JP2008299148A - Junction type optical element and manufacturing method therefor - Google Patents

Junction type optical element and manufacturing method therefor Download PDF

Info

Publication number
JP2008299148A
JP2008299148A JP2007146413A JP2007146413A JP2008299148A JP 2008299148 A JP2008299148 A JP 2008299148A JP 2007146413 A JP2007146413 A JP 2007146413A JP 2007146413 A JP2007146413 A JP 2007146413A JP 2008299148 A JP2008299148 A JP 2008299148A
Authority
JP
Japan
Prior art keywords
optical element
resin material
glass substrate
molding die
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007146413A
Other languages
Japanese (ja)
Inventor
Akira Kimura
亮 木村
Kenji Inoue
健二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007146413A priority Critical patent/JP2008299148A/en
Publication of JP2008299148A publication Critical patent/JP2008299148A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is very difficult to adjust optimum pressing force and a pressing process in detail, since there are a large number of parameters such as viscosity due to a curing resin material, a curing compression force generated when UV-cured, wettability therein between a filled resin and a molding die, and a curved face shape of a lens blank for the purpose of obtaining a junction type optical element high in reliability and mold releasability from the die, in a conventional optical element and molding process. <P>SOLUTION: An end part cut-out face 3 is provided in an end part of a glass base material 1, and 20°<θ<45° is satisfied where θ represents an angle formed with respect to an optical element face 4 adjacent thereto, in this junction type optical element of the present invention joined with a resin layer 2 comprising a photocuring type resin on one optical acting face of the glass base material 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガラス基材と光学樹脂材料を接合してなる接合型光学素子およびその製造方法に関するものである。   The present invention relates to a bonded optical element formed by bonding a glass substrate and an optical resin material, and a method for manufacturing the same.

接合型光学素子の光学材料としては、大きく分けて、ガラス材料と樹脂材料とに分けられる。このうち樹脂材料からなる光学素子は、非球面形状やレリーフパターンなどの微細形状を作成しやすい。それにより色収差や各種収差が軽減できるため、光学設計の自由度が増し、高機能な光学系の実現が可能となる。また、射出成形などの量産性に優れた方法で作成できるため、安価に供給できる。このため、ディジタルスチルカメラや、光ディスク装置のピックアップレンズ、またカメラ付き携帯電話用レンズなどにも幅広く用いられている。しかしながら、光学素子としての特性を満足できる樹脂材料の種類が少ないことや、機械的強度や環境に対する信頼性などの点で、ガラス材料を用いた光学素子に比べると劣るものがある。そこで、これら樹脂材料が持つ欠点を補うために、ガラス材料や樹脂材料などの異種材料を接合した光学素子、および製造方法が開示されている。従来からは、以下に示すようなレプリカ成形方法が提案されている(例えば、特許文献1参照)。   The optical material of the junction type optical element is roughly divided into a glass material and a resin material. Among these, an optical element made of a resin material is easy to create a fine shape such as an aspherical shape or a relief pattern. As a result, chromatic aberration and various aberrations can be reduced, so that the degree of freedom in optical design is increased and a high-performance optical system can be realized. Moreover, since it can produce by the method excellent in mass productivity, such as injection molding, it can supply cheaply. For this reason, it is widely used for a digital still camera, a pickup lens of an optical disk device, a lens for a mobile phone with a camera, and the like. However, there are some inferior to optical elements using glass materials in that there are few types of resin materials that can satisfy the characteristics as optical elements, and in terms of mechanical strength and environmental reliability. Therefore, in order to compensate for the drawbacks of these resin materials, an optical element in which different materials such as a glass material and a resin material are joined and a manufacturing method are disclosed. Conventionally, a replica forming method as described below has been proposed (see, for example, Patent Document 1).

