JP3544587B2 - Method for manufacturing composite optical element - Google Patents

Method for manufacturing composite optical element Download PDF

Info

Publication number
JP3544587B2
JP3544587B2 JP21496995A JP21496995A JP3544587B2 JP 3544587 B2 JP3544587 B2 JP 3544587B2 JP 21496995 A JP21496995 A JP 21496995A JP 21496995 A JP21496995 A JP 21496995A JP 3544587 B2 JP3544587 B2 JP 3544587B2
Authority
JP
Japan
Prior art keywords
resin layer
mold
optical element
resin
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21496995A
Other languages
Japanese (ja)
Other versions
JPH0957771A (en
Inventor
諭 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP21496995A priority Critical patent/JP3544587B2/en
Publication of JPH0957771A publication Critical patent/JPH0957771A/en
Application granted granted Critical
Publication of JP3544587B2 publication Critical patent/JP3544587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学素子基材上に樹脂層を載置した複合型光学素子の製造方法に関する。
【0002】
【従来の技術】
従来技術としては、特開平4−144718号公報がある。この方法は、金型と硬化した樹脂層を剥離する時に、樹脂層表面の光学性能に関係のない部分(有効直径外の部分)に荷重を加えることにより、金型と樹脂層の容易な剥離を実現するものであるが、樹脂層の光学性能に関係のある部分(有効直径内の部分)の形状は中心軸対称形状となっている。
【0003】
【発明が解決しようとする課題】
しかし、前記従来技術の方法では、金型と硬化した樹脂層を剥離する時に、樹脂層の光学性能に関係のない部分に荷重を加えているので、複合型光学素子の直径を有効直径に対してある程度大きくする必要がある。荷重を加える部分が狭いと、半径方向において部分的に応力が集中するので、有効直径内の樹脂部が有効直径外の樹脂部の変形の影響を受けて、樹脂層表面が所望の光学面形状にならないという問題が発生する。また、光学素子基材が破損するという問題も同時に発生する場合がある。
【0004】
そこで、荷重を加える部分の幅を広くすると、必然的に複合型光学素子自体の直径も大きくなる。当然のことながら、ここで製造した複合型光学素子を用いる製品も大きくなる。
【0005】
しかし、カメラ等の分野では製品の小型化の競争が激しく、性能に直接関係のない部分が増えることは望ましくない。特に、小さくすること自体がメリットの一つであるコンパクトカメラのような製品では、魅力が著しく損なわれるという致命的な問題となる。
【0006】
本発明は、上記従来技術の問題点に鑑みてなされたもので、光学性能に関係する樹脂層の有効直径よりも外側に、金型と硬化した樹脂層を剥離する時に荷重を加えるための部分を設ける必要がない、直径の小さな複合型光学素子を製造することができる複合型光学素子の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下のように構成した。
請求項1の発明は、光学素子基材成形面にエネルギー硬化型の樹脂を供給し、金型と光学素子基材とを相対的に接近させることにより前記樹脂を押し広げて金型と光学素子基材との間に所望の樹脂層を形成した後、エネルギーの照射により樹脂層を硬化させ、その後に硬化した樹脂層と金型とを剥離する複合型光学素子の製造方法において、形成する樹脂層のうち光学性能に関係のある部分を光学素子基材成形面の中心軸に対して非軸対称形状とし、かつ光学素子基材成形面の中心軸上の点を中心とする樹脂層の有効直径の最大値を直径とした円内における光学性能に無関係な部分に荷重を加え、金型と硬化した樹脂層との剥離を行うこととした。
【0008】
請求項2の発明は、請求項1の構成にあって、光学性能に無関係な部分が樹脂層であるようにした。
【0009】
請求項3の発明は、請求項1の構成にあって、光学性能に無関係な部分が光学素子基材であるようにした。。
【0010】
請求項1の作用を説明する。
現在、一般に使用されているフィルムは長方形なので、フィルム面に届く光線は必ずしも光学素子基材の中心軸を中心とする軸対称形状である必要はない。したがって、複合型光学素子の光学性能に関係がある有効直径自体も必ずしも軸対称形状である必要はない。
【0011】
しかし、複合型光学素子の基材としてはガラスが用いられることが多いが、ガラスは軸対称形状に加工するよりも非軸対称形状に加工する方がコストがかかる。また、複合型光学素子の製造では基材上に載置した樹脂を金型で押圧して樹脂層を形成するので、前記基材が非軸対称形状の場合は、製造時の位置決め等の作業において動作数が増えるため好ましくない。これに対し、基材上に載置する樹脂層はある程度自由な形状とすることが可能である。樹脂層を形成する金型は一旦製作すれば長期間使用できるので、基材を非軸対称形状に加工する場合に比べるとコストはほとんど無視できる。
【0012】
