JPH10185666A - Method and device for continuously measuring wheel load and lateral force of rolling stock with ground side measurement - Google Patents

Method and device for continuously measuring wheel load and lateral force of rolling stock with ground side measurement

Info

Publication number
JPH10185666A
JPH10185666A JP35710196A JP35710196A JPH10185666A JP H10185666 A JPH10185666 A JP H10185666A JP 35710196 A JP35710196 A JP 35710196A JP 35710196 A JP35710196 A JP 35710196A JP H10185666 A JPH10185666 A JP H10185666A
Authority
JP
Japan
Prior art keywords
wheel
wheel load
sensors
sensor
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35710196A
Other languages
Japanese (ja)
Other versions
JP3151160B2 (en
Inventor
Akira Matsumoto
陽 松本
Yasuhiro Sato
安弘 佐藤
Osamu Torii
修 鳥居
Eiji Miyauchi
栄二 宮内
Masuhisa Tanimoto
益久 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Ship Research Institute
Original Assignee
Sumitomo Metal Industries Ltd
Ship Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Ship Research Institute filed Critical Sumitomo Metal Industries Ltd
Priority to JP35710196A priority Critical patent/JP3151160B2/en
Publication of JPH10185666A publication Critical patent/JPH10185666A/en
Application granted granted Critical
Publication of JP3151160B2 publication Critical patent/JP3151160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To continuously measure a wheel load and lateral force of a rail, which includes a part provided with cross ties, by arranging plural pairs of sensors, which are formed by attaching strain measuring sensors onto a rail at two positions at a distance close to a space between the cross ties, over the length of at least one circumference of a wheel, and measuring fluctuation of the wheel load and the lateral force over the length of one circumference of the wheel. SOLUTION: A pair of wheel load measuring strain sensors P1 for measuring shearing strain of a rail 3 are attached to positions A1 , A2 between cross ties 1, 2 adjacent to each other. A pair of sensors P2 are attached to points B1 , B2 so as to ride over the cross ties 1, 2. Since plural sensors of the two pairs of strain sensors P1 , P2 are alternately arranged, a measurement territory can be freely extended. A pair of lateral force measuring strain sensors Q1 for measuring shearing strain of the rail 3 are attached to points A1 , A2 between the cross ties 1, 2 adjacent to each other. A pair of sensors Q2 are attached to points B1 , B2 so as to ride over the cross ties 1, 2. The pairs of sensors P1 , P2 and the pairs of sensors Q1 , Q2 are connected to a strain gauge by bridge connection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地上側測定により
鉄道車両の輪重・横圧を少なくとも車輪の1周分の長さ
以上にわたって部分的に測定するか、または連続測定す
る方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for partially or continuously measuring the wheel load and lateral pressure of a railway vehicle over at least the length of one round of a wheel by ground-side measurement. About.

【0002】[0002]

【従来の技術】現在、鉄道車両の輪重・横圧を測定する
のに最も広く用いられているのは、剪断ひずみによる方
法である。この方法は、レールにひずみ測定用センサを
貼りつけて、車輪通過時のレールの動的剪断ひずみを測
定することによって、輪重・横圧の大きさを知るという
原理に基づいている(鉄道総合技術研究所編「在来鉄道
運転速度向上試験マニュアル・解説」を参照)。
2. Description of the Related Art At present, the most widely used method for measuring wheel loads and lateral pressures of railway vehicles is a method based on shear strain. This method is based on the principle of attaching a strain measuring sensor to a rail and measuring the dynamic shear strain of the rail when the wheel passes, thereby knowing the magnitude of the wheel load and lateral pressure (Railway General). (Refer to “Technical Research Institute,“ Conventional Railway Operation Speed Improvement Test Manual and Explanation ”))

【0003】輪重測定は、レールウェブ表裏の中立軸上
の2ヵ所に45°傾斜して貼りつけた直交型ひずみ測定
用センサ4枚(合計8センサ分)をブリッジ結線して車
輪通過時のひずみ波形を記録すると、突起状の波形が記
録される。この突起の高さが輪重に比例するので、荷重
較正(ロードセルを取り付けたジャッキ等によってレー
ルに荷重をかける)により輪重とひずみの関係を求めて
おけば、車輪通過時の輪重値が求められる。また、横圧
については、レールフランジに貼りつけられるひずみ測
定用センサによって、前記輪重測定と同様に求めること
ができる。
[0003] Wheel weight measurement is performed by bridge-connecting four orthogonal type strain measurement sensors (for a total of eight sensors) that are attached at two positions on the neutral shaft on the front and back of the rail web at an angle of 45 ° and passing through the wheels. When a distortion waveform is recorded, a protruding waveform is recorded. Since the height of this projection is proportional to the wheel load, if the relationship between wheel load and strain is determined by load calibration (loading the rail with a jack or the like with a load cell attached), the wheel load value when passing through the wheel will be Desired. Further, the lateral pressure can be determined by a strain measurement sensor attached to the rail flange in the same manner as in the wheel load measurement.

【0004】剪断ひずみによる測定の目的は、隣設車輪
の影響を受けずに輪重・横圧が測定できるように開発さ
れたものである。また、いわゆる4ゲージ法であるた
め、ノイズ電流が打ち消し合うように作用し、きれいな
波形が得られる。
[0004] The purpose of the measurement by the shear strain has been developed so that the wheel load and the lateral pressure can be measured without being affected by the adjacent wheel. In addition, since the so-called 4-gauge method is used, noise currents act so as to cancel each other, and a clear waveform can be obtained.