レプリカ成形法において金型からの光学素子の離型性を向上させるために、特許文献1では、光硬化樹脂を、平面または曲面レンズブランクで押圧充填し、光照射することにより接合型光学素子を製造する方法において、離型時に界面剥離を発生させる充填硬化樹脂と成形型からなる界面の外周部での充填硬化樹脂面が成形型面となす充填硬化側で表した角θを90°<θ<180°とするようにしたものである。また光硬化時において、樹脂内部で連続的に発生する樹脂の硬化収縮力に比較して、硬化収縮力よりも常に大きな内部応力を、レンズブランクまたは成形型による光硬化性樹脂への押圧手段でもって、連続的に付加するようにしたものである。
特開2006−110882号公報
In Patent Document 1, in order to improve the releasability of the optical element from the mold in the replica molding method, the photocurable resin is pressed and filled with a flat or curved lens blank, and the bonded optical element is irradiated with light. In the manufacturing method, the angle θ expressed by the filling and curing side formed by the filling and curing resin surface at the outer peripheral portion of the interface between the filling and curing resin and the mold that generates interface peeling at the time of mold release is 90 ° <θ. <180 °. Also, during photocuring, an internal stress that is always greater than the curing shrinkage force compared to the resin shrinkage that occurs continuously inside the resin is applied to the photocurable resin by a lens blank or a mold. Thus, it is added continuously.
JP 2006-110882 A

しかしながら、この方法ではレンズブランクを適当な力で押圧することで、硬化樹脂と成形型からなる界面の外周部での充填硬化樹脂面が成形型面となす充填硬化側で表した角θを90°<θ<180°となるように制御するものであるが、この制御には、硬化樹脂材料による粘度、UV硬化時に発生する硬化収縮力や充填樹脂と成形金型との濡れ性、さらにはレンズブランクの曲面形状などの多くのパラメータが存在し、最適な押圧力や押圧プロセスを詳細に調整するのは極めて難しいものがある。また作成される光学素子の形状によっては、上記の制御が難しく、所望の光学素子を実現することが困難であるといった課題も有していた。このような課題に対して、本発明は、離型性に優れるとともに、煩雑なプロセスを用いなくても、高い信頼性が得られる接合型光学素子を提供するものである。   However, in this method, by pressing the lens blank with an appropriate force, the angle θ expressed on the filling and curing side formed by the filling and curing resin surface at the outer peripheral portion of the interface between the cured resin and the mold is 90 °. The control is performed so that the angle <θ <180 ° is satisfied. This control includes the viscosity of the cured resin material, the curing shrinkage generated during UV curing, the wettability between the filling resin and the molding die, There are many parameters such as the curved shape of the lens blank, and it is extremely difficult to adjust the optimal pressing force and pressing process in detail. In addition, depending on the shape of the optical element to be produced, the above-described control is difficult, and it is difficult to realize a desired optical element. In view of such a problem, the present invention provides a bonded optical element that is excellent in releasability and that can obtain high reliability without using a complicated process.

上記課題を解決するために本発明の接合光学素子は、ガラス材料からなり、光学素子面とこの光学素子面に連なる端部に設けられた切欠き面とを有するガラス基材と、光硬化型樹脂材料からなり、前記ガラス基材の前記光学素子面と前記切欠き面とを覆うように接合された樹脂層とを備え、前記樹脂層が接合された前記光学素子面とそれに連なる前記切欠き面とのなす角を20°から45°の間としたことを特徴とするものである。   In order to solve the above-described problems, the bonded optical element of the present invention is made of a glass material, and includes a glass substrate having an optical element surface and a notch surface provided at an end connected to the optical element surface, and a photocurable type. A resin layer made of a resin material and bonded so as to cover the optical element surface and the notch surface of the glass substrate, the optical element surface to which the resin layer is bonded, and the notch continuous therewith The angle formed with the surface is between 20 ° and 45 °.

また、前記ガラス基材の前記切欠き面の面粗さを、Raで10nm以上とすることを特徴とするものである。   Further, the surface roughness of the notched surface of the glass substrate is set to 10 nm or more in Ra.

また、本発明の接合光学素子の製造方法は、離型膜が塗布された成形用金型の上に光硬化型の樹脂材料を叶出するステップと、光学素子面とこの光学素子面に連なる端部に設けられた切欠き面とを有しシランカップリング剤が塗布されたガラス基材で前記叶出された樹脂材料を押圧して、前記樹脂材料が前記ガラス基材の前記光学素子面と前記切欠き面とを覆うように付着させるステップと、前記樹脂材料に光を照射して硬化させることにより前記樹脂材料を前記ガラス基材に接合させるステップと、前記ガラス基材に前記樹脂材料が接合された接合光学素子を前記成形用金型から離型するステップとを有するものである。   The method for manufacturing a bonded optical element of the present invention includes a step of exposing a photocurable resin material on a molding die coated with a release film, an optical element surface, and the optical element surface. The optical material surface of the glass substrate is pressed by pressing the resin material with a glass substrate having a notch surface provided at an end and coated with a silane coupling agent. And attaching the resin material to the glass substrate by irradiating the resin material with light and curing the resin material, and attaching the resin material to the glass substrate. And a step of releasing the bonded optical element bonded with the mold from the molding die.