そこで、中心軸対称形状の基材上に、光学性能に関係のある部分が非軸対称形状の樹脂層を載置すれば、金型と硬化した樹脂層を剥離する時に光学性能に無関係な部分に荷重をかけることにより、従来技術と同様な手段で金型と樹脂層の容易な剥離が実現可能となる。
【0013】
そして、請求項2の構成にあっては、樹脂層自体を軸対称形状とし、樹脂層の光学性能に関係のある部分を非軸対称形状にすることで、樹脂層の硬化が完了した直後に、まずは樹脂層の光学性能に無関係な部分において金型と樹脂層を剥離し、次に金型を剥離した樹脂層に荷重を加えて金型と複合型光学素子との剥離がなされる。
【0014】
また、請求項3の構成にあっては、樹脂層自体を非軸対称形状とし、樹脂層の硬化が完了した後にそのまま基材上の樹脂層を形成していない部分に荷重を加えて金型と複合型光学素子との剥離がなされる。
【0015】
【発明の実施の形態】
[発明の実施の形態1]
本発明の実施の形態1を図1〜図10に基づいて説明する。
図1に示すように、両面が凹面のガラス製の光学素子基材(以下、基材という)2に樹脂5が必要量吐出されている。基材2の成形面(樹脂層を載置する面)の曲率半径は100mm、非成形面(樹脂層を載置しない面)の曲率半径は80mm、外径は25mmである。また、樹脂5の必要量は予め求められているものとする。
【0016】
一方、本実施の形態に用いる金型1は、基材2上に所望の樹脂層表面を形成するための光学面(樹脂層を押圧する面)1aを有し、かつ中心軸が基材2の中心軸と同一で上下動自在に保持されている。金型1の光学面1aの外周部の形状(輪郭)は非軸対称形状をしており、金型1の光学面1aの中心軸上の点を原点として中心軸に垂直なxy平面上に、金型1の光学面1aの外周部の各点を中心軸に平行に移動させると、図2に示すようにx軸に対して上下50度の範囲は直径25mmの円弧1b形状で、その他の部分は2つの円弧1bの端点を結ぶy座標が一定の直線1c形状である。
【0017】
次に、金型1を下降して基材2に近づけることにより、光学面1aで樹脂5を広げて所望の厚さの樹脂層3を形成する工程を説明する。
基材2上に形成する樹脂層3の光学性能に関係のある部分は、x軸に対して上下45度の範囲が直径24mmの円弧で、その他の部分が2つの端点を結ぶy座標が一定の直線で囲まれた領域である。金型1を下降して樹脂5を押圧すると、樹脂5が金型1の光学面1aの外周部からはみ出す直前までは、図3(x軸方向から見た中心軸を含む断面図)および図4(y軸方向から見た中心軸を含む断面図)に示すように、樹脂5は基材2上で同心円状に広がる。そして、さらに金型1を下降すると、樹脂5が金型1の光学面1aの直線1c形状部分からはみ出す。樹脂5が金型1の光学面1aの外周部からはみ出すと(はみ出した部分の表面を5aとする)、まだ押圧されている樹脂5とそれ以外では樹脂5が半径方向に広がる速度が異なり、図5(x軸方向から見た中心軸を含む断面図)および図6(y方向から見た中心軸を含む断面図)に示すように、基材2上の樹脂5の形状は同心円状ではなくなる。すなわち、樹脂5の金型1の光学面1aの外周部からはみ出した部分5aは金型1を下降させることによる圧力を受けないので、半径方向にはほとんど広がらず、垂直方向に広がるためである。そして、中心軸上の樹脂層3が所望の厚さになる時点まで金型1を下降し、所望の樹脂層3を形成する。この時、図7に示すように前記光学性能に関係のある領域全体に樹脂5が押し広げられるように、予め基材2上に吐出する樹脂5の量を調整しておく必要がある。なお、図7は樹脂層3を中心軸に平行な方向から基板2の方向を見た平面図である。
【0018】
次に、この状態で基材2の下方から不図示の手段により紫外線を照射し、樹脂層3を硬化する。そして、エネルギーの照射が完了した時点では金型1、基材2および硬化した樹脂層3が一体となった密着体が形成されている。
【0019】
次に、図8に示すように、前記密着体を上昇させると、基材2の樹脂層3を形成していない部分の上方に予め設けられていた剥離用の部材4が基材2の表面2aと接触する。すると、基材2の表面2a上の剥離用の部材4が接触した部分にまず荷重が集中し、その後荷重が基材2の全体に分散する。そして、このまま前記密着体の上昇を続けると、図9に示すように金型1から樹脂層3が剥離し、基材2と樹脂層3が一体となった複合型光学素子6が得られる。図10に製造した複合型光学素子6を上から見た図を示す。
【0020】
本発明の実施の形態の製造方法によると、基材2を最大有効直径よりも僅かに大きくしただけで、金型1と硬化した樹脂層3の容易な剥離を実現することができる。
【0021】
[発明の実施の形態2]
本発明の実施の形態2を図11〜図15に基づいて説明する。
図11に示すように、両面が凹面のガラス製の基材12に樹脂15が必要量吐出されている。基材12の成形面(樹脂層を載置する面)の曲率半径は100mm、非成形面(樹脂層を載置しない面)の曲率半径は80mm、外径は42mmである。また、樹脂15の必要量は予め求められているものとする。
【0022】
一方、本実施の形態に用いる金型11は、図13および図14に示すように、軸方向へ相対的に移動可能なA型11aとB型11bを組み合わせて構成され、A型11aとB型11bの端面を段差のない状態にして樹脂15を押圧する型光学面に形成し、直径42mmの軸対称形状となっている。すなわち、金型11の型光学面の中心軸上の点を原点として、中心軸をz軸、この中心軸に垂直で、かつ互いに垂直な方向にx,y軸を設定すると、図12に示すように、x軸からの距離が19mmの位置で光学性能に関係のある部分を含めて押圧するA型11aと光学性能に無関係な部分のみを押圧するB型11bの互いに上下動自在な2部品に分割されており、A型11a、B型11bともに所望の樹脂層表面を形成するための光学面を有し、かつ金型11の中心軸は基材12の中心軸と同一になっている。
【0023】
次に、複合型光学素子の製造方法を説明する。
まず、図13に示すように、A型11aの光学面とB型11bの光学面の境界において段差がない状態で、金型11を下降して基材12に近づけることにより基材12上で樹脂15を押し広げ、所望の厚さの樹脂層13を形成する位置で金型11の下降を停止する。