【0005】しかしながら、前記従来の方法は、ひずみ
測定用センサは枕木と枕木の間のレールに貼りつけら
れ、1組のセンサ間隔は200mm程度であり、車輪が
そこを通過したときの輪重または横圧のピーク値しか得
られない。すなわち、ある瞬間の値しかつかむことがで
きず、この瞬間値は必ずしも最小値あるいは最大値とは
いえなかった。また、枕木が存在する部分では、その影
響が避けられないため、輪重や横圧は測定できないとさ
れていた。したがって、ある区間を走行する列車の輪重
・横圧の特異値(最大値、最小値)や輪重・横圧の変動
を把握することは原理的に困難であった。
However, in the conventional method, the strain measuring sensor is attached to a rail between the sleepers and a pair of the sensors, and the distance between a pair of sensors is about 200 mm. Only the peak value of lateral pressure can be obtained. That is, only the value at a certain moment can be grasped, and this momentary value is not always the minimum value or the maximum value. In addition, the influence of the sleepers is unavoidable, so that the wheel load and the lateral pressure cannot be measured. Therefore, it was fundamentally difficult to grasp the singular values (maximum value, minimum value) of the wheel load and the lateral pressure and the fluctuation of the wheel load and the lateral pressure of the train running in a certain section.

【0006】一方、輪重・横圧の車両側測定としては、
車輪にひずみ測定用センサを貼って輪重・横圧を求める
方法があるが、車輪は回転するため、車軸に孔をあけて
リード線を通し、軸端にスリップリングを取付けるな
ど、特別な加工が必要なことから、現実的にはある特定
の輪軸での値しか求めることができないという問題があ
る。
On the other hand, the vehicle side measurement of wheel load and lateral pressure is as follows.
There is a method to determine the wheel load and lateral pressure by attaching a strain measurement sensor to the wheel.However, since the wheel rotates, special processing such as drilling a hole in the axle, passing the lead wire, and attaching a slip ring to the shaft end Therefore, there is a problem that, in practice, only a value for a specific wheelset can be obtained.

【0007】[0007]

【発明が解決しようとする課題】前記のごとく、従来の
剪断ひずみによる地上側測定方法では、車輪がそこを通
過したときの輪重または横圧のピーク値しか得ることが
できず、また枕木が存在する部分では、その影響が避け
られないため、輪重や横圧は測定できなかった。一方、
車上側測定では、特定列車の特定台車でしか測定値が得
られない欠点があった。
As described above, according to the conventional ground-side measuring method based on shear strain, only the peak value of the wheel load or lateral pressure when the wheel passes therethrough can be obtained, and the sleeper cannot be used. In the existing part, the influence was unavoidable, so that the wheel load and the lateral pressure could not be measured. on the other hand,
In the on-vehicle measurement, there was a drawback that a measured value could be obtained only with a specific bogie of a specific train.

【0008】本発明は、前記のごとく従来の輪重・横圧
測定方法が多くの問題をかかえている現状を踏まえ、そ
れらの問題点を排除し、輪重や横圧のピーク値だけでな
く、枕木が存在する部分を含めて連続的に輪重・横圧の
測定が可能で、ある区間を走行する列車の輪重・横圧の
連続的な変動及び特異値(最大値、最小値)の把握が可
能な地上側測定による鉄道車両の輪重・横圧を部分的に
測定するか、または連続測定する方法及びその装置を提
供するものである。
The present invention eliminates these problems in view of the present situation in which the conventional method for measuring wheel load and lateral pressure has many problems as described above, and provides not only the peak values of wheel load and lateral pressure, but also The continuous measurement of the wheel load and lateral pressure is possible, including the part where the sleeper exists, and the continuous fluctuation and the singular value (maximum value, minimum value) of the wheel load and lateral pressure of the train running in a certain section It is intended to provide a method and a device for partially measuring or continuously measuring the wheel load and lateral pressure of a railway vehicle by ground-side measurement capable of grasping.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 前記目的を達成するため、本発明の鉄道車両の
輪重・横圧の測定方法は、ひずみ測定用センサを隣設す
る枕木間隔に近い距離でレール上の2ヵ所に貼着したセ
ンサ組の複数組を少なくとも車輪の1周分の長さにわた
って配設し、台車の輪重・横圧変動を車輪の1周分の長
さ以上にわたって測定することを特徴とする。
(1) In order to achieve the above object, a method for measuring the wheel load and lateral pressure of a railway vehicle according to the present invention is characterized in that a strain measuring sensor is attached to two places on a rail at a distance close to the distance between adjacent sleepers. A plurality of sets are arranged over at least the length of one rotation of the wheel, and the wheel load / lateral pressure fluctuation of the bogie is measured over the length of one rotation of the wheel.

【0010】(2) 本発明の鉄道車両の輪重・横圧の
測定装置は、ひずみ測定用センサを隣設する枕木間隔に
近い距離でレール上の2ヵ所に貼着したセンサ組の複数
組を少なくとも車輪の1周分の長さ以上にわたって配設
したことを特徴とする。
(2) The apparatus for measuring wheel load and lateral pressure of a railway vehicle according to the present invention is a plurality of sets of sensor sets in which strain measuring sensors are attached to two places on a rail at a distance close to the distance between adjacent sleepers. Are arranged over at least the length of one rotation of the wheel.

【0011】(3) 本発明の鉄道車両の輪重・横圧の
連続測定方法は、ひずみ測定用センサを隣設する枕木間
隔に近い距離でレール上の2ヵ所に貼着したセンサ組
と、ひずみ測定用センサを1つの枕木を跨いでレール上
の2ヵ所に貼着したセンサ組とを交互に、かつ前後セン
サ組を一部重複させて車輪の1周分の長さ以上にわたっ
て測定することを特徴とする。
(3) The method for continuously measuring the wheel load and lateral pressure of a railway vehicle according to the present invention comprises: a sensor set in which a strain measurement sensor is attached to two places on a rail at a distance close to the distance between adjacent sleepers; Measuring the sensor for strain measurement alternately with the sensor set straddling two rails over one sleeper, and partially overlapping the front and rear sensor sets, over the length of one wheel circumference It is characterized by.

【0012】(4) 本発明の鉄道車両の輪重・横圧の
連続測定装置は、ひずみ測定用センサを隣設する枕木間
隔に近い距離でレール上の2ヵ所に貼着したセンサ組
と、ひずみ測定用センサを1つの枕木を跨いでレール上
の2ヵ所に貼着したセンサ組とを交互に、かつ前後セン
サ組を一部重複させて車輪の1周分の長さ以上にわたっ
て配設したことを特徴とする。
(4) The continuous measurement apparatus for wheel load and lateral pressure of a railway vehicle according to the present invention comprises: a sensor set in which a strain measurement sensor is attached to two places on a rail at a distance close to the distance between adjacent sleepers; Sensors for strain measurement are arranged alternately with sensor sets that are attached to two places on the rail across one sleeper, and the front and rear sensor sets are partially overlapped over the length of one circumference of the wheel. It is characterized by the following.