また、本発明の接合光学素子の製造方法は、光学素子面とこの光学素子面に連なる端部に設けられた切欠き面とを有しシランカップリング剤が塗布されたガラス基材の上に光硬化型の樹脂材料を叶出するステップと、成形用金型で前記叶出された樹脂材料を押圧して、前記樹脂材料が前記ガラス基材の前記光学素子面と前記切欠き面とを覆うように付着させるステップと、前記樹脂材料に光を照射して硬化させることにより前記樹脂材料を前記ガラス基材に接合させるステップと、前記ガラス基材に前記樹脂材料が接合された接合光学素子を前記成形用金型から離型するステップとを有するものである。   In addition, the method for manufacturing a bonded optical element according to the present invention includes an optical element surface and a notch surface provided at an end connected to the optical element surface, on a glass substrate coated with a silane coupling agent. A step of applying a photocurable resin material; and pressing the applied resin material with a molding die so that the resin material forms the optical element surface and the notch surface of the glass substrate. A step of bonding the resin material to the glass substrate by irradiating the resin material with light, and a bonding optical element in which the resin material is bonded to the glass substrate. From the mold for molding.

以上のように、本発明によれば、離型性に優れるとともに、煩雑なプロセスを用いなくても、高い信頼性を持った接合型光学素子を提供するものである。   As described above, according to the present invention, it is possible to provide a bonded optical element having excellent releasability and high reliability without using a complicated process.

以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明する。以下の好ましい実施の形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or its application.

(実施の形態1)
図1は、本発明の実施の形態1に係る接合型光学素子の断面図である。図1に示すように、接合型光学素子5は、ガラス基材1の一方の光学素子面4に光硬化型樹脂材料による樹脂層2を接合形成したものである。前記ガラス基材の端部切欠き面3とそれに連なる光学素子面4とのなす角をθとした時、その角θが20°<θ<45°となるようにガラス基材の端部切欠き面3を加工したものである。さらに端部切欠き面3は、レンズ有効径である光学素子面4の外に形成されており、かつ、その面粗さがRaで10nm以上になるように加工処理されたものである。
(Embodiment 1)
FIG. 1 is a sectional view of a junction type optical element according to Embodiment 1 of the present invention. As shown in FIG. 1, the bonded optical element 5 is formed by bonding a resin layer 2 made of a photocurable resin material to one optical element surface 4 of a glass substrate 1. When the angle formed by the edge notch surface 3 of the glass substrate and the optical element surface 4 connected thereto is θ, the edge cut of the glass substrate is performed so that the angle θ is 20 ° <θ <45 °. The notch surface 3 is processed. Further, the end notch surface 3 is formed outside the optical element surface 4 which is an effective lens diameter, and is processed so that its surface roughness is 10 nm or more in Ra.

また、さらに樹脂層2は光学素子面4の上だけでなく、端部切欠き面3の上にも形成されるように構成したものである。   Further, the resin layer 2 is configured not only on the optical element surface 4 but also on the end notch surface 3.

図2は、本発明の実施の形態1に係る接合型光学素子の製造方法の概略を示す図である。   FIG. 2 is a diagram showing an outline of a method for manufacturing a junction-type optical element according to Embodiment 1 of the present invention.