【0024】
次に、この状態で基材12の下方から不図示の手段により紫外線を照射し、樹脂層13を硬化する。そして、エネルギーの照射が完了した時点では金型11、基材12および硬化した樹脂層13が一体となった密着体が形成されている。
【0025】
次に、図14に示すように、B型11bを上昇し、光学性能に無関係な部分のB型11bを前記密着体から剥離する。この時、B型11bが樹脂層13と密着している光学面の面積は、A型11aが樹脂層13と密着している光学面の面積に比べて少なく、A型11aと樹脂層13は互いに固定されているので、B型11bは樹脂層13の表面13aから容易に剥離できる。そして、B型11bを樹脂層13表面から剥離した後に、予め基材12の有効直径よりも外側に設けられていた剥離用の部材14を、B型11bを剥離した部分の樹脂層13の表面13a上方に移動させる。
【0026】
次に、A型11aと樹脂層13と基材12の密着体を上昇させると、剥離用の部材14が樹脂層13の表面13aと接触し、まず樹脂層13の表面13a上の剥離用の部材14が接触した部分に荷重が集中し、その後に荷重が樹脂層13から基材12の全体に分散する。そして、このまま前記密着体の上昇を続けると、図15に示すように、A型11aから基材12と樹脂層13が一体となった複合型光学素子16が剥離される。製造した複合型光学素子16の樹脂層13の表面13aには、金型11の型光学面を形成するA型11aの光学面とB型11bの光学面による境界線の跡や、剥離用の部材14で押圧した跡が残るが、この部分は光学性能に関係のない部分なので、性能上全く問題はない。
【0027】
本発明の実施の形態の製造方法によると、基材12を最大有効直径よりも僅かに大きくしただけで、金型11と硬化した樹脂層13の容易な剥離を実現することができる。
【0028】
【発明の効果】
以上のように、本発明の請求項1〜3に係る複合型光学素子の製造方法によれば、光学素子基材を樹脂層の光学性能に関係する最大有効直径よりも僅かに大きくしただけで、金型と硬化した樹脂層の容易な剥離を実現することができ、製品の小型化の要求に対応し得る複合型光学素子を製造することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の一工程を示す断面図で、基材上に樹脂を吐出した状態を示している。
【図2】本発明の実施の形態1に用いる金型の光学面を示す平面図である。
【図3】本発明の実施の形態1の一工程を示す断面図で、図2のx軸の方向から見た図である。
【図4】本発明の実施の形態1の一工程を示す断面図で、図2のy軸の方向から見た図である。
【図5】本発明の実施の形態1の一工程を示す断面図で、図2のx軸の方向から見た図である。
【図6】本発明の実施の形態1の一工程を示す断面図で、図2のy軸の方向から見た図である。
【図7】本発明の実施の形態1により基材上に形成する樹脂層を示す平面図である。
【図8】本発明の実施の形態1の一工程を示す断面図で、樹脂層と金型を剥離する状態を示している。
【図9】本発明の実施の形態1の一工程を示す断面図で、金型と複合型光学素子を剥離した状態を示している。
【図10】本発明の実施の形態1により製造した複合型光学素子を示す平面図である。
【図11】本発明の実施の形態2の一工程を示す断面図で、基材上に樹脂を吐出した状態を示している。
【図12】本発明の実施の形態2に用いる金型の光学面を示す平面図である。
【図13】本発明の実施の形態2の一工程を示す断面図で、樹脂層を形成した状態を示している。
【図14】本発明の実施の形態2の一工程を示す断面図で、一方の金型を樹脂から剥離した状態を示している。
【図15】本発明の実施の形態2の一工程を示す断面図で、金型と複合型光学素子を剥離した状態を示している。
【符号の説明】
1,11 金型
2,12 光学素子基材
3,13 樹脂層
4,14 剥離用の部材
5,15 樹脂
6,16 複合型光学素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a composite optical element in which a resin layer is mounted on an optical element substrate.
[0002]
[Prior art]
As a prior art, there is JP-A-4-144718. In this method, when the mold and the cured resin layer are separated from each other, a load is applied to a portion (portion outside the effective diameter) which is not related to the optical performance of the resin layer surface, so that the mold and the resin layer can be easily separated. However, the shape of the portion (the portion within the effective diameter) related to the optical performance of the resin layer is symmetric with respect to the central axis.
[0003]
[Problems to be solved by the invention]