【0013】[0013]

【発明の実施の形態】隣設する枕木の間に貼りつけるひ
ずみ測定用センサ組を枕木間隔に近くなるまで離して貼
りつけることにより、レール上のそれらのひずみ測定用
センサに挟まれた領域では、車輪の位置に関わらず、輪
重または横圧に比例した一定の剪断ひずみが測定でき、
この領域内で輪重や横圧の変動があれば、それに比例し
たひずみ変化として検出できる。更に、2ヵ所1組の剪
断ひずみ測定用センサを、枕木を跨いで設置する場合
は、その反力の影響を受けて枕木間に設置したセンサ組
の波形よりも感度が低くなることが考えられるが、その
感度を補正して枕木間に設置したセンサ組の波形と接続
することにより、連続化した波形が得られる。また、枕
木上のレールで輪重変動が生じた場合もひずみ変化とし
て測定できる。したがって、隣設する枕木間隔内に設け
たセンサ組と枕木を跨いで設けたセンサ組とをレールに
沿って連続して貼りつければ、どんな長さの区間でも、
その区間で連続的に車輪の輪重や横圧を測定することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION A pair of strain measurement sensors to be attached between adjacent sleepers is attached so as to be close to the sleeper interval, so that the area between the strain measurement sensors on the rail can be reduced. , Irrespective of the position of the wheel, a constant shear strain proportional to the wheel load or lateral pressure can be measured,
If there is a change in wheel load or lateral pressure in this region, it can be detected as a strain change proportional to the change. Furthermore, when one set of two sensors for measuring shear strain is installed across a sleeper, the sensitivity may be lower than the waveform of the sensor set installed between the sleepers due to the reaction force. However, a continuous waveform can be obtained by correcting the sensitivity and connecting the corrected waveform to the waveform of the sensor set installed between the sleepers. Also, when a wheel load fluctuation occurs on the rail on the sleeper, it can be measured as a strain change. Therefore, if the sensor set provided in the adjacent sleeper interval and the sensor set provided straddling the sleeper are continuously attached along the rail, the section of any length,
In that section, the wheel load and lateral pressure of the wheel can be continuously measured.

【0014】前記ひずみ測定用センサの貼りつけ例を図
1(A)(B)に示す。図1(A)は、輪重測定用ひず
みセンサ組であり、隣設する枕木1、2間においてレー
ル3の剪断ひずみを測定するセンサ組P1を、点A1とA
2に貼りつける。また、枕木を跨いだセンサ組P2を点B
1とB2に張り付ける。図では枕木間に貼りつけたセンサ
組P1と枕木を跨いだセンサ組P2の2組だけを示した
が、前記2種類のひずみセンサ組の複数を交互に配設す
ることにより、測定区間は任意に延長することができ
る。なお、図中の4は車輪を示す。また、図1(B)は
横圧測定用ひずみセンサ組であり、隣設する枕木1、2
間においてレール3の剪断ひずみを測定するセンサ組Q
1を、点A1とA2に貼りつける。また、枕木を跨いだセ
ンサ組Q2を点B1とB2に張り付ける。
FIGS. 1A and 1B show an example of attaching the strain measuring sensor. FIG. 1A shows a set of strain sensors for measuring wheel load. A set of sensors P 1 for measuring the shear strain of the rail 3 between the adjacent sleepers 1 and 2 is connected to points A 1 and A.
Paste on 2 . Also, the sensor set P 2 straddling the sleeper is point B
Pasted to 1 and B 2. It showed only two sets of sensor set P 2 straddling the sensor suite P 1 and sleepers stuck between sleepers in the figure, by arranging the two kinds of strain sensor set of a plurality of alternating, measurement interval Can be extended arbitrarily. In addition, 4 in a figure shows a wheel. FIG. 1 (B) shows a set of strain sensors for measuring lateral pressure, and the sleepers 1, 2 adjacent to each other.
Sensor set Q for measuring the shear strain of rail 3 between
1, pasted to the point A 1 and A 2. Further, pasting sensor suite Q 2 to which straddles the sleepers to a point B 1 and B 2.

【0015】前記センサ組P1とセンサ組P2及びセンサ
組Q1とセンサ組Q2は、それぞれブリッジ接続して動ひ
ずみ計に接続する。この動ひずみ計から出力されたデー
タをAD変換して、波形処理用のデータとする。以後こ
のデジタルデータを用いて、波形処理をパーソナルコン
ピュータ上で行なう。本装置のブロック図を図2に示
す。
The sensor set P 1 and the sensor set P 2, and the sensor set Q 1 and the sensor set Q 2 are each connected to a dynamic strain gauge by bridge connection. The data output from the dynamic strain meter is subjected to A / D conversion to obtain data for waveform processing. Thereafter, waveform processing is performed on a personal computer using the digital data. FIG. 2 shows a block diagram of this apparatus.

【0016】センサ組P1とセンサ組P2及びセンサ組Q
1とセンサ組Q2の求めた波形は、それぞれを1つに接続
するため、センサ組P1とセンサ組P2及びセンサ組Q1
とセンサ組Q2のそれぞれの感度を合わせる必要があ
る。そのための較正係数は、輪重の場合は、ロードセル
を取り付けた油圧ジャッキによって保線作業用車両等を
反力として、レール面に下向きの力を加え、このときひ
ずみセンサに発生したひずみ量とロードセルで測定した
荷重との関係から求める。この際の荷重載荷点は、輪重
については、載荷位置による感度のばらつきが小さいた
め、A1とA2の中間点及びB1とB2の中間点の各1箇所
でよい。
[0016] The sensor assembly P 1 and the sensor assembly P 2 and the sensor set Q
1 and the waveform obtained in the sensor suite Q 2, for connecting the respective one, sensor set P 1 and sensor set P 2 and sensor set Q 1
It is necessary to adjust each of the sensitivity of the sensor set Q 2 and. The calibration coefficient for that is, in the case of wheel load, a downward force is applied to the rail surface as a reaction force with the maintenance work vehicle etc. as a reaction force by a hydraulic jack fitted with a load cell, and the amount of strain generated by the strain sensor at this time and the load cell It is determined from the relationship with the measured load. Loading loading point in this case, for the wheel load, because the variation in sensitivity due to loading position is small, it may be one each intermediate point between A 1 and A 2 and B 1 and the middle point of B 2.