まず、図2(a)に示すように、所望の光学面形状となるように加工された成形用金型6に離型膜を塗布した後、光硬化型樹脂材料21(例えば、ラジカル重合系樹脂)を、ディスペンサー等を用いて所定量叶出する。次に図2(b)に示すように、シランカップリング剤が塗布され、チャック部材22によって保持されたガラス基材1を、成形用金型6上にセットした後、ガラス基材1に対して押圧動作を行い、光硬化型樹脂材料21を伸ばし、光学素子面4とそれに連なる端部切欠き面3とを覆うように付着させるものである。   First, as shown in FIG. 2A, a release film is applied to a molding die 6 that has been processed to have a desired optical surface shape, and then a photocurable resin material 21 (for example, a radical polymerization system). Resin) is dispensed in a predetermined amount using a dispenser or the like. Next, as shown in FIG. 2 (b), after the glass substrate 1 coated with the silane coupling agent and held by the chuck member 22 is set on the molding die 6, Then, a pressing operation is performed to stretch the photocurable resin material 21 and attach it so as to cover the optical element surface 4 and the end notch surface 3 connected thereto.

さらに、図2(c)に示すように、成形用金型6とガラス基材1の頂点との隙間が、所定量になるまで押圧動作を行った後、位置決め動作を行う。ガラス基材1を位置決めした後、UV照射装置23をセットし、照射パワー、照射時間が所定量となるように制御し、光硬化型樹脂材料21を光硬化させ、ガラス基材1に接合する。そして図2(d)に示すようにチャック部材22を引き上げ、成形用金型6より離型させて、接合型光学素子5を得る。   Further, as shown in FIG. 2C, after the pressing operation is performed until the gap between the molding die 6 and the apex of the glass substrate 1 reaches a predetermined amount, the positioning operation is performed. After positioning the glass substrate 1, the UV irradiation device 23 is set, the irradiation power and the irradiation time are controlled to be a predetermined amount, the photocurable resin material 21 is photocured, and is bonded to the glass substrate 1. . Then, as shown in FIG. 2 (d), the chuck member 22 is pulled up and released from the molding die 6 to obtain the junction type optical element 5.

次に、本発明の接合型光学素子の端部切欠き面3の効果と、その設定角度について図3を用いて説明する。   Next, the effect of the end notch surface 3 of the junction type optical element of the present invention and the set angle will be described with reference to FIG.

図3(a)は端部切欠き面がない場合を示し、31は端部切欠き面のないガラス基材である。図3(b)は端部切欠き面がある場合を示す。   FIG. 3A shows a case where there is no end cut-out surface, and 31 is a glass substrate having no end cut-out surface. FIG. 3B shows a case where there is an end notch surface.

図3(a)に示すように端部切欠き面がない場合は、光硬化型樹脂材料21の表面がガラス基材31と接する点P1と成形金型6と接する点Q1とが近いため、P1における濡れ作用とQ1における撥液作用とが互いに打ち消しあい、その結果Q1における成形用金型6と光硬化型樹脂材料21の表面とのなす角度θ1が大きくなり、そのため離型時にQ1で界面剥離を起こさせるために大きな離型力が必要となる。   When there is no end notch surface as shown in FIG. 3A, the point P1 where the surface of the photocurable resin material 21 is in contact with the glass substrate 31 and the point Q1 where it is in contact with the molding die 6 are close. The wetting action at P1 and the lyophobic action at Q1 cancel each other, and as a result, the angle θ1 formed by the molding die 6 and the surface of the photocurable resin material 21 at Q1 becomes large, so that the interface at Q1 at the time of release A large release force is required to cause peeling.

これに対して、図3(b)に示すように端部切欠き面3がある場合は、光硬化型樹脂材料21は端部切欠き面3に沿ってガラス基材1に付着して行き、光硬化型樹脂材料21の表面がガラス基材1と接する点P2と成形用金型6と接する点Q2とが離れるため、P2における濡れ作用とQ2における撥液作用とが互いに打ち消しあうことがなくなり、その結果Q2における成形用金型6と光硬化型樹脂材料21の表面とのなす角度θ2が小さくなり、そのため離型時にQ1で界面剥離を起こさせるための離型力は小さくて済む。   On the other hand, as shown in FIG. 3B, when there is the end notch surface 3, the photocurable resin material 21 adheres to the glass substrate 1 along the end notch surface 3. Since the point P2 where the surface of the photocurable resin material 21 is in contact with the glass substrate 1 and the point Q2 where it is in contact with the molding die 6 are separated from each other, the wetting action at P2 and the liquid repellent action at Q2 may cancel each other. As a result, the angle θ2 formed between the molding die 6 and the surface of the photocurable resin material 21 in Q2 becomes small, so that the mold release force for causing interface peeling at Q1 at the time of mold release is small.