However, in the method of the prior art, when the mold and the cured resin layer are peeled off, a load is applied to a portion not related to the optical performance of the resin layer. Need to be somewhat larger. If the part to which the load is applied is narrow, stress is concentrated locally in the radial direction, so that the resin part within the effective diameter is affected by the deformation of the resin part outside the effective diameter, and the resin layer surface has the desired optical surface shape. The problem that does not become. In addition, a problem that the optical element base material is damaged may occur at the same time.
[0004]
Therefore, if the width of the portion to which a load is applied is increased, the diameter of the composite optical element itself naturally increases. As a matter of course, products using the composite optical element manufactured here also become large.
[0005]
However, in the field of cameras and the like, competition for miniaturization of products is fierce, and it is not desirable to increase parts that are not directly related to performance. In particular, a product such as a compact camera, which is one of the merits of reducing the size itself, is a fatal problem that the attractiveness is significantly impaired.
[0006]
The present invention has been made in view of the above-described problems of the related art, and has a portion for applying a load when the mold and the cured resin layer are peeled off outside the effective diameter of the resin layer related to optical performance. It is an object of the present invention to provide a method of manufacturing a composite optical element capable of manufacturing a composite optical element having a small diameter, which does not need to be provided.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configuration.
The invention according to claim 1 is to supply an energy-curable resin to a molding surface of an optical element substrate, and to make the mold and the optical element substrate relatively close to each other to spread out the resin, thereby forming a mold and an optical element. After forming a desired resin layer between the base material, the resin layer is cured by irradiating energy, and then the resin to be formed in the method of manufacturing a composite optical element in which the cured resin layer and the mold are separated. The portion of the layer related to the optical performance has a non-axially symmetric shape with respect to the central axis of the optical element substrate molding surface, and the resin layer is effective around a point on the central axis of the optical element substrate molding surface. A load is applied to a portion of the circle having the maximum value of the diameter, which is not related to the optical performance, to separate the mold from the cured resin layer.