【0017】各センサ組ごとに求めた較正係数を、測定
したい列車が通過する際の各センサ組のひずみ原波形に
掛けることによって、感度を合わせることができ、それ
らの波形を1つの軸上に描かせ、それらの波形の重なり
合う所で接続すれば、1本の連続した波形が得られる。
この様子を輪重について図3(A)〜(E)に示す。す
なわち、(A)はセンサ組P1で測定された枕木間の輪
重原波形P1、(B)はセンサ組P2で測定された枕木上
の輪重原波形P2、(C)は鉛直ひずみゲージによるト
リガー、(D)は輪重原波形P1とP2を重ねたときトリ
ガーの位置で波形が切断している状態を示す、(E)は
感度係数を掛けてP2の感度をP1の感度に合せ、1つに
連続化した波形である。
The sensitivity can be adjusted by multiplying the calibration coefficient obtained for each sensor set by the distortion original waveform of each sensor set when the train to be measured passes, so that those waveforms are plotted on one axis. By drawing them and connecting them where they overlap, one continuous waveform is obtained.
This state is shown in FIGS. 3A to 3E for the wheel load. That, (A) the sensor assembly wheel Shigehara waveform P 1 between the measured sleepers in P 1, (B) is wheel Shigehara waveform P 2 on sleepers is measured by the sensor suite P 2, (C) is vertical strain triggered by gauge, (D) shows a state where the waveform is cut at a position of the trigger when the superimposed wheels Shigehara waveform P 1 and P 2, (E) the sensitivity of P 2 is multiplied by the sensitivity coefficient the combined sensitivity of P 1, a waveform which is continuous into one.

【0018】なお、保線作業用車両等を徐行して通過さ
せたときの輪重波形を測定することにより、一定の輪重
を作用させ2つのセンサ組でそれぞれ発生するひずみか
らセンサの感度の比を求め、枕木上のセンサ組の出力波
形に掛け合わせることにより、各センサ組の感度を合わ
せることもできる。
By measuring the wheel load waveform when the vehicle for maintenance work and the like is passed slowly, a constant wheel load is applied, and the ratio of the sensitivity of the sensor to the strain generated by the two sensor sets is calculated. , And multiplying by the output waveform of the sensor set on the sleeper, the sensitivity of each sensor set can be adjusted.

【0019】横圧については、内軌側レールを反力とす
るなどして、油圧ジャッキで外軌側レールの頭部側面を
水平方向に載荷し、荷重とひずみ出力との関係を求め
る。載荷位置による横圧の感度のばらつきが見られるた
め、載荷点はA1とA2の間及びB1とB2の間でそれぞれ
5箇所程度以上で行なうことが望ましい。また、前記5
箇所程度以上に設けることができない場合は、測定列車
が通過する際に、1編成の各台車の先頭方向の輪軸によ
って発生した横圧を重ね書きして、それらの平均的な横
圧測定波形を求め、そのカーブが平たんになるように補
正する方法でも対処できる。
Regarding the lateral pressure, the side face of the head of the outer rail is horizontally loaded with a hydraulic jack by using the inner rail as a reaction force, and the relationship between the load and the strain output is obtained. Since the variation in the sensitivity of the lateral pressure by the loading position is observed, loading point is preferably performed at A 1 and between A 2 and B 1 respectively about 5 points or more between the B 2. The above 5
If it can not be provided more than about places, when the measurement train passes, overwrite the lateral pressure generated by the wheelset in the heading direction of each bogie of one formation, and overwrite the average lateral pressure measurement waveform It can also be dealt with by a method of finding and correcting the curve so that it becomes flat.

【0020】1編成の列車が通過する際に測定された横
圧波形を、各輪軸の通過時刻をスライドさせ8軸分を重
ねて描いた波形を図4に示す。図中での波形の上下方向
のばらつきは、各台車で発生している横圧の違いを表し
ている。図4の各波形の平均をとり、平均値の最大値で
正規化し、最大値の1/2未満のデータは零とした上
で、横軸を距離ベースに変換したものを図5の実線Q11
〜Q14に示す。
FIG. 4 shows a waveform of a lateral pressure waveform measured when a train of one train passes by overlapping eight axes by sliding the passing time of each wheel set. The variation in the vertical direction of the waveform in the figure indicates the difference in the lateral pressure generated in each bogie. The average of each waveform in FIG. 4 is taken, normalized by the maximum value of the average value, data less than 1/2 of the maximum value is set to zero, and the data obtained by converting the horizontal axis to the distance base is shown by the solid line Q in FIG. 11
~Q shown in 14.

【0021】前記実線Q11〜Q14を滑らかな曲線で近似
し、補正曲線として、この近似曲線の逆数を取り、これ
を横圧の原データに掛け合わせることにより、平たんな
感度で測定値を得ることが可能である。なお、荷重載荷
を各5箇所以上で行なった場合は、各載荷点において求
められた較正係数を包絡する滑らかな曲線を求め、補正
曲線としては、この近似曲線の逆数を取り、同様にして
測定値を得ることが可能である。
The solid lines Q 11 to Q 14 are approximated by a smooth curve, the reciprocal of the approximate curve is taken as a correction curve, and this is multiplied by the original lateral pressure data to obtain a measured value with a flat sensitivity. It is possible to obtain When the load is applied at five or more locations, a smooth curve enclosing the calibration coefficient obtained at each loading point is obtained, and as a correction curve, the reciprocal of this approximate curve is obtained, and measurement is performed in the same manner. It is possible to get the value.

【0022】[0022]

【実施例】【Example】

実施例1 本発明の実施による測定装置を営業路線の曲線部に設置
して行なった実施例について説明する。その測定場所の
軌道諸元を表1に示す。
Embodiment 1 An embodiment in which a measuring device according to the present invention is installed on a curved portion of a business route will be described. Table 1 shows the orbital specifications of the measurement location.