光学素子面4とそれに連なる端部切欠き面3とのなす角度θは、成形用金型からの離型性、得られた光学素子形状の安定性、光学素子の環境信頼性の観点から、20°以下では端部切欠き面を設けた効果が小さくなり、45°以上では光硬化型樹脂材料21が端部切欠き面3に沿って付着して行きにくくなるため、20°<θ<45°の範囲が最も各特性を満足させる。   The angle θ formed by the optical element surface 4 and the end notch surface 3 connected to the optical element surface 4 is from the viewpoint of releasability from the molding die, stability of the obtained optical element shape, and environmental reliability of the optical element. When the angle is 20 ° or less, the effect of providing the end notch surface is reduced. When the angle is 45 ° or more, the photocurable resin material 21 is less likely to adhere along the end notch surface 3, and therefore 20 ° <θ <. A range of 45 ° satisfies each characteristic most.

これら特性が向上する理由としては、端部切欠き面に沿って光硬化型樹脂材料が充填、光硬化を経て、ガラス基材に接合されるので、離型の際に成形用金型6と光硬化型樹脂材料21との角度を小さくとることができるようになることである。このため、成形用金型6からの離型の際のきっかけができやすい。従って垂直方向に弱い力を加えた場合でも、簡単に成形用金型6から離型できるようになるため以下の効果が得られる。
(1)成形精度のよい接合型光学素子が得られる。
(2)成形用金型の寿命が延び、コストダウンにつながる。
The reason why these characteristics are improved is that the photocurable resin material is filled along the notch of the end portion, and after being photocured, it is bonded to the glass substrate. The angle with the photocurable resin material 21 can be made small. For this reason, it is easy to trigger the mold release from the molding die 6. Therefore, even when a weak force is applied in the vertical direction, the mold can be easily released from the molding die 6 and the following effects can be obtained.
(1) A junction type optical element with good molding accuracy can be obtained.
(2) The life of the molding die is extended, leading to cost reduction.

次に、端部切欠き面の面粗し効果について説明する。ガラス基材の端部切欠き面3を粗面とすることで、接合される光硬化型樹脂21との密着性が、アンカー効果により向上する。これにより環境信頼性の優れた接合光学素子が得られる。また面粗さは、10nm以上あればその密着力向上の効果が、信頼性試験の結果より得られた(高温高湿放置試験、ヒートショック試験)。なお、この端部切欠き面3はレンズ有効径外にあるので、粗面であっても最終的な光学性能には影響はないものである。   Next, the surface roughening effect of the end notch surface will be described. Adhesiveness with the photocurable resin 21 to be joined is improved by the anchor effect by making the end notch surface 3 of the glass substrate rough. As a result, a bonded optical element having excellent environmental reliability can be obtained. When the surface roughness was 10 nm or more, the effect of improving the adhesion was obtained from the results of the reliability test (high temperature and high humidity leaving test, heat shock test). Since the end notch surface 3 is outside the lens effective diameter, even a rough surface does not affect the final optical performance.

次に、本実施の形態に係る接合型光学素子の他の製造方法について図4を用いて説明する。図4に示す製造方法は、図2に示す製造方法に対して、成形用金型6とガラス基材1の位置関係を上下逆にしたものである。   Next, another method for manufacturing the junction type optical element according to the present embodiment will be described with reference to FIGS. The manufacturing method shown in FIG. 4 is obtained by reversing the positional relationship between the molding die 6 and the glass substrate 1 with respect to the manufacturing method shown in FIG.

まず、図4(a)に示すように、シランカップリング剤が塗布され、チャック部材22によって保持されたガラス基材1の光学素子面4上に光硬化型樹脂材料21を叶出する。次に図4(b)に示すように、成形用金型6をガラス基材1上にセットした後、押圧動作を行い、光硬化型樹脂材料21を伸ばし、光学素子面4とそれに連なる端部切欠き面3とを覆うように付着させる。この時、光硬化型樹脂材料21は、重力の作用により、図2の場合よりも、さらに容易に端部切欠き面3まで流れて付着しやすくなると共に、成形用金型6への付着力が小さくなるため、成形用金型6に離型膜を塗布しなくても、図3(b)に示すθ2に相当する角度が小さくなるため、図4(c)に示すように光硬化させた後、図4(d)に示すように離型させる時、小さな力で離型できるのである。   First, as shown in FIG. 4A, a silane coupling agent is applied, and a photocurable resin material 21 is exposed on the optical element surface 4 of the glass substrate 1 held by the chuck member 22. Next, as shown in FIG. 4B, after the molding die 6 is set on the glass substrate 1, a pressing operation is performed to extend the photocurable resin material 21, and the optical element surface 4 and the end connected thereto. It adheres so that the part notch surface 3 may be covered. At this time, the photocurable resin material 21 flows more easily and adheres to the end notch surface 3 than the case of FIG. 2 due to the action of gravity, and also adheres to the molding die 6. Therefore, even if no mold release film is applied to the molding die 6, the angle corresponding to θ2 shown in FIG. 3 (b) becomes small, so that it is photocured as shown in FIG. 4 (c). After that, as shown in FIG. 4 (d), the mold can be released with a small force.

このように、図4に示す製造方法では、成形用金型6に離型膜を塗布しなくても小さな力で離型できるため、離型膜の使用に伴う品質上の問題はなくなる。   As described above, in the manufacturing method shown in FIG. 4, the mold can be released with a small force without applying the release film to the molding die 6, so that the quality problem associated with the use of the release film is eliminated.

以上説明したように、本発明は、離形性に優れるとともに、煩雑なプロセスを用いなくても、高い信頼性が得られる接合型光学素子を提供するものであり、きわめて有用で産業上の利用可能性は高い。   As described above, the present invention provides a junction type optical element that is excellent in releasability and can be obtained with high reliability without using a complicated process. The possibility is high.

本発明の実施の形態1に係る接合型光学素子の断面図Sectional drawing of the junction type optical element which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る接合型光学素子の製造方法の概略を示す図The figure which shows the outline of the manufacturing method of the junction type optical element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る接合型光学素子の切欠き面の効果を示す図The figure which shows the effect of the notch surface of the junction type optical element which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る接合型光学素子の他の製造方法の概略を示す図The figure which shows the outline of the other manufacturing method of the junction type optical element which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 ガラス基材
2 樹脂層
3 端部切欠き面
4 光学素子面
5 接合型光学素子
6 成形用金型
21 光硬化型樹脂材料
22 チャック部材
23 UV照射装置
DESCRIPTION OF SYMBOLS 1 Glass base material 2 Resin layer 3 End part notch surface 4 Optical element surface 5 Bonding type optical element 6 Molding die 21 Photocurable resin material 22 Chuck member 23 UV irradiation apparatus

Claims (4)

ガラス材料からなり、光学素子面とこの光学素子面に連なる端部に設けられた切欠き面とを有するガラス基材と、
光硬化型樹脂材料からなり、前記ガラス基材の前記光学素子面と前記切欠き面とを覆うように接合された樹脂層とを備え、
前記樹脂層が接合された前記光学素子面とそれに連なる前記切欠き面とのなす角を20°から45°の間としたことを特徴とする接合型光学素子。
A glass substrate made of a glass material and having an optical element surface and a notch surface provided at an end connected to the optical element surface;
A resin layer made of a photocurable resin material, and having a resin layer bonded so as to cover the optical element surface and the notch surface of the glass substrate,
The junction type optical element characterized in that an angle formed by the optical element surface to which the resin layer is bonded and the notch surface connected thereto is between 20 ° and 45 °.
前記ガラス基材の前記切欠き面の面粗さを、Raで10nm以上とすることを特徴とする請求項1記載の接合型光学素子。 The junction type optical element according to claim 1, wherein a surface roughness of the notched surface of the glass substrate is 10 nm or more in Ra. 離型膜が塗布された成形用金型の上に光硬化型の樹脂材料を叶出するステップと、
光学素子面とこの光学素子面に連なる端部に設けられた切欠き面とを有しシランカップリング剤が塗布されたガラス基材で前記叶出された樹脂材料を押圧して、前記樹脂材料が前記ガラス基材の前記光学素子面と前記切欠き面とを覆うように付着させるステップと、
前記樹脂材料に光を照射して硬化させることにより前記樹脂材料を前記ガラス基材に接合させるステップと、
前記ガラス基材に前記樹脂材料が接合された接合光学素子を前記成形用金型から離型するステップとを有する接合型光学素子の製造方法。
Granting a photo-curable resin material on a molding die coated with a release film; and
The resin material is pressed by a glass substrate having an optical element surface and a notch surface provided at an end connected to the optical element surface and coated with a silane coupling agent. Is attached so as to cover the optical element surface and the notch surface of the glass substrate,
Bonding the resin material to the glass substrate by irradiating and curing the resin material; and
And a step of releasing the bonded optical element in which the resin material is bonded to the glass substrate from the molding die.
光学素子面とこの光学素子面に連なる端部に設けられた切欠き面とを有しシランカップリング剤が塗布されたガラス基材の上に光硬化型の樹脂材料を叶出するステップと、
成形用金型で前記叶出された樹脂材料を押圧して、前記樹脂材料が前記ガラス基材の前記光学素子面と前記切欠き面とを覆うように付着させるステップと、
前記樹脂材料に光を照射して硬化させることにより前記樹脂材料を前記ガラス基材に接合させるステップと、
前記ガラス基材に前記樹脂材料が接合された接合光学素子を前記成形用金型から離型するステップとを有する接合型光学素子の製造方法。
Providing a photocurable resin material on a glass substrate having an optical element surface and a notch surface provided at an end connected to the optical element surface and coated with a silane coupling agent;
A step of pressing the resin material provided with a molding die so that the resin material covers the optical element surface and the notch surface of the glass substrate;
Bonding the resin material to the glass substrate by irradiating and curing the resin material; and
And a step of releasing the bonded optical element in which the resin material is bonded to the glass substrate from the molding die.
JP2007146413A 2007-06-01 2007-06-01 Junction type optical element and manufacturing method therefor Pending JP2008299148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146413A JP2008299148A (en) 2007-06-01 2007-06-01 Junction type optical element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146413A JP2008299148A (en) 2007-06-01 2007-06-01 Junction type optical element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2008299148A true JP2008299148A (en) 2008-12-11

Family

ID=40172709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146413A Pending JP2008299148A (en) 2007-06-01 2007-06-01 Junction type optical element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2008299148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228441A (en) * 2009-03-06 2010-10-14 Sumitomo Chemical Co Ltd Method for welding liquid crystal polymer molding with glass substrate, and complex manufactured by the same
WO2018061331A1 (en) * 2016-09-29 2018-04-05 富士フイルム株式会社 Composite optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228441A (en) * 2009-03-06 2010-10-14 Sumitomo Chemical Co Ltd Method for welding liquid crystal polymer molding with glass substrate, and complex manufactured by the same
WO2018061331A1 (en) * 2016-09-29 2018-04-05 富士フイルム株式会社 Composite optical element
JPWO2018061331A1 (en) * 2016-09-29 2019-07-04 富士フイルム株式会社 Composite optical element

Similar Documents

Publication Publication Date Title
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
JP2012529069A (en) Lens and manufacturing method thereof
US20110233799A1 (en) Method for manufacturing lens having functional nanopattern
JP4781001B2 (en) Compound lens manufacturing method
WO2009069940A1 (en) Device and method for fabricating lens
JPH11211902A (en) Flat plane type microlens array
US8154794B2 (en) Imaging lens and method of manufacturing the same
JP2849299B2 (en) Manufacturing method of composite precision molded products
JP2008299148A (en) Junction type optical element and manufacturing method therefor
US11123960B2 (en) Film mold and imprinting method
JP2006263975A (en) Manufacturing method of optical element
KR20120068178A (en) Mold for forming lens and lens forming method
JP2006119423A (en) Composite optical element and manufacturing method thereof
JP2005305875A (en) Mold, method for manufacturing composite optical element, and composite optical element
JP2003011150A (en) Mold, method for manufacturing optical element, and optical element
JP2006341493A (en) Molding die for optical element and manufacturing method of optical element
JP2001296414A (en) Diffraction optical element and method for producing the same
JP2006221062A (en) Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element
JP2003222708A (en) Optical element and its manufacturing method
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
JP5525860B2 (en) Lens manufacturing method
JP2010147295A5 (en)
JP2004151450A (en) Method for manufacturing lens array and molding die for lens array
JP2007111958A (en) Method for manufacturing optical element and optical element molding
JP2003266450A (en) Optical element and manufacturing method therefor