[0008]
According to a second aspect of the present invention, in the configuration of the first aspect, the portion irrelevant to the optical performance is a resin layer.
[0009]
According to a third aspect of the present invention, in the configuration of the first aspect, the portion irrelevant to the optical performance is an optical element substrate. .
[0010]
The operation of claim 1 will be described.
At present, since a generally used film is rectangular, a light beam reaching the film surface does not necessarily have to be axially symmetric about the central axis of the optical element substrate. Therefore, the effective diameter itself related to the optical performance of the composite optical element does not necessarily have to be axially symmetric.
[0011]
However, glass is often used as the base material of the composite optical element, but it is more costly to process glass into a non-axially symmetric shape than to process it into an axially symmetric shape. In the manufacture of a composite optical element, the resin placed on the base material is pressed with a mold to form a resin layer. Therefore, when the base material has a non-axisymmetric shape, operations such as positioning during manufacture are performed. Is not preferable because the number of operations increases. On the other hand, the resin layer placed on the base material can have a free shape to some extent. Once the mold for forming the resin layer is manufactured, it can be used for a long period of time, so that the cost is almost negligible compared to the case where the base material is processed into a non-axisymmetric shape.
[0012]
Therefore, if a portion related to optical performance is placed on a non-axially symmetric resin layer on a center axis symmetric base material, a portion unrelated to optical performance when the mold and the cured resin layer are peeled off. By applying a load to the mold, the mold and the resin layer can be easily peeled off by the same means as in the prior art.
[0013]
In the configuration of claim 2, the resin layer itself has an axially symmetric shape, and a portion related to the optical performance of the resin layer has a non-axially symmetric shape, so that immediately after the curing of the resin layer is completed. First, the mold and the resin layer are separated from each other in a portion of the resin layer that is not related to the optical performance, and then the mold is separated from the composite optical element by applying a load to the resin layer from which the mold has been separated.
[0014]
Further, in the configuration of claim 3, the resin layer itself has a non-axisymmetric shape, and after the resin layer is completely cured, a load is applied to a portion of the base material where the resin layer is not formed as it is. And the composite optical element are separated.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment of the Invention]
First Embodiment A first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a required amount of resin 5 is discharged onto an optical element substrate (hereinafter, referred to as a substrate) 2 made of glass having concave surfaces on both sides. The radius of curvature of the molding surface (the surface on which the resin layer is placed) of the substrate 2 is 100 mm, the radius of curvature of the non-molding surface (the surface on which the resin layer is not placed) is 80 mm, and the outer diameter is 25 mm. Also, it is assumed that the required amount of the resin 5 is obtained in advance.
[0016]
On the other hand, the mold 1 used in the present embodiment has an optical surface (a surface that presses the resin layer) 1a for forming a desired resin layer surface on the substrate 2, and the central axis is And is held movably up and down with the same central axis. The shape (outline) of the outer peripheral portion of the optical surface 1a of the mold 1 is non-axially symmetric, and the point on the central axis of the optical surface 1a of the mold 1 is defined as an origin on an xy plane perpendicular to the central axis. When the points on the outer peripheral portion of the optical surface 1a of the mold 1 are moved in parallel with the central axis, as shown in FIG. Is a straight line 1c having a constant y coordinate connecting the end points of the two arcs 1b.
[0017]
Next, a step of forming the resin layer 3 having a desired thickness by spreading the resin 5 on the optical surface 1a by lowering the mold 1 to approach the substrate 2 will be described.
The portion related to the optical performance of the resin layer 3 formed on the base material 2 is a circular arc having a diameter of 24 mm in a range of 45 degrees above and below the x axis, and the other portion has a constant y coordinate connecting two end points. Area surrounded by the straight line. When the resin 5 is pressed down by lowering the mold 1, the resin 5 is shown in FIG. 3 (a cross-sectional view including the central axis viewed from the x-axis direction) and the figure until immediately before the resin 5 protrudes from the outer peripheral portion of the optical surface 1 a of the mold 1. As shown in FIG. 4 (a cross-sectional view including the central axis viewed from the y-axis direction), the resin 5 spreads concentrically on the base material 2. When the mold 1 is further lowered, the resin 5 protrudes from the linear 1c-shaped portion of the optical surface 1a of the mold 1. When the resin 5 protrudes from the outer peripheral portion of the optical surface 1a of the mold 1 (the surface of the protruding portion is referred to as 5a), the speed at which the resin 5 spreads in the radial direction is different from that of the resin 5 which is still pressed, As shown in FIG. 5 (cross-sectional view including the central axis viewed from the x-axis direction) and FIG. 6 (cross-sectional view including the central axis viewed from the y-direction), the shape of the resin 5 on the base material 2 is not concentric. Disappears. That is, since the portion 5a of the resin 5 protruding from the outer peripheral portion of the optical surface 1a of the mold 1 is not subjected to the pressure caused by lowering the mold 1, it hardly spreads in the radial direction but spreads in the vertical direction. . Then, the mold 1 is lowered until the resin layer 3 on the central axis has a desired thickness, and the desired resin layer 3 is formed. At this time, as shown in FIG. 7, the amount of the resin 5 to be discharged onto the base material 2 needs to be adjusted in advance so that the resin 5 can be spread over the entire area related to the optical performance. FIG. 7 is a plan view of the resin layer 3 as viewed from the direction parallel to the central axis of the substrate 2.
[0018]
Next, in this state, the resin layer 3 is cured by irradiating ultraviolet rays from below the substrate 2 by means (not shown). Then, when the energy irradiation is completed, a close contact body in which the mold 1, the base material 2, and the cured resin layer 3 are integrated is formed.
[0019]
Next, as shown in FIG. 8, when the contact body is lifted, the peeling member 4 previously provided above the portion of the base material 2 where the resin layer 3 is not formed becomes the surface of the base material 2. 2a. Then, the load is first concentrated on the portion of the surface 2 a of the substrate 2 where the peeling member 4 is in contact, and then the load is dispersed throughout the substrate 2. Then, as the contact body continues to rise, the resin layer 3 is separated from the mold 1 as shown in FIG. 9, and the composite optical element 6 in which the base material 2 and the resin layer 3 are integrated is obtained. FIG. 10 shows a view of the manufactured composite optical element 6 as viewed from above.
[0020]
According to the manufacturing method of the embodiment of the present invention, easy separation of the mold 1 and the cured resin layer 3 can be realized only by making the substrate 2 slightly larger than the maximum effective diameter.
[0021]
[Embodiment 2]
Embodiment 2 of the present invention will be described with reference to FIGS.
As shown in FIG. 11, a required amount of resin 15 is discharged onto a glass substrate 12 having concave surfaces on both sides. The radius of curvature of the molding surface (the surface on which the resin layer is placed) of the substrate 12 is 100 mm, the radius of curvature of the non-molding surface (the surface on which the resin layer is not placed) is 80 mm, and the outer diameter is 42 mm. It is also assumed that the required amount of the resin 15 is determined in advance.
[0022]
On the other hand, as shown in FIGS. 13 and 14, the mold 11 used in the present embodiment is configured by combining an A mold 11a and a B mold 11b which are relatively movable in the axial direction. The end face of the mold 11b is formed on the mold optical surface that presses the resin 15 with no step, and has an axially symmetric shape with a diameter of 42 mm. That is, when a point on the center axis of the mold optical surface of the mold 11 is set as the origin, the center axis is set as the z axis, and the x and y axes are set in directions perpendicular to the center axis and perpendicular to each other, as shown in FIG. As described above, an A-type 11a for pressing a portion related to optical performance including a portion related to optical performance and a B-type 11b for pressing only a portion unrelated to optical performance at a position at a distance of 19 mm from the x-axis, which are vertically movable with respect to each other. Each of the A-type 11a and the B-type 11b has an optical surface for forming a desired resin layer surface, and the center axis of the mold 11 is the same as the center axis of the base material 12. .
[0023]
Next, a method for manufacturing the composite optical element will be described.
First, as shown in FIG. 13, the mold 11 is lowered to approach the base material 12 with no step at the boundary between the optical surface of the A type 11a and the optical surface of the B type 11b, so that The resin 15 is spread and the lowering of the mold 11 is stopped at a position where the resin layer 13 having a desired thickness is formed.
[0024]
Next, in this state, the resin layer 13 is cured by irradiating ultraviolet rays from below the substrate 12 by means (not shown). Then, when the energy irradiation is completed, a close contact body in which the mold 11, the base material 12, and the cured resin layer 13 are integrated is formed.
[0025]
Next, as shown in FIG. 14, the B-type 11b is lifted, and a portion of the B-type 11b irrelevant to the optical performance is peeled off from the close contact body. At this time, the area of the optical surface where the B type 11b is in close contact with the resin layer 13 is smaller than the area of the optical surface where the A type 11a is in close contact with the resin layer 13, and the A type 11a and the resin layer 13 are Since they are fixed to each other, the B-type 11b can be easily separated from the surface 13a of the resin layer 13. Then, after the B-type 11b is peeled off from the surface of the resin layer 13, the peeling member 14 previously provided outside the effective diameter of the base material 12 is removed from the surface of the resin layer 13 where the B-type 11b is peeled off. 13a.
[0026]
Next, when the adhered body of the A-type 11a, the resin layer 13 and the base material 12 is raised, the peeling member 14 comes into contact with the surface 13a of the resin layer 13, and first, the peeling member 14 on the surface 13a of the resin layer 13 is formed. The load is concentrated on the portion where the member 14 contacts, and thereafter the load is dispersed from the resin layer 13 to the entire base material 12. Then, if the contact body continues to rise, the composite optical element 16 in which the base material 12 and the resin layer 13 are integrated from the A type 11a is peeled off as shown in FIG. The surface 13a of the resin layer 13 of the manufactured composite optical element 16 has traces of boundaries between the optical surface of the A-type 11a and the optical surface of the B-type 11b, which form the mold optical surface of the mold 11, and the surface for separation. Although traces of pressing by the member 14 remain, there is no problem in performance since this portion is not related to optical performance.
[0027]
According to the manufacturing method of the embodiment of the present invention, easy separation of the mold 11 and the cured resin layer 13 can be realized only by making the base material 12 slightly larger than the maximum effective diameter.
[0028]
【The invention's effect】
As described above, according to the method for manufacturing a composite optical element according to claims 1 to 3 of the present invention, the optical element base is only slightly larger than the maximum effective diameter related to the optical performance of the resin layer. In addition, it is possible to realize easy separation between the mold and the cured resin layer, and to manufacture a composite optical element capable of responding to a demand for miniaturization of a product.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one step of Embodiment 1 of the present invention, showing a state where a resin is discharged onto a base material.
FIG. 2 is a plan view showing an optical surface of a mold used in the first embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating one step of the first embodiment of the present invention, as viewed from the direction of the x-axis in FIG. 2;
FIG. 4 is a cross-sectional view illustrating one step of the first embodiment of the present invention, as viewed from the direction of the y-axis in FIG. 2;
FIG. 5 is a cross-sectional view showing one step of the first embodiment of the present invention, as viewed from the direction of the x-axis in FIG. 2;
FIG. 6 is a cross-sectional view showing one step of the first embodiment of the present invention, as viewed from the direction of the y-axis in FIG. 2;
FIG. 7 is a plan view showing a resin layer formed on a base material according to the first embodiment of the present invention.
FIG. 8 is a cross-sectional view showing one step of the first embodiment of the present invention, showing a state in which the resin layer and the mold are separated.
FIG. 9 is a cross-sectional view showing one step of the first embodiment of the present invention, and shows a state where the mold and the composite optical element are separated.
FIG. 10 is a plan view showing a composite optical element manufactured according to the first embodiment of the present invention.
FIG. 11 is a cross-sectional view showing one step of Embodiment 2 of the present invention, and shows a state where a resin is discharged onto a base material.
FIG. 12 is a plan view showing an optical surface of a mold used in Embodiment 2 of the present invention.
FIG. 13 is a cross-sectional view showing one step of Embodiment 2 of the present invention, showing a state where a resin layer is formed.
FIG. 14 is a cross-sectional view showing one step of Embodiment 2 of the present invention, and shows a state in which one mold is separated from a resin.
FIG. 15 is a cross-sectional view showing one step of Embodiment 2 of the present invention, and shows a state where the mold and the composite optical element are separated.
[Explanation of symbols]
1,11 Mold 2,12 Optical element substrate 3,13 Resin layer 4,14 Peeling member 5,15 Resin 6,16 Composite optical element

Claims (3)

光学素子基材成形面にエネルギー硬化型の樹脂を供給し、金型と光学素子基材とを相対的に接近させることにより前記樹脂を押し広げて金型と光学素子基材との間に所望の樹脂層を形成した後、エネルギーの照射により樹脂層を硬化させ、その後に硬化した樹脂層と金型とを剥離する複合型光学素子の製造方法において、形成する樹脂層のうち光学性能に関係のある部分を光学素子基材成形面の中心軸に対して非軸対称形状とし、かつ光学素子基材成形面の中心軸上の点を中心とする樹脂層の有効直径の最大値を直径とした円内における光学性能に無関係な部分に荷重を加え、金型と硬化した樹脂層との剥離を行うことを特徴とする複合型光学素子の製造方法。An energy-curable resin is supplied to the optical element substrate molding surface, and the resin is spread out by relatively bringing the mold and the optical element substrate closer to each other, so that the resin is spread between the mold and the optical element substrate. After the resin layer is formed, the resin layer is cured by irradiation of energy, and then the cured resin layer and the mold are separated from each other. Is asymmetrical with respect to the central axis of the optical element substrate molding surface, and the maximum effective diameter of the resin layer centered on a point on the central axis of the optical element substrate molding surface is defined as the diameter. A method for manufacturing a composite optical element, comprising applying a load to a portion irrelevant to optical performance in a circle defined above and separating the mold from the cured resin layer. 前記光学性能に無関係な部分が樹脂層であることを特徴とする請求項1記載の複合型光学素子の製造方法。2. The method according to claim 1, wherein the portion irrelevant to the optical performance is a resin layer. 前記光学性能に無関係な部分が光学素子基材であることを特徴とする請求項1記載の複合型光学素子の製造方法。2. The method according to claim 1, wherein the portion irrelevant to the optical performance is an optical element substrate.
JP21496995A 1995-08-23 1995-08-23 Method for manufacturing composite optical element Expired - Fee Related JP3544587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21496995A JP3544587B2 (en) 1995-08-23 1995-08-23 Method for manufacturing composite optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21496995A JP3544587B2 (en) 1995-08-23 1995-08-23 Method for manufacturing composite optical element

Publications (2)

Publication Number Publication Date
JPH0957771A JPH0957771A (en) 1997-03-04
JP3544587B2 true JP3544587B2 (en) 2004-07-21

Family

ID=16664561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21496995A Expired - Fee Related JP3544587B2 (en) 1995-08-23 1995-08-23 Method for manufacturing composite optical element

Country Status (1)

Country Link
JP (1) JP3544587B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988421B2 (en) * 2001-09-27 2007-10-10 株式会社ニコン Manufacturing method and manufacturing apparatus for resin bonded optical element

Also Published As

Publication number Publication date
JPH0957771A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
JP4310410B2 (en) Method for integrating multiple optical components at wafer level
WO2003090993A1 (en) Method of forming compound lens
JP3544587B2 (en) Method for manufacturing composite optical element
JP3999870B2 (en) Method for producing metal-rubber composite member
JP2005305875A (en) Mold, method for manufacturing composite optical element, and composite optical element
JP4481531B2 (en) Optical element
JPH0866972A (en) Manufacture of composite type optic
JP3184677B2 (en) Method for manufacturing composite optical element
JPH06254876A (en) Composite optical element and production thereof
JP2003222708A (en) Optical element and its manufacturing method
JP3802665B2 (en) Method for manufacturing composite optical element
JP3184658B2 (en) Composite optical element and method of manufacturing the same
JPH09248861A (en) Method and apparatus for producing composite optical element
JP2007164058A (en) Optical substrate, mold, and method for manufacturing compound optical elements
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
JP3228613B2 (en) Method for manufacturing composite optical element
JPH03129863A (en) Lead forming die
JP4496719B2 (en) Circuit pattern transfer mold and manufacturing method thereof
JPH10309726A (en) Manufacture of composite type optical element
JP2008299148A (en) Junction type optical element and manufacturing method therefor
JP2006088640A (en) Manufacturing method of composite optical element and composite optical element
JP2008230176A (en) Method of peeling sheet and its apparatus
TWI402163B (en) Method of making an optical element
JPH04123002A (en) Production of lens array and apparatus for producing this lens array
JP4060902B2 (en) Composite optical element and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees