
WO2014024565A1 (en) 2012-08-06 2014-02-13 浜松ホトニクス株式会社 Optical element, and method for producing same
JP2014032368A (en) * 2012-08-06 2014-02-20 Hamamatsu Photonics Kk Optical element and manufacturing method thereof
US9594197B2 (en) 2012-08-06 2017-03-14 Hamamatsu Photonics K.K. Optical element, and method for producing same
US10386552B2 (en) 2012-08-06 2019-08-20 Hamamatsu Photonics K.K. Optical element, and method for producing same

Similar Documents

Publication Publication Date Title
KR101020634B1 (en) Manufacturing method of lens having nanopattern
US6989932B2 (en) Method of manufacturing micro-lens
US20080055736A1 (en) Optical element and production device for producing same
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
JP4781001B2 (en) Compound lens manufacturing method
US8154794B2 (en) Imaging lens and method of manufacturing the same
JPH06254868A (en) Manufacture of composite precisely molded product
JP2003266450A (en) Optical element and manufacturing method therefor
JP4612801B2 (en) Mold, composite optical element manufacturing method, and composite optical element
JP2006220734A (en) Ceramic hybrid lens and manufacturing method thereof
JP2003011140A (en) Method and apparatus for demolding diffraction optical element
JP3191447B2 (en) Method of manufacturing resin-bonded aspheric lens
JP2007025297A (en) Manufacturing method of compound lens
JP4481531B2 (en) Optical element
JPH02234103A (en) Resin cemented type aspherical lens
JP2000241608A (en) Resin bonded optical element and manufacture therefor
JP2003222706A (en) Optical element and its manufacturing method
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
JP2003222708A (en) Optical element and its manufacturing method
JPH0552481B2 (en)
JP2008299148A (en) Junction type optical element and manufacturing method therefor
JP2006220739A (en) Ceramic hybrid lens
WO2017195879A1 (en) Molded resin article molding method and molded resin article
JP2003159718A (en) Method for manufacturing compound aspheric lens
JP2006220816A (en) Method of manufacturing optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050902

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050909

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A02 Decision of refusal

Effective date: 20060310

Free format text: JAPANESE INTERMEDIATE CODE: A02