【0023】[0023]

【表1】 [Table 1]

【0024】地上側測定配置は、図6(A)(B)に示
すように、曲線部外軌側のレールにひずみ測定用センサ
を貼りつけ、輪重・横圧それぞれ5組ブリッジを組み、
およそ1.8mの長さにわたって、連続的に測定できる
ようにした。輪重測定用のセンサ組は図6(A)にP1
〜P5で、横圧測定用のセンサ組は図6(B)にQ1〜Q
5で示した。また、レール上の車輪の位置関係を知るた
めに、レールウェブに垂直方向に張り付けたひずみ測定
用センサPm1〜Pm5を併設している。このセンサの直上
を車輪が通過したとき、ピークとなる山形の波形が得ら
れるので、そのピークをトリガーとして剪断ひずみ測定
用センサの波形合成時にも使用することができる。
As shown in FIGS. 6 (A) and 6 (B), the ground-side measurement arrangement is such that a strain measurement sensor is attached to the rail on the outer track side of the curved portion, and five bridges each of wheel load and lateral pressure are assembled.
It was possible to measure continuously over a length of approximately 1.8 m. The sensor set for measuring the wheel load is indicated by P 1 in FIG.
In to P 5, sensor suite for lateral force measurements Q 1 to Q in FIG. 6 (B)
Indicated by 5 . Further, in order to know the positional relationship between the wheels on the rail, strain measuring sensors P m1 to P m5 attached vertically to the rail web are also provided. When the wheel passes directly above the sensor, a peak-shaped waveform is obtained, and the peak can be used as a trigger when synthesizing the waveform of the shear strain measurement sensor.

【0025】測定に当たっては、先ず輪重については、
ロードセルを取り付けた油圧ジャッキによって保線作業
用車両を反力にして、レール面に下向きの力を加え、こ
のときセンサに発生したひずみ量とロードセルで測定し
た荷重との関係を求めた。また、横圧については、内軌
側レールを反力にして、油圧ジャッキで外軌側レールの
頭部側面を水平方向に載荷した。
In the measurement, first, regarding the wheel weight,
The vehicle for track maintenance was made a reaction force by a hydraulic jack fitted with a load cell, a downward force was applied to the rail surface, and the relationship between the amount of strain generated in the sensor and the load measured by the load cell was determined. Regarding the lateral pressure, the inner rail was used as a reaction force, and the hydraulic jack was used to horizontally load the side surface of the outer rail side head.

【0026】次いで、保線作業車を徐行で通過させ輪重
を測定した。そして、4両編成の試験電車の通過時に測
定を行い、輪重・横圧の生データを得た。データは、サ
ンプリング周波数5kHz(徐行走行時は500Hz)
でAD変換して、波形処理用のデータとする。以後、こ
のデジタルデータを用いて波形処理をコンピュータ部で
行なった。
Next, the track maintenance work vehicle was passed slowly, and the wheel load was measured. Then, measurements were made at the time of passing through a four-car test train, and raw data of wheel load and lateral pressure were obtained. The data is at a sampling frequency of 5 kHz (500 Hz for slow running).
Is converted into data for waveform processing. Thereafter, waveform processing was performed by the computer using the digital data.

【0027】図7(A)(B)(C)は、保線作業用車
両の走行時に得られた輪重測定波形の中から1輪が通過
する部分のみを取り出して表したものである。図7
(A)のP1、P3、P5は、枕木間に設けたセンサ組に
より求めた輪重波形、図7(B)のP2、P4は、枕木を
跨いだセンサ組により求めた輪重波形である。図7
(C)は、前記P1〜P5の5本の波形感度を合わせた波
形である。この波形から、枕木間のもの及び枕木を跨い
だものに関わらず、ほぼ連続的に輪重測定波形が得られ
ることがわかる。
FIGS. 7 (A), 7 (B) and 7 (C) show only the portion where one wheel passes from the wheel load measurement waveform obtained when the track maintenance vehicle is running. FIG.
7A, P 1 , P 3 , and P 5 are wheel load waveforms obtained by a sensor set provided between sleepers, and P 2 and P 4 in FIG. 7B are obtained by a sensor set crossing the sleepers. It is a wheel load waveform. FIG.
(C) is a waveform in which the five waveform sensitivities P 1 to P 5 are combined. From this waveform, it can be seen that the wheel load measurement waveform can be obtained almost continuously, regardless of the one between the sleepers and the one crossing the sleepers.

【0028】横圧については、前記図4、図5に従って
平均的な感度曲線を求め、それらを滑らかな曲線で近似
した。三角関数、指数関数、楕円等の種々の当てはめ曲
線を試みた結果、近似誤差の二乗平均値が最も小さかっ
た当てはめ曲線は、Y=A+BX+CX2+DX3+EX
4 (A〜Eは定数)の形式の4次多項式であった。補
正曲線としては、上記多項式で近似されたQ1〜Q5の逆
数をとった。これを図8に示す。この図からわかるよう
に、Q1とQ2、Q2とQ3、Q3とQ4、Q4とQ5の間でそ
れぞれ重複している区間があるため、連続的に横圧を測
定することが可能である。
Regarding the lateral pressure, an average sensitivity curve was obtained according to FIGS. 4 and 5, and these were approximated by a smooth curve. As a result of trying various fitting curves such as a trigonometric function, an exponential function, and an ellipse, the fitting curve having the smallest mean square value of the approximation error is represented by Y = A + BX + CX 2 + DX 3 + EX
4 (A to E are constants). The correction curve, took the inverse of the Q 1 ~Q 5, which is approximated by the polynomial. This is shown in FIG. As can be seen from this figure, there is a section in which overlap each between Q 1, Q 2, Q 2 and Q 3, Q 3 and Q 4, Q 4 and Q 5, continuously measuring the lateral force It is possible to

【0029】データ処理をした結果を図9(A)(B)
に示す。図9(A)の輪重、図9(B)の横圧共に連続
しており、したがって脱線係数(横圧/輪重)も連続的
値が得られることがわかる。また、輪重変動が観測され
た例を図10に示す。この図は車輪フラットが通過する
際の波形を示す。
FIGS. 9A and 9B show the results of data processing.
Shown in It can be seen that the wheel load shown in FIG. 9A and the lateral pressure shown in FIG. 9B are both continuous, so that a continuous value is also obtained for the derailment coefficient (lateral pressure / wheel load). FIG. 10 shows an example in which wheel load fluctuation is observed. This figure shows the waveform when the wheel flat passes.

【0030】[0030]

【発明の効果】本発明によれば、測定区間において枕木
間の場合、枕木を跨いだ場合に関わらず、ほぼ連続的に
輪重、横圧を測定できるから、ある区間を走行する列車
の輪重・横圧の連続的な変動及び特異値(最大値、最小
値)を得ることができ、列車の走行安全性の評価に用い
ることができるとともに、車輪フラットなどの車両側の
異常を検出することができる。
According to the present invention, since the wheel load and the lateral pressure can be measured almost continuously regardless of the case where the sleepers are straddled between the sleepers in the measurement section, the train wheels traveling in a certain section can be measured. Continuous fluctuations of gravitational and lateral pressures and singular values (maximum value, minimum value) can be obtained, which can be used for evaluating the running safety of trains, and detecting abnormalities on the vehicle side such as wheel flats. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のひずみ測定用センサの貼りつけを基本
的に示す説明図で、(A)は輪重測定用センサ組、
(B)は横圧測定用センサ組である。
FIG. 1 is an explanatory view basically showing attachment of a strain measurement sensor of the present invention, wherein (A) is a wheel load measurement sensor set,
(B) is a sensor set for measuring lateral pressure.

【図2】本発明の輪重・横圧連続測定方法を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a method for continuously measuring wheel load and lateral pressure according to the present invention.

【図3】本発明の実施による波形処理方法を輪重測定波
形を例にとって説明するグラフで、(A)は枕木間の輪
重原波形P1、(B)は枕木上の輪重原波形P2、(C)
は鉛直ひずみゲージによるトリガー、(D)は輪重原波
形P1と輪重原波形P2を重ねたときトリガーの位置で波
形が切断している状態を示す、(E)は輪重原波形P2
の感度を輪重原波形P1に合うように調整した状態を示
す。
3A and 3B are graphs for explaining a waveform processing method according to an embodiment of the present invention using a wheel load measurement waveform as an example, wherein FIG. 3A shows a wheel load original waveform P 1 between sleepers, and FIG. 3B shows a wheel load original waveform on a sleeper. P 2 , (C)
The vertical strain triggered by gauge, (D) shows a state where the waveform is cut at a position of the trigger when the superimposed wheels Shigehara waveform P 1 and wheel Shigehara waveform P 2, (E) is wheel Shigehara waveform P 2
Indicating the adjustment state to match the sensitivity to wheel Shigehara waveform P 1.

【図4】本発明の実施による横圧について波形処理方法
を説明するため、各台車の先頭軸の横圧を重ね書きした
グラフで、(A)は枕木上の横圧波形Q4、(B)は枕
木間の横圧波形Q3である。
FIG. 4 is a graph in which the lateral pressure of the leading axis of each bogie is overwritten in order to explain the waveform processing method for the lateral pressure according to the embodiment of the present invention, wherein (A) shows the lateral pressure waveforms Q 4 and (B) on the sleepers. ) is a lateral pressure waveform Q 3 between the sleepers.

【図5】(A)〜(D)は図4の重ね書きした横圧の平
均化した波形を示すグラフである。
5 (A) to 5 (D) are graphs showing averaged waveforms of the overlaid lateral pressure in FIG. 4;

【図6】本発明の実施例における測定用センサの配置を
示す説明図で、(A)は輪重測定用センサ組、(B)は
横圧測定用センサ組である。
FIGS. 6A and 6B are explanatory diagrams showing the arrangement of measurement sensors according to the embodiment of the present invention, wherein FIG. 6A shows a wheel load measurement sensor set, and FIG. 6B shows a lateral pressure measurement sensor set.

【図7】図6(A)のセンサ配置により測定した輪重波
形を連続化した例の説明図で、(A)は枕木間の輪重原
波形P1、P3、P5、(B)は枕木上の輪重原波形P2
4、(C)は一定輪重作用下の基準連続化波形である。
[7] The wheel load waveform measured by the sensor arrangement shown in FIG. 6 (A) an explanatory view of a continuous reduction described example, (A) is wheel Shigehara waveform P 1 between sleepers, P 3, P 5, ( B ) Indicates the ring-shaped original waveform P 2 on the sleeper,
P 4, (C) is a reference continuous waveform under a constant wheel load action.

【図8】本発明の実施例として横圧感度を補正するため
に求めた補正曲線を示すグラフである。
FIG. 8 is a graph showing a correction curve obtained for correcting lateral pressure sensitivity as an example of the present invention.

【図9】本発明の実施により連続化した波形を示すグラ
フで、(A)は輪重、(B)は横圧である。
FIGS. 9A and 9B are graphs showing continuous waveforms according to the embodiment of the present invention, wherein FIG. 9A shows wheel load and FIG. 9B shows lateral pressure.

【図10】車輪フラット通過時の輪重測定波形を示すグ
ラフである。
FIG. 10 is a graph showing a wheel load measurement waveform when the vehicle passes through a wheel flat.

【符号の説明】[Explanation of symbols]

1、2 枕木 3 レール 4 車輪 P1〜P5 輪重測定用センサ組(また輪重波形を示す場
合もある) Q1〜Q5 横圧測定用センサ組(また横圧波形を示す場
合もある) Pm1〜Pm5 鉛直ひずみセンサ
1,2 sleepers 3 rail 4 wheels P 1 to P 5 wheel load measurement sensor set (also sometimes showing a wheel load waveform) Q 1 to Q 5 lateral force measurement sensor set (also may indicate a lateral pressure waveform there) P m1 to P m5 vertical strain sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 安弘 東京都三鷹市新川6丁目38番1号 運輸省 交通安全公害研究所内 (72)発明者 鳥居 修 大阪府大阪市此花区島屋5丁目1番109号 住友金属工業株式会社関西製造所製鋼品 事業所内 (72)発明者 宮内 栄二 大阪府大阪市此花区島屋5丁目1番109号 住友金属テクノロジー株式会社内 (72)発明者 谷本 益久 大阪府大阪市此花区島屋5丁目1番109号 住友金属テクノロジー株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiro Sato 6-38-1, Shinkawa, Mitaka-shi, Tokyo Inside the Traffic Safety and Pollution Research Institute, Ministry of Transport (72) Inventor Osamu Torii 5-1-1 Shimaya, Konohana-ku, Osaka-shi, Osaka No. 109 Sumitomo Metal Industries, Ltd.Kansai Works Steelmaking Works (72) Inventor Eiji Miyauchi 5-1-1 Shimaya, Konohana-ku, Osaka-shi, Osaka Sumitomo Metal Technology Co., Ltd. (72) Inventor Masuhisa Tanimoto Osaka Sumitomo Metal Technology Co., Ltd. 5-1-1 109, Shimaya, Konohana-ku, Osaka-shi

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ひずみ測定用センサを隣設する枕木間隔
に近い距離でレール上の2ヵ所に貼着したセンサ組の複
数組を、少なくとも車輪の1周分の長さ以上にわたって
配設し、台車の輪重・横圧変動を車輪の1周分の長さ以
上にわたって測定することを特徴とする地上側測定によ
る鉄道車両の輪重・横圧の測定方法。
1. A plurality of sensor sets each having a strain measurement sensor adhered to two locations on a rail at a distance close to an adjacent sleeper interval are arranged at least over a length of one circumference of a wheel, A method for measuring wheel load and lateral pressure of a railway vehicle by ground-side measurement, wherein the wheel load and lateral pressure fluctuations of a bogie are measured over a length of one circumference of a wheel.
【請求項2】 ひずみ測定用センサを隣設する枕木間隔
に近い距離でレール上の2ヵ所に貼着したセンサ組の複
数組を、少なくとも車輪の1周分の長さ以上にわたって
配設したことを特徴とする地上側測定による鉄道車両の
輪重・横圧の測定装置。
2. A plurality of sensor sets, each of which has a strain measurement sensor attached to two locations on a rail at a distance close to an adjacent sleeper interval, are arranged over at least the length of one circumference of a wheel. A device for measuring wheel load and lateral pressure of railway vehicles by ground-side measurement.
【請求項3】 ひずみ測定用センサを隣設する枕木間隔
に近い距離でレール上の2ヵ所に貼着したセンサ組と、
ひずみ測定用センサを1つの枕木をまたいでレール上の
2ヵ所に貼着したセンサ組とを交互に、かつ前後センサ
組を一部重複させて車輪の1周分の長さ以上にわたって
配設し、台車の輪重・横圧変動を車輪の1周分の長さ以
上にわたって測定することを特徴とする鉄道車両の輪重
・横圧の連続測定方法。
3. A sensor set in which a strain measurement sensor is attached at two positions on a rail at a distance close to the distance between adjacent sleepers,
Sensors for strain measurement are arranged alternately with sensor sets attached to two places on the rail across one sleeper, and the front and rear sensor sets are partially overlapped over a length of one circumference of the wheel. A method for continuously measuring wheel load and lateral pressure of a railway vehicle, wherein a variation in wheel load and lateral pressure of a bogie is measured over a length of one turn of a wheel.
【請求項4】 ひずみ測定用センサを隣設する枕木間隔
に近い距離でレール上の2ヵ所に貼着したセンサ組と、
ひずみ測定用センサを1つの枕木をまたいでレール上の
2ヵ所に貼着したセンサ組とを交互に、かつ前後センサ
組を一部重複させて車輪の1周分の長さ以上にわたって
配設したことを特徴とする鉄道車両の輪重・横圧の連続
測定装置。
4. A sensor set in which a strain measurement sensor is attached at two positions on a rail at a distance close to the distance between adjacent sleepers,
Sensors for strain measurement were alternately arranged over two rails over one sleeper, and alternately, and the front and rear sensor groups were partially overlapped and arranged over a length of one wheel circumference. A continuous measuring device for wheel loads and lateral pressures of railway vehicles.
JP35710196A 1996-12-25 1996-12-25 Method and apparatus for continuous measurement of wheel load and lateral pressure of railway vehicle by ground side measurement Expired - Fee Related JP3151160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35710196A JP3151160B2 (en) 1996-12-25 1996-12-25 Method and apparatus for continuous measurement of wheel load and lateral pressure of railway vehicle by ground side measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35710196A JP3151160B2 (en) 1996-12-25 1996-12-25 Method and apparatus for continuous measurement of wheel load and lateral pressure of railway vehicle by ground side measurement

Publications (2)

Publication Number Publication Date
JPH10185666A true JPH10185666A (en) 1998-07-14
JP3151160B2 JP3151160B2 (en) 2001-04-03

Family

ID=18452388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35710196A Expired - Fee Related JP3151160B2 (en) 1996-12-25 1996-12-25 Method and apparatus for continuous measurement of wheel load and lateral pressure of railway vehicle by ground side measurement

Country Status (1)

Country Link
JP (1) JP3151160B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357492A (en) * 2001-06-04 2002-12-13 Yamato Scale Co Ltd Load cell, and load detecting gauge
EP1521072A1 (en) * 2003-10-02 2005-04-06 Österreichische Bundesbahnen Method of detecting the forces of elastic deformations of at least a rail and a superstructure
WO2007009132A3 (en) * 2005-07-18 2007-09-13 Hottinger Messtechnik Baldwin Method and device for determining the risk of derailment of railway vehicles
JP2007302250A (en) * 2007-08-24 2007-11-22 Sumitomo Metal Ind Ltd Method and device for monitoring vehicle traveling state
JP2008297845A (en) * 2007-06-01 2008-12-11 Sumitomo Metal Ind Ltd Method for diagnosing laid position of derailment preventing guard for railroad vehicle
EP1147383B2 (en) 1998-12-22 2010-09-08 Schenck Process GmbH Weighing device for rail vehicles
CN104260753A (en) * 2014-09-30 2015-01-07 中铁科学技术开发公司 Comprehensive test sensor of wheel-rail force and rail fastener
CN105170930A (en) * 2015-08-27 2015-12-23 北京中远通科技有限公司 Online weighing roller way
CN105651441A (en) * 2015-12-30 2016-06-08 中国神华能源股份有限公司 Sleeper bearing reaction test method
WO2016172844A1 (en) * 2015-04-28 2016-11-03 中国铁道科学研究院 Fully continuous ground measurement method and system for wheel rail vertical force
JP2017181061A (en) * 2016-03-28 2017-10-05 新日鐵住金株式会社 Measuring method and device for vertical creep force between wheel of railway vehicle and rail
WO2019146503A1 (en) 2018-01-26 2019-08-01 日本製鉄株式会社 Method, device, and program for estimating derailment coefficient
JP2019215267A (en) * 2018-06-13 2019-12-19 宮地エンジニアリング株式会社 Support reaction calculation method of beam structure, and support reaction management system of beam structure
JP2020186546A (en) * 2019-05-13 2020-11-19 公益財団法人鉄道総合技術研究所 Track displacement forecast method and track displacement forecasting system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147383B2 (en) 1998-12-22 2010-09-08 Schenck Process GmbH Weighing device for rail vehicles
JP2002357492A (en) * 2001-06-04 2002-12-13 Yamato Scale Co Ltd Load cell, and load detecting gauge
EP1521072A1 (en) * 2003-10-02 2005-04-06 Österreichische Bundesbahnen Method of detecting the forces of elastic deformations of at least a rail and a superstructure
WO2007009132A3 (en) * 2005-07-18 2007-09-13 Hottinger Messtechnik Baldwin Method and device for determining the risk of derailment of railway vehicles
JP2008297845A (en) * 2007-06-01 2008-12-11 Sumitomo Metal Ind Ltd Method for diagnosing laid position of derailment preventing guard for railroad vehicle
JP4692517B2 (en) * 2007-06-01 2011-06-01 住友金属工業株式会社 Method for diagnosing laying position of derailment prevention guard for railway vehicles
JP2007302250A (en) * 2007-08-24 2007-11-22 Sumitomo Metal Ind Ltd Method and device for monitoring vehicle traveling state
CN104260753A (en) * 2014-09-30 2015-01-07 中铁科学技术开发公司 Comprehensive test sensor of wheel-rail force and rail fastener
CN107532960A (en) * 2015-04-28 2018-01-02 中国铁道科学研究院 A kind of wheel track vertical force ground Total continuity measuring method and system
WO2016172844A1 (en) * 2015-04-28 2016-11-03 中国铁道科学研究院 Fully continuous ground measurement method and system for wheel rail vertical force
CN105170930A (en) * 2015-08-27 2015-12-23 北京中远通科技有限公司 Online weighing roller way
CN105651441A (en) * 2015-12-30 2016-06-08 中国神华能源股份有限公司 Sleeper bearing reaction test method
JP2017181061A (en) * 2016-03-28 2017-10-05 新日鐵住金株式会社 Measuring method and device for vertical creep force between wheel of railway vehicle and rail
WO2019146503A1 (en) 2018-01-26 2019-08-01 日本製鉄株式会社 Method, device, and program for estimating derailment coefficient
CN111655564A (en) * 2018-01-26 2020-09-11 日本制铁株式会社 Method, device, and program for estimating derailment coefficient
JPWO2019146503A1 (en) * 2018-01-26 2021-01-07 日本製鉄株式会社 Derailment coefficient estimation methods, devices, and programs
CN111655564B (en) * 2018-01-26 2023-01-17 日本制铁株式会社 Method and device for estimating derailment coefficient
JP2019215267A (en) * 2018-06-13 2019-12-19 宮地エンジニアリング株式会社 Support reaction calculation method of beam structure, and support reaction management system of beam structure
JP2020186546A (en) * 2019-05-13 2020-11-19 公益財団法人鉄道総合技術研究所 Track displacement forecast method and track displacement forecasting system

Also Published As

Publication number Publication date
JP3151160B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP3151160B2 (en) Method and apparatus for continuous measurement of wheel load and lateral pressure of railway vehicle by ground side measurement
AU2005265414B2 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
JP6663267B2 (en) Method and apparatus for measuring longitudinal creep force between wheel and rail of railway vehicle
JPH09315304A (en) Detecting device for unfastening of rail and detecting method
EP0227661A1 (en) Method and device for detecting wheels with deformed treads in railroad vehicles.
EP0204817B1 (en) Wheel load measurement
AT500769B1 (en) METHOD FOR DETECTING STRENGTHS OF ELASTIC DEFORMATION IN AT LEAST ONE RAIL AND ONE SURFACE
CN107532960A (en) A kind of wheel track vertical force ground Total continuity measuring method and system
US20200369303A1 (en) System and method for determining an angular speed of an axle of a railway vehicle
Ebersöhn et al. Use of track geometry measurements for maintenance planning
JP2002202182A (en) Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same
US4834199A (en) Weight sensing apparatus
CN107139969A (en) A kind of detecting system and its installation method for detecting Train wheel tread damage
RU2708693C1 (en) Device and method for detecting defects of wheels of railway vehicles in motion
Unluoglu et al. Predicting Dynamic Contact Stresses at Crosstie–Ballast Interface Based on Basic Train Characteristics
JPH0416890Y2 (en)
JP2021070462A (en) Progress detection method and progress detection system of rail wavy abrasion
JP2005114637A (en) System for detecting abnormality of vehicle and method therefor
GB2194065A (en) Weight sensing apparatus
KR102581400B1 (en) measuring apparatus of steering angle for railway vehicle
JP2927101B2 (en) Flat detection method of wheels for railway vehicles
RU2292283C2 (en) Device for noncontact inspection of wheelset roll surfaces in motion of rail vehicle
CA1104339A (en) Railroad track monitoring and adjusting device
JP3052563U (en) Measuring device for contact pressure between cable support ring and pressure receiving ring
JPS6060509A (en) Span measuring method of crane facilities

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees