JP2021070462A - Progress detection method and progress detection system of rail wavy abrasion - Google Patents

Progress detection method and progress detection system of rail wavy abrasion Download PDF

Info

Publication number
JP2021070462A
JP2021070462A JP2019200293A JP2019200293A JP2021070462A JP 2021070462 A JP2021070462 A JP 2021070462A JP 2019200293 A JP2019200293 A JP 2019200293A JP 2019200293 A JP2019200293 A JP 2019200293A JP 2021070462 A JP2021070462 A JP 2021070462A
Authority
JP
Japan
Prior art keywords
rail
wavy wear
detection system
progress detection
wear progress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019200293A
Other languages
Japanese (ja)
Other versions
JP7177027B2 (en
Inventor
田中 博文
Hirobumi Tanaka
博文 田中
和博 梶原
Kazuhiro Kajiwara
和博 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2019200293A priority Critical patent/JP7177027B2/en
Publication of JP2021070462A publication Critical patent/JP2021070462A/en
Application granted granted Critical
Publication of JP7177027B2 publication Critical patent/JP7177027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a progress detection method and progress detection system of a rail wavy abrasion which can properly detect a rail wavy abrasion that reaches a saturation period or gets close to the saturation period in progress processes in three stages of irregularities of the rail wavy abrasion.SOLUTION: A progress detection system of a rail wavy abrasion comprises: measurement means which measures data of at least one or more of the vibration acceleration, deviation and pressure distortion generated on a railroad due to the external force from a railway vehicle traveling on a rail, or the noise around the railroad on the rail or in the vicinity of the rail; frequency analysis means which frequency-analyzes the measurement data of at least one or more of the vibration acceleration, deviation and distortion or the noise around the railroad measured by the measurement means; detection means which detects the fundamental frequency and the harmonic content of the fundamental frequency from the data that is frequency-analyzed by the frequency analysis means; and output means which outputs the information that the rail wavy abrasion progresses when the harmonic content is detected.SELECTED DRAWING: Figure 1

Description

本発明は、鉄道車両が走行するレールに生じるレール波状摩耗の進展度合いを検知することができるレール波状摩耗の進展検知方法及び進展検知システムに関する。 The present invention relates to a rail wavy wear progress detection method and a progress detection system capable of detecting the progress of rail wavy wear occurring on a rail on which a railroad vehicle travels.

従来、レールに発生するレール波状摩耗に起因して発生する鉄道車両の乗り心地の悪化や騒音の発生などによる問題が知られており、このようなレール波状摩耗を検知する検知方法や検知システムは種々の方法及びシステムが知られている。 Conventionally, it has been known that problems such as deterioration of riding comfort of railway vehicles and generation of noise caused by rail wavy wear generated on rails have been known, and detection methods and detection systems for detecting such rail wavy wear have been used. Various methods and systems are known.

例えば、特許文献1に記載されているように、鉄道車両が走行する曲線軌道の内軌側レールに設置され、鉄道車両が前記内軌側レールを走行する際の前記内軌側レールの左右振動加速度を測定して左右振動加速度信号を出力する左右振動加速度測定手段と、前記左右振動加速度測定手段から出力された左右振動加速度信号が入力され、該入力された左右振動加速度信号から、予め決定された前記内軌側レールの波状摩耗に関連する周波数帯域の信号成分を抽出し、該抽出した信号成分の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を検知する検知手段と、を備える予兆検知システムが知られている。 For example, as described in Patent Document 1, it is installed on the inner rail side rail of the curved track on which the rail vehicle travels, and the lateral vibration of the inner rail side rail when the rail vehicle travels on the inner rail side rail. The left-right vibration acceleration measuring means that measures the acceleration and outputs the left-right vibration acceleration signal and the left-right vibration acceleration signal output from the left-right vibration acceleration measuring means are input, and are determined in advance from the input left-right vibration acceleration signal. A detection means for extracting a signal component in the frequency band related to the wavy wear of the inner rail side rail and detecting a sign of occurrence of the wavy wear of the inner rail side rail based on the magnitude of the extracted signal component. A sign detection system equipped with, is known.

このような予兆検知システムによれば、曲線軌道の内軌側レールの頭頂面に発生する波状摩耗の発生の予兆を検知することが可能となる。 According to such a sign detection system, it is possible to detect a sign of the occurrence of wavy wear generated on the crown surface of the rail on the inner rail side of the curved track.

特開2019−104389号公報JP-A-2019-104389

近年の研究によって、図8に示すように、軌道のレールに発生するレール波状摩耗は、レール凹凸を継続測定することによって、レール波状摩耗の進展過程には、レール凹凸が発生し始める形成期、形成期に発生したレール凹凸が徐々に大きくなる成長期、及びレール凹凸の進展が鈍化する飽和期の三段階に分類されることが知られてきた。 According to recent research, as shown in FIG. 8, the rail wavy wear generated on the rail of the track is a formation period in which the rail wavy wear begins to occur in the progress process of the rail wavy wear by continuously measuring the rail unevenness. It has been known that it is classified into three stages: a growth period in which the rail unevenness generated in the formation period gradually increases, and a saturation period in which the progress of the rail unevenness slows down.

レール波状摩耗の凹凸の進展が形成期、あるいは成長期にある場合のレール波状摩耗の凹凸形状は正弦波状であるが、レール波状摩耗の凹凸の進展が飽和期に達した、あるいは飽和期に近づいたレール波状摩耗の凹凸形状は、レール波状摩耗の基本形状である正弦波形状から崩れ、概略三角波形状となることが知られており、図9に示すように、レール波状摩耗の進展が飽和期に達した、あるいは飽和期に近づいた状態でのレール凹凸波形のパワースペクトルやフーリエスペクトル等の周波数分析結果には、レール波状摩耗の凹凸の基本の波長に対応する基本空間周波数の高次モードが現れることがわかってきている。 The uneven shape of the rail wavy wear is sinusoidal when the progress of the unevenness of the rail wavy wear is in the formation period or the growth period, but the progress of the unevenness of the rail wavy wear has reached the saturation period or is approaching the saturation period. It is known that the uneven shape of the rail wavy wear collapses from the sinusoidal shape which is the basic shape of the rail wavy wear and becomes a substantially triangular wave shape. As shown in FIG. 9, the progress of the rail wavy wear is in the saturation period. In the frequency analysis results such as the power spectrum and Fourier spectrum of the rail unevenness waveform when the rail has reached or is approaching the saturation period, the higher-order mode of the basic spatial frequency corresponding to the basic wavelength of the unevenness of the rail wavy wear is included. It is becoming known that it will appear.

しかし、特許文献1に記載の従来のレール波状摩耗の検知システムによると、レール波状摩耗に関連する周波数帯域の信号成分を抽出していることから、形成期又は成長期の状態のレールもレール波状摩耗が発生しているとして検知されてしまうため、飽和期の到達を判定することはできず、適切な保守作業の実施を把握することができないという問題があった。 However, according to the conventional rail wavy wear detection system described in Patent Document 1, since the signal component of the frequency band related to the rail wavy wear is extracted, the rail in the forming stage or the growing stage is also rail wavy. Since it is detected that wear has occurred, it is not possible to determine the arrival of the saturation period, and there is a problem that it is not possible to grasp the implementation of appropriate maintenance work.

そこで、本発明は上記問題に鑑みてなされたものであり、レール波状摩耗の三段階の進展過程のうち、飽和期に達した、あるいは飽和期に近づいたレール波状摩耗の進展度合いを適切に検知することができるレール波状摩耗の進展検知方法および、進展検知システムを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and among the three stages of progress of rail wavy wear, the degree of progress of rail wavy wear that has reached or is approaching the saturation period is appropriately detected. It is an object of the present invention to provide a method for detecting the progress of rail wavy wear and a system for detecting the progress of the rail.

本発明に係るレール波状摩耗進展検知システムは、レール上を走行する鉄道車両からの外力によって軌道に生じた振動加速度、変位、圧力、ひずみあるいは軌道周辺の騒音の少なくともいずれか一つ以上のデータを前記レールまたは前記レールの近傍で測定する測定手段と、前記測定手段によって測定された振動加速度、変位、圧力、ひずみあるいは軌道周辺の騒音の少なくともいずれか一つ以上の測定データを周波数分析する周波数分析手段と、前記周波数分析手段によって周波数分析されたデータから基本周波数及び該基本周波数の高調波成分の検知を行う検知手段と、前記高調波成分が検知された場合にレール波状摩耗が進展していることを出力する出力手段を備えることを特徴とする。 The rail wavy wear progress detection system according to the present invention collects at least one or more data of vibration acceleration, displacement, pressure, strain or noise around the track generated in the track by an external force from a railroad vehicle traveling on the rail. Frequency analysis that frequency-analyzes measurement data of at least one or more of the measurement means measured by the rail or the vicinity of the rail and vibration acceleration, displacement, pressure, strain or noise around the track measured by the measurement means. The means, the detection means for detecting the fundamental frequency and the harmonic component of the fundamental frequency from the data frequency-analyzed by the frequency analysis means, and the rail wavy wear progressing when the harmonic component is detected. It is characterized in that it is provided with an output means for outputting the fact.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記検知手段は、前記高調波成分の検知を前記基本周波数の整数倍近傍の探索周波数帯域のピークパワー比を用いて判断すると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable that the detection means determines the detection of the harmonic component by using the peak power ratio of the search frequency band in the vicinity of an integral multiple of the fundamental frequency.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記検知手段は、前記高調波成分の検知を前記基本周波数の整数倍近傍において一定の範囲をもった周波数バンドの面積比を用いて判断すると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, the detection means determines the detection of the harmonic component by using the area ratio of the frequency band having a certain range in the vicinity of an integral multiple of the fundamental frequency. Suitable.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記測定手段は、加速度センサであると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable that the measuring means is an acceleration sensor.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記測定手段は、前記レールの頭側部に取り付けられると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable that the measuring means is attached to the head side portion of the rail.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記測定手段は、前記レールの底部に取り付けられると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable that the measuring means is attached to the bottom of the rail.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記測定手段は、まくらぎの上面に取り付けられると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable that the measuring means is attached to the upper surface of the pillow.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記測定手段は、圧力センサであると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable that the measuring means is a pressure sensor.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記測定手段は、前記レールとまくらぎの間に介在する軌道パッドに取り付けられると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable that the measuring means is attached to a track pad interposed between the rail and the pillow.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記測定手段は、マイクロフォンであると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable that the measuring means is a microphone.

また、本発明に係るレール波状摩耗進展検知システムにおいて、前記測定手段で測定した前記測定データを前記周波数分析手段に伝送する伝送手段を備えると好適である。 Further, in the rail wavy wear progress detection system according to the present invention, it is preferable to include a transmission means for transmitting the measurement data measured by the measuring means to the frequency analysis means.

また、本発明に係るレール波状摩耗進展検知方法は、レール上を走行する鉄道車両からの外力によって軌道に生じた振動加速度、変位、圧力、ひずみあるいは軌道周辺の騒音の少なくともいずれか一つ以上のデータを前記レールまたは前記レールの近傍で測定する測定工程と、前記測定工程によって測定された振動加速度、変位、圧力、ひずみあるいは軌道周辺の騒音の少なくともいずれか一つ以上の測定データを周波数分析する周波数分析工程と、前記周波数分析工程によって周波数分析されたデータから基本周波数及び該基本周波数の高調波成分の検知を行う検知工程と、前記高調波成分が検知された場合にレール波状摩耗が進展していることを出力する出力工程を備えることを特徴とする。 Further, the rail wavy wear progress detection method according to the present invention is at least one or more of vibration acceleration, displacement, pressure, strain or noise around the track generated on the track by an external force from a railroad vehicle traveling on the rail. Frequency analysis is performed on the measurement step of measuring the data on the rail or in the vicinity of the rail, and at least one or more of the measurement data of vibration acceleration, displacement, pressure, strain or noise around the track measured by the measurement step. The frequency analysis step, the detection step of detecting the fundamental frequency and the harmonic component of the fundamental frequency from the data frequency-analyzed by the frequency analysis step, and the rail wavy wear progress when the harmonic component is detected. It is characterized by including an output process for outputting what is being done.

また、本発明に係るレール波状摩耗進展検知方法において、前記検知工程は、前記高調波成分の検知を前記基本周波数の整数倍近傍の探索周波数帯域のピークパワー比を用いて判断すると好適である。 Further, in the rail wavy wear progress detection method according to the present invention, it is preferable that the detection step determines the detection of the harmonic component by using the peak power ratio of the search frequency band in the vicinity of an integral multiple of the fundamental frequency.

また、本発明に係るレール波状摩耗進展検知方法において、前記検知工程は、前記高調波成分の検知を前記基本周波数の整数倍近傍において一定の範囲をもった周波数バンドの面積比を用いて判断すると好適である。 Further, in the rail wavy wear progress detection method according to the present invention, the detection step determines the detection of the harmonic component by using the area ratio of the frequency band having a certain range in the vicinity of an integral multiple of the fundamental frequency. Suitable.

本発明に係るレール波状摩耗進展検知方法及び進展検知システムは、振動加速度、変位、圧力、ひずみ、騒音の少なくともいずれか一つ以上の測定データを周波数分析することで、レール波状摩耗の凹凸の進展度合いが飽和期に達した、あるいは飽和期に近づいた際に出現する基本周波数の高調波成分を検知しているので、レール波状摩耗が発生した後、その凹凸の進展度合いを簡易に把握することができ、レール削正等の保守作業の最適な時期を把握することができ、効率的なレール波状摩耗の保守作業を実現することができる。 The rail wavy wear progress detection method and progress detection system according to the present invention perform frequency analysis of measurement data of at least one or more of vibration acceleration, displacement, pressure, strain, and noise to develop unevenness of rail wavy wear. Since the harmonic component of the fundamental frequency that appears when the degree reaches or approaches the saturation period is detected, it is easy to grasp the degree of progress of the unevenness after rail wavy wear occurs. It is possible to grasp the optimum timing of maintenance work such as rail rectification, and it is possible to realize efficient maintenance work of rail wavy wear.

本発明の実施形態に係るレール波状摩耗進展検知システムの構成を示す概要図。The schematic diagram which shows the structure of the rail wavy wear progress detection system which concerns on embodiment of this invention. 本発明の実施形態に係るレール波状摩耗進展検知システムのフロー図。The flow chart of the rail wavy wear progress detection system which concerns on embodiment of this invention. 本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段として加速度センサを用いた場合のレールへの取付状態を説明するための概念図。FIG. 6 is a conceptual diagram for explaining a state of attachment to the rail when an acceleration sensor is used as a measuring means of the rail wavy wear progress detection system according to the embodiment of the present invention. 本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段として加速度センサを用いた場合の他の取付状態を説明するための概念図。FIG. 6 is a conceptual diagram for explaining another mounting state when an acceleration sensor is used as a measuring means of the rail wavy wear progress detection system according to the embodiment of the present invention. 本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段としての加速度センサを用いた場合のまくらぎへの取付状態を説明するための概念図。The conceptual diagram for demonstrating the mounting state to the sleeper when the acceleration sensor is used as the measuring means of the rail wavy wear progress detection system which concerns on embodiment of this invention. 本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段として圧力センサを用いた場合の取付状態を説明するための概念図。The conceptual diagram for demonstrating the mounting state when the pressure sensor is used as the measuring means of the rail wavy wear progress detection system which concerns on embodiment of this invention. 本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段としてマイクロフォンを用いた場合の設置状態を説明するための概念図。The conceptual diagram for demonstrating the installation state when the microphone is used as the measuring means of the rail wavy wear progress detection system which concerns on embodiment of this invention. レール波状摩耗の形成期、成長期及び飽和期の進展過程を説明するためのグラフ。A graph for explaining the progress process of the formation period, the growth period and the saturation period of the rail wavy wear. レール波状摩耗が飽和期に近づいた状態と形成期あるいは成長期における凹凸波形のパワースペクトルを示すグラフ。A graph showing the power spectrum of the uneven waveform in the state where the rail wavy wear approaches the saturation period and in the formation period or the growth period. レール波状摩耗が飽和期に近づいた状態と、形成期あるいは成長期における測定した加速度波形のパワースペクトルを示すグラフ。A graph showing the power spectrum of the acceleration waveform measured in the formative phase or the growth phase and the state where the rail wavy wear approaches the saturation phase.

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following embodiments do not limit the invention according to each claim, and not all combinations of features described in the embodiments are essential for the means for solving the invention. ..

図1は、本発明の実施形態に係るレール波状摩耗進展検知システムの構成を示す概要図であり、図2は、本発明の実施形態に係るレール波状摩耗進展検知システムのフロー図であり、図3は、本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段として加速度センサを用いた場合のレールへの取付状態を説明するための概念図であり、図4は、本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段として加速度センサを用いた場合の他の取付状態を説明するための概念図であり、図5は、本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段としての加速度センサを用いた場合のまくらぎへの取付状態を説明するための概念図であり、図6は、本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段として圧力センサを用いた場合の取付状態を説明するための概念図であり、図7は、本発明の実施形態に係るレール波状摩耗進展検知システムの測定手段としてマイクロフォンを用いた場合の設置状態を説明するための概念図であり、図8は、レール波状摩耗の形成期、成長期及び飽和期の進展過程を説明するためのグラフであり、図9は、レール波状摩耗が飽和期に近づいた状態と形成期あるいは成長期における凹凸波形のパワースペクトルを示すグラフであり、図10は、レール波状摩耗が飽和期に近づいた状態と、形成期あるいは成長期における測定した加速度波形のパワースペクトルを示すグラフである。 FIG. 1 is a schematic diagram showing a configuration of a rail wavy wear progress detection system according to an embodiment of the present invention, and FIG. 2 is a flow diagram of a rail wavy wear progress detection system according to an embodiment of the present invention. 3 is a conceptual diagram for explaining a state of attachment to the rail when an acceleration sensor is used as a measuring means of the rail wavy wear progress detection system according to the embodiment of the present invention, and FIG. 4 is an embodiment of the present invention. FIG. 5 is a conceptual diagram for explaining another mounting state when an acceleration sensor is used as a measuring means of the rail wavy wear progress detection system according to the embodiment, and FIG. 5 is a rail wavy wear progress detection according to the embodiment of the present invention. FIG. 6 is a conceptual diagram for explaining a state of attachment to a pillow when an acceleration sensor is used as a measuring means of the system, and FIG. 6 is a measuring means of a rail wavy wear progress detection system according to an embodiment of the present invention. It is a conceptual diagram for demonstrating the mounting state when a pressure sensor is used, and FIG. 7 explains the mounting state when a microphone is used as the measuring means of the rail wavy wear progress detection system which concerns on embodiment of this invention. FIG. 8 is a graph for explaining the progress process of the formation period, the growth period, and the saturation period of the rail wavy wear, and FIG. 9 is a state in which the rail wavy wear approaches the saturation period. It is a graph showing the power spectrum of the uneven waveform in the formation period or the growth period, and FIG. 10 is a graph showing the state in which the rail wavy wear approaches the saturation period and the power spectrum of the acceleration waveform measured in the formation period or the growth period. Is.

図1に示すように、本実施形態に係るレール波状摩耗進展検知システム1は、レール2を走行する鉄道車両の振動加速度及び騒音の少なくともいずれか一方を測定する測定手段10と、測定手段10によって測定された振動加速度及び騒音の少なくともいずれか一方の測定データを周波数分析すると共に、周波数分析されたデータから基本周波数及び基本周波数の高調波成分を検知し、レール波状摩耗の進展度合いを判定するデータ処理手段20と、レール波状摩耗が進展している場合に、当該レール波状摩耗が進展していることを出力する出力手段30と、測定手段10からデータ処理手段20へ測定データを伝送する伝送手段40及び、受信手段41を備えている。 As shown in FIG. 1, the rail wavy wear progress detection system 1 according to the present embodiment uses a measuring means 10 for measuring at least one of vibration acceleration and noise of a rail vehicle traveling on the rail 2 and a measuring means 10. Data that frequency-analyzes at least one of the measured vibration acceleration and noise, detects the fundamental frequency and the harmonic components of the fundamental frequency from the frequency-analyzed data, and determines the degree of progress of rail wavy wear. The processing means 20, the output means 30 that outputs that the rail wavy wear is progressing when the rail wavy wear is progressing, and the transmission means that transmits the measurement data from the measuring means 10 to the data processing means 20. 40 and receiving means 41 are provided.

軌道は、種々の形態が知られているが、例えば図5などに示すように、バラストに配置されたまくらぎ3に軌道パッド4やタイプレートなどを介してレール2を支持するレール締結装置を備えている。本実施形態に係るレール波状摩耗進展検知システムは、種々の軌道に関して適用可能であり、上述したバラスト軌道に限らず、直結系軌道などに適用しても構わないし、レール締結装置の形態も上述した軌道パッドやタイプレートを介した締結方法に限らない。なお、レール波状摩耗とは、繰り返しレール2上を走行する鉄道車両からの作用によってレール2が周期的に摩耗又は損傷してレール2の車輪との転走面に周期的かつ微細な凹凸が形成される現象のことをいう。 Various forms of the track are known. For example, as shown in FIG. 5, a rail fastening device for supporting the rail 2 via a track pad 4, a tie plate, or the like is attached to the sleepers 3 arranged on the ballast. I have. The rail wavy wear progress detection system according to the present embodiment can be applied to various tracks, and may be applied not only to the ballast track described above but also to a directly connected track or the like, and the form of the rail fastening device is also described above. It is not limited to the fastening method via a track pad or a tie plate. In addition, rail wavy wear means that the rail 2 is periodically worn or damaged by the action of a railroad vehicle traveling on the rail 2 repeatedly, and periodic and fine irregularities are formed on the rolling surface of the rail 2 with the wheels. It refers to the phenomenon that occurs.

測定手段10は、後述するようにまくらぎ3に設置されたレール2に直接または、レール2またはまくらぎ3の近傍に設置されており、レール2を走行する鉄道車両の振動加速度又は騒音を測定することができる加速度センサ、変位センサ、圧力センサ、ひずみゲージ及びマイクロフォンなどが好適に用いられる。 The measuring means 10 is installed directly on the rail 2 installed on the sleeper 3 or in the vicinity of the rail 2 or the sleeper 3 as described later, and measures the vibration acceleration or noise of the rail vehicle traveling on the rail 2. Accelerometers, displacement sensors, pressure sensors, strain gauges, microphones and the like that can be used are preferably used.

測定手段10で測定された測定データは、伝送手段40及び受信手段41によってデータ処理手段20へ伝送される。伝送手段40及び受信手段41は種々のデータ伝送方法を採用することが可能である。例えば、これらの伝送手段40及び受信手段41は、無線又は有線でデータ伝送を行う方式を採用すれば、鉄道の軌道内に人員が赴くことなく遠隔の事務所等で常時モニタリングを行うことが可能となる。 The measurement data measured by the measuring means 10 is transmitted to the data processing means 20 by the transmitting means 40 and the receiving means 41. The transmission means 40 and the reception means 41 can adopt various data transmission methods. For example, if these transmission means 40 and reception means 41 adopt a method of transmitting data wirelessly or by wire, it is possible to constantly monitor at a remote office or the like without personnel going to the railroad track. It becomes.

データ処理手段20は、測定手段10によって測定された振動加速度及び騒音の少なくともいずれか一方の測定データを周波数分析すると共に、周波数分析されたデータから基本周波数及び基本周波数の高調波成分を検知し、レール波状摩耗の進展度合いを判定する機能を実現するためのプログラムを実行することができるパーソナルコンピュータなどの計算機が好適に用いられる。 The data processing means 20 frequency-analyzes measurement data of at least one of vibration acceleration and noise measured by the measuring means 10, and detects a fundamental frequency and a harmonic component of the fundamental frequency from the frequency-analyzed data. A computer such as a personal computer capable of executing a program for realizing a function of determining the degree of progress of rail wavy wear is preferably used.

データ処理手段20では、図2に示すように、測定手段10によって測定された測定データを取得する測定データ取得工程S1と、測定データの周波数分析を行う周波数分析手段としての周波数分析工程S2と、周波数分析工程S2によって周波数分析されたデータから基本周波数を検知する基本周波数検知工程S3および基本周波数の高調波成分を検知する高調波成分検知工程S4と、高調波成分の有無からレール波状摩耗が進展しているか否かを判定する進展度合い判定工程S5とを有している。 In the data processing means 20, as shown in FIG. 2, a measurement data acquisition step S1 for acquiring the measurement data measured by the measurement means 10, a frequency analysis step S2 as a frequency analysis means for performing frequency analysis of the measurement data, and the like. The fundamental frequency detection step S3 that detects the fundamental frequency from the data frequency-analyzed by the frequency analysis step S2, the harmonic component detection step S4 that detects the harmonic component of the fundamental frequency, and the rail wavy wear progresses depending on the presence or absence of the harmonic component. It has a progress degree determination step S5 for determining whether or not it is performed.

周波数分析工程S2、基本周波数検知工程S3および高調波成分検知工程S4は、従来周知の周波数分析方法を採用することができるが、たとえば、高速フーリエ変換(FFT:Fast Fourier Transform)を用いると、周波数分析工程S2から高調波成分検知工程S4までを一処理で行うことができるため処理の短縮化を図ることができ、好適である。なお、レール波状摩耗検出のための周波数分析方法は周知技術を適用することができるため、ここでは詳細な説明を省略する。また、周波数分析工程S2は、測定した時間軸データについて時間軸上で行っても良いし、通過する鉄道車両の通過速度を用いて空間軸上のデータに変換した上で空間軸上で行っても構わない。 The frequency analysis step S2, the fundamental frequency detection step S3, and the harmonic component detection step S4 can employ a conventionally known frequency analysis method. For example, when a fast Fourier transform (FFT) is used, the frequency is used. Since the analysis step S2 to the harmonic component detection step S4 can be performed in one process, the process can be shortened, which is preferable. Since a well-known technique can be applied to the frequency analysis method for detecting rail wavy wear, detailed description thereof will be omitted here. Further, the frequency analysis step S2 may be performed on the time axis with respect to the measured time axis data, or may be performed on the space axis after being converted into data on the space axis using the passing speed of the passing railcar. It doesn't matter.

進展度合い判定工程S5は、高調波成分検知工程S4によって測定データに高調波成分が含まれていることを検知した場合に、レール2にレール波状摩耗が発生し、当該レール波状摩耗が飽和期に達している又は飽和期に近づいていることを判定する。この時、高調波成分の出現の有無のほか、高調波成分の出現時の基本周波数のパワーに対する比を用いることで、レール波状摩耗の進展度合いを判定するように構成しても構わない。 When the progress degree determination step S5 detects that the measurement data contains a harmonic component by the harmonic component detection step S4, rail wavy wear occurs on the rail 2, and the rail wavy wear is in the saturation period. Determine if it has reached or is approaching saturation. At this time, in addition to the presence / absence of the appearance of the harmonic component, the ratio to the power of the fundamental frequency at the time of the appearance of the harmonic component may be used to determine the degree of progress of the rail wavy wear.

具体的には、進展度合い判定工程S5では、(1)高調波成分の有無、(2)基本周波数と高調波成分周波数のピークパワーの比、(3)基本周波数バンドと高調波成分周波数バンドの面積比などを用いて進展度合いの判定を行う。 Specifically, in the progress degree determination step S5, (1) presence / absence of harmonic components, (2) ratio of peak power between fundamental frequency and harmonic component frequency, and (3) fundamental frequency band and harmonic component frequency band. The degree of progress is determined using the area ratio and the like.

高調波成分の有無の判定方法は、測定した加速度波形について周波数分析を行い、図10に示すように基本周波数以外に高調波成分が出現しているかを確認し、波状摩耗の進展度合いを判定するものである。また、基本周波数と高調波成分周波数のピークパワーの比による判定方法は、測定した加速度波形について周波数分析を行い、基本周波数と高調波成分周波数を特定したうえで、そのパワー比を算定するものである。ここで、高調波成分周波数の特定は、基本周波数の2倍、3倍、4倍・・・といった整数倍を標準とし、ピークのパワー比が所定の閾値以上となった場合に波状摩耗が飽和していると判定する。 The method for determining the presence or absence of harmonic components is to perform frequency analysis on the measured acceleration waveform, confirm whether harmonic components appear in addition to the fundamental frequency as shown in FIG. 10, and determine the degree of progress of wavy wear. It is a thing. In addition, the judgment method based on the ratio of the peak power of the fundamental frequency and the harmonic component frequency is to perform frequency analysis on the measured acceleration waveform, specify the fundamental frequency and the harmonic component frequency, and then calculate the power ratio. is there. Here, the harmonic component frequency is specified by using integer multiples such as 2 times, 3 times, 4 times, etc. of the fundamental frequency as standard, and wavy wear is saturated when the peak power ratio becomes equal to or higher than a predetermined threshold value. Judge that it is.

なお、高調波成分周波数のピークは、基本周波数の整数倍からずれて出現する場合もあるため、ピークの探索範囲を基本周波数の整数倍から±5から10%程度の範囲で探索を行い、当該探索周波数帯域の最大値を用いて判定すると好適である。さらに、上述した判定方法は、測定した加速度データについて説明を行ったが、測定手段に用いたセンサに応じて、加速度以外の測定データ(変位、圧力、ひずみ及び騒音など)から高調波成分の有無を判定しても構わない。 Since the peak of the harmonic component frequency may appear deviating from an integral multiple of the fundamental frequency, the peak search range is searched within a range of about ± 5 to 10% from the integral multiple of the fundamental frequency. It is preferable to make a judgment using the maximum value of the search frequency band. Further, in the above-mentioned determination method, the measured acceleration data has been described. However, depending on the sensor used as the measuring means, the presence or absence of harmonic components is obtained from the measurement data other than the acceleration (displacement, pressure, strain, noise, etc.). May be determined.

さらに、基本周波数バンドと高調波成分周波数バンドの面積比による判定方法は、測定した加速度波形について周波数分析を行い、基本周波数と高調波成分周波数を特定したうえで、さらに一定の範囲をもった周波数バンドの面積を算定し、さらにその面積比を算定するものである。ここで、高調波周波数の特定は、基本周波数の2倍、3倍、4倍・・・といった整数倍を標準とし、一定の範囲をもった周波数バンドの面積比が所定の閾値以上となった場合に波状摩耗が飽和していると判定する。この方式を用いることにより、基本周波数に対して、高調波成分周波数が少しでもずれた場合でも誤判定が生じる可能性を小さくでき、精度の高い進展度合いの判定が実現できると考えられる。さらに、上述した判定方法は、測定した加速度データについて説明を行ったが、測定手段に用いたセンサに応じて、加速度以外の測定データ(変位、圧力、ひずみ及び騒音)などから高調波成分の有無を判定しても構わない。 Furthermore, the determination method based on the area ratio of the fundamental frequency band and the harmonic component frequency band is to perform frequency analysis on the measured acceleration waveform, specify the fundamental frequency and the harmonic component frequency, and then have a frequency within a certain range. The area of the band is calculated, and the area ratio is calculated. Here, the harmonic frequency is specified by using integer multiples such as 2 times, 3 times, 4 times, etc. of the fundamental frequency as standard, and the area ratio of the frequency band having a certain range becomes equal to or more than a predetermined threshold value. In some cases, it is determined that the wavy wear is saturated. By using this method, it is considered that the possibility of erroneous determination can be reduced even if the harmonic component frequency deviates from the fundamental frequency even a little, and the determination of the degree of progress with high accuracy can be realized. Further, in the above-mentioned determination method, the measured acceleration data has been described, but depending on the sensor used as the measuring means, the presence or absence of harmonic components is obtained from the measurement data (displacement, pressure, strain and noise) other than the acceleration. May be determined.

なお,レール波状摩耗の基本周波数の特定については、管理対象とする曲線の軌道構造と当該区間を走行する車両の詳細がわかれば、理論解析によってある程度の精度で予測可能である。さらに、センサを仮設後に実際の振動加速度を分析することによってより高い精度で把握することができると考えられる。 The fundamental frequency of rail wavy wear can be predicted with a certain degree of accuracy by theoretical analysis if the track structure of the curve to be managed and the details of the vehicle traveling in the section are known. Furthermore, it is considered that the sensor can be grasped with higher accuracy by analyzing the actual vibration acceleration after the temporary installation.

進展度合い判定工程S5において、レール2に発生したレール波状摩耗が飽和期に達している又は飽和期に近づいていると判定された後、出力手段30によって判定結果を出力する。出力手段30は、上述したデータ処理手段20として用いたパーソナルコンピュータのディスプレイなどが好適に用いられる。 In the progress degree determination step S5, after it is determined that the rail wavy wear generated on the rail 2 has reached the saturation period or is approaching the saturation period, the output means 30 outputs the determination result. As the output means 30, a personal computer display or the like used as the above-mentioned data processing means 20 is preferably used.

次に、測定手段10について詳細に説明を行う。図3に示すように、測定手段10は、加速度センサ11がレール2の頭頂部2aの側部に取り付けられている。加速度センサ11の感度方向はレール2の上下方向加速度を測定可能なように設置すると好適である。このように加速度センサ11を設置することで、レール波状摩耗が発生する頭頂部2aから直接、鉄道車両が走行した際の振動加速度を測定することができるので、より精度のよい測定を行うことが可能となる。 Next, the measuring means 10 will be described in detail. As shown in FIG. 3, in the measuring means 10, the acceleration sensor 11 is attached to the side portion of the crown portion 2a of the rail 2. The sensitivity direction of the acceleration sensor 11 is preferably installed so that the vertical acceleration of the rail 2 can be measured. By installing the acceleration sensor 11 in this way, it is possible to measure the vibration acceleration when the railroad vehicle travels directly from the crown 2a where the rail wavy wear occurs, so that more accurate measurement can be performed. It will be possible.

なお、測定手段10が取り付けられる区間は、予めレール波状摩耗の発生が予測されるあるいは過去にレール波状摩耗が発生しており、レール削正やレール交換などの保守を実施した区間に設置されると好適である。このとき、レール波状摩耗が発生する区間は、曲線部の内軌に限らず、外軌や直線区間についてもレール波状摩耗が発生するため、測定手段10の線路長手方向の設置位置は特に制限されることはない。 The section to which the measuring means 10 is attached is installed in a section where rail wavy wear is predicted in advance or rail wavy wear has occurred in the past and maintenance such as rail correction or rail replacement has been performed. Is suitable. At this time, the section where the rail wavy wear occurs is not limited to the inner rail of the curved portion, but the rail wavy wear also occurs in the outer rail and the straight section, so that the installation position of the measuring means 10 in the longitudinal direction of the track is particularly limited. There is nothing.

また、加速度センサ11の取り付け位置は、頭頂部2aに限らず、図4に示すように、レール2の底部2bに取り付けても構わないし、図5に示すように、まくらぎ3上に設置しても構わない。このような位置に加速度センサ11を取り付ける場合にも、加速度センサ11の感度方向は、上下方向加速度を測定可能なように設置されると好適である。また、上下方向加速度に限らず、左右方向加速度を測定しても構わない。 Further, the mounting position of the acceleration sensor 11 is not limited to the crown 2a, but may be mounted on the bottom 2b of the rail 2 as shown in FIG. 4, or mounted on the sleeper 3 as shown in FIG. It doesn't matter. Even when the acceleration sensor 11 is attached to such a position, it is preferable that the sensitivity direction of the acceleration sensor 11 is set so that the vertical acceleration can be measured. Further, not only the vertical acceleration but also the horizontal acceleration may be measured.

また、測定手段10は、加速度センサ11に限らず、図6に示すように、レール2とまくらぎ3の間に介在される軌道パッド4に圧力センサ12を設置しても構わない。圧力センサ12は、鉄道車両がレール2を走行した際のレールとまくらぎの間に作用する圧力変動を測定し、該圧力変動の測定データを周波数分析することができればどのような形式の圧力センサを採用しても構わない。 Further, the measuring means 10 is not limited to the acceleration sensor 11, and as shown in FIG. 6, the pressure sensor 12 may be installed on the track pad 4 interposed between the rail 2 and the sleepers 3. The pressure sensor 12 can measure the pressure fluctuation acting between the rail and the pillow when the railroad vehicle travels on the rail 2, and if the measurement data of the pressure fluctuation can be frequency-analyzed, any type of pressure sensor can be used. You may adopt it.

また、加速度センサや圧力センサに限らず、変位センサやひずみゲージを設置して鉄道車両がレール2を走行した際のレール2の変位やひずみを測定し、該変位量やひずみ量の測定データを周波数分析しても構わない。 In addition to the acceleration sensor and pressure sensor, a displacement sensor and strain gauge are installed to measure the displacement and strain of the rail 2 when the railroad vehicle travels on the rail 2, and the measurement data of the displacement and strain are obtained. Frequency analysis may be performed.

また、本実施形態に係るレール波状摩耗進展検知システム1は、測定の対象を鉄道車両がレール2を走行した際の振動加速度、圧力、変位、およびひずみを測定することに限らず、鉄道車両がレール2を走行する際の騒音を測定することで当該騒音の周波数分析を行うことも可能である。この場合、図7に示すように、レール2やまくらぎ3の近傍にマイクロフォン13を設置し、当該マイクロフォン13で騒音を測定するように構成しても構わない。この場合、鉄道車両の走行騒音以外の音を測定しないように、指向性を有するマイクロフォンを用いると好適である。 Further, the rail wavy wear progress detection system 1 according to the present embodiment is not limited to measuring the vibration acceleration, pressure, displacement, and strain when the rail vehicle travels on the rail 2, and the rail vehicle can measure the vibration acceleration, pressure, displacement, and strain. It is also possible to perform frequency analysis of the noise by measuring the noise when traveling on the rail 2. In this case, as shown in FIG. 7, a microphone 13 may be installed in the vicinity of the rail 2 and the sleepers 3, and the microphone 13 may be configured to measure noise. In this case, it is preferable to use a microphone having directivity so as not to measure sounds other than the running noise of the railway vehicle.

このように、本実施形態に係るレール波状摩耗進展検知システム1は、測定された振動加速度、圧力、変位、ひずみ及び騒音の周波数分析を行い、周波数分析の結果から基本周波数を検知した後、当該基本周波数に高次モードとなる高周波成分の有無を検知しているので、測定対象であるレール2にレール波状摩耗が発生しているか否かを判定すると共に、当該レール波状摩耗の凹凸の進展過程が飽和期に達している又は飽和期に近づいているかを判定することができるため、レール波状摩耗の凹凸除去の主たる方法であるレール削正の実施時期を効率的に決定し、軌道の保守コストを低減することが可能となる。なお、上述した加速度センサ11および圧力センサ12などやマイクロフォン13は、片側のレール2のみに設置しても構わないし、両側のレール2に設置しても構わない。 As described above, the rail wavy wear progress detection system 1 according to the present embodiment performs frequency analysis of the measured vibration acceleration, pressure, displacement, strain and noise, detects the basic frequency from the result of the frequency analysis, and then performs the said. Since the presence or absence of a high-frequency component in the higher-order mode is detected in the basic frequency, it is determined whether or not rail wavy wear has occurred on the rail 2 to be measured, and the process of progress of the unevenness of the rail wavy wear. Since it is possible to determine whether the rail has reached the saturation period or is approaching the saturation period, it is possible to efficiently determine the implementation time of rail rectification, which is the main method for removing unevenness of rail wavy wear, and the maintenance cost of the track. Can be reduced. The acceleration sensor 11, the pressure sensor 12, and the microphone 13 described above may be installed only on the rail 2 on one side, or may be installed on the rails 2 on both sides.

また、上述した本実施形態に係るレール波状摩耗進展検知システム1は、地上に設けられた測定手段10から伝送手段40を用いて、遠隔の事務所などに備え付けられたデータ処理手段20に測定データを伝送する方式について説明を行ったが、鉄道の線路は定期的に検査員が巡視などの検査を行っているため、伝送手段40を設けずに、測定手段10の測定データを保存するデータ保存手段を設けても構わない。この場合、定期的な検査の際に検査員が当該データ保存手段から測定データを取得し、データ処理手段20へ入力するように構成しても構わない。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれうることが、特許請求の範囲の記載から明らかである。 Further, in the rail wavy wear progress detection system 1 according to the above-described embodiment, measurement data is measured by a data processing means 20 provided in a remote office or the like by using a transmission means 40 from a measuring means 10 provided on the ground. However, since the inspector regularly inspects the railroad tracks such as patrols, the data storage for storing the measurement data of the measurement means 10 without providing the transmission means 40. Means may be provided. In this case, the inspector may be configured to acquire the measurement data from the data storage means and input the measurement data to the data processing means 20 at the time of the periodic inspection. It is clear from the description of the claims that the form with such changes or improvements may be included in the technical scope of the present invention.

1 レール波状摩耗進展検知システム, 2 レール, 2a 頭頂部, 2b 底部, 3 まくらぎ, 4 軌道パッド, 10 測定手段, 11 加速度センサ, 12 圧力センサ, 13 マイクロフォン, 20 データ処理手段, 30 出力手段, 40 伝送手段, 41 受信手段。 1 rail wavy wear progress detection system, 2 rails, 2a crown, 2b bottom, 3 sleepers, 4 track pads, 10 measuring means, 11 acceleration sensor, 12 pressure sensor, 13 microphone, 20 data processing means, 30 output means, 40 Transmission means, 41 Receiving means.

Claims (14)

レール上を走行する鉄道車両からの外力によって軌道に生じた振動加速度、変位、圧力ひずみあるいは軌道周辺の騒音の少なくともいずれか一つ以上のデータを前記レールまたは前記レールの近傍で測定する測定手段と、
前記測定手段によって測定された振動加速度、変位、圧力、ひずみあるいは軌道周辺の騒音の少なくともいずれか一つ以上の測定データを周波数分析する周波数分析手段と、
前記周波数分析手段によって周波数分析されたデータから基本周波数及び該基本周波数の高調波成分の検知を行う検知手段と、
前記高調波成分が検知された場合にレール波状摩耗が進展していることを出力する出力手段を備えることを特徴とするレール波状摩耗進展検知システム。
A measuring means for measuring at least one or more data of vibration acceleration, displacement, pressure strain, or noise around the rail generated in the track by an external force from a railroad vehicle traveling on the rail in the rail or in the vicinity of the rail. ,
A frequency analysis means for frequency-analyzing at least one or more measurement data of vibration acceleration, displacement, pressure, strain, or noise around an orbit measured by the measuring means.
A detection means that detects the fundamental frequency and harmonic components of the fundamental frequency from the data frequency-analyzed by the frequency analysis means, and
A rail wavy wear progress detection system comprising an output means for outputting that rail wavy wear is progressing when the harmonic component is detected.
請求項1に記載のレール波状摩耗進展検知システムにおいて、
前記検知手段は、前記高調波成分の検知を前記基本周波数の整数倍近傍の探索周波数帯域のピークパワー比を用いて判断することを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to claim 1,
The detection means is a rail wavy wear progress detection system characterized in that the detection of the harmonic component is determined by using the peak power ratio of the search frequency band in the vicinity of an integral multiple of the fundamental frequency.
請求項1に記載のレール波状摩耗進展検知システムにおいて、
前記検知手段は、前記高調波成分の検知を前記基本周波数の整数倍近傍において一定の範囲をもった周波数バンドの面積比を用いて判断することを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to claim 1,
The detection means is a rail wavy wear progress detection system characterized in that the detection of the harmonic component is determined by using the area ratio of a frequency band having a certain range in the vicinity of an integral multiple of the fundamental frequency.
請求項1から3の何れか1項に記載のレール波状摩耗進展検知システムにおいて、
前記測定手段は、加速度センサであることを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to any one of claims 1 to 3.
The measuring means is a rail wavy wear progress detection system characterized by being an acceleration sensor.
請求項4に記載のレール波状摩耗進展検知システムにおいて、
前記測定手段は、前記レールの頭側部に取り付けられることを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to claim 4,
The measuring means is a rail wavy wear progress detection system characterized in that it is attached to the head side portion of the rail.
請求項4に記載のレール波状摩耗進展検知システムにおいて、
前記測定手段は、前記レールの底部に取り付けられることを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to claim 4,
The measuring means is a rail wavy wear progress detection system characterized in that it is attached to the bottom of the rail.
請求項4に記載のレール波状摩耗進展検知システムにおいて、
前記測定手段は、まくらぎの上面に取り付けられることを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to claim 4,
The measuring means is a rail wavy wear progress detection system characterized in that it is mounted on the upper surface of a pillow.
請求項1から3の何れか1項に記載のレール波状摩耗進展検知システムにおいて、
前記測定手段は、圧力センサであることを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to any one of claims 1 to 3.
The measuring means is a rail wavy wear progress detection system characterized by being a pressure sensor.
請求項8に記載のレール波状摩耗進展検知システムにおいて、
前記測定手段は、前記レールとまくらぎの間に介在する軌道パッドに取り付けられることを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to claim 8.
The measuring means is a rail wavy wear progress detection system characterized in that it is attached to a track pad interposed between the rail and the pillow.
請求項1から3の何れか1項に記載のレール波状摩耗進展検知システムにおいて、
前記測定手段は、マイクロフォンであることを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to any one of claims 1 to 3.
The measuring means is a rail wavy wear progress detection system characterized by being a microphone.
請求項1から10のいずれか1項に記載のレール波状摩耗進展検知システムにおいて、
前記測定手段で測定した前記測定データを前記周波数分析手段に伝送する伝送手段を備えることを特徴とするレール波状摩耗進展検知システム。
In the rail wavy wear progress detection system according to any one of claims 1 to 10.
A rail wavy wear progress detection system including a transmission means for transmitting the measurement data measured by the measuring means to the frequency analysis means.
レール上を走行する鉄道車両からの外力によって軌道に生じた振動加速度、変位、圧力ひずみあるいは軌道周辺の騒音の少なくともいずれか一つ以上のデータを前記レールまたは前記レールの近傍で測定する測定工程と、
前記測定工程によって測定された振動加速度、変位、圧力、ひずみあるいは軌道周辺の騒音の少なくともいずれか一つ以上の測定データを周波数分析する周波数分析工程と、
前記周波数分析工程によって周波数分析されたデータから基本周波数及び該基本周波数の高調波成分の検知を行う検知工程と、
前記高調波成分が検知された場合にレール波状摩耗が進展していることを出力する出力工程を備えることを特徴とするレール波状摩耗進展検知方法。
A measurement step of measuring at least one or more data of vibration acceleration, displacement, pressure strain, or noise around the rail generated in the track by an external force from a railroad vehicle traveling on the rail in the rail or in the vicinity of the rail. ,
A frequency analysis step that frequency-analyzes at least one or more of the vibration acceleration, displacement, pressure, strain, or noise around the orbit measured by the measurement step.
A detection step that detects the fundamental frequency and harmonic components of the fundamental frequency from the data frequency-analyzed by the frequency analysis step, and
A rail wavy wear progress detection method comprising an output process for outputting that rail wavy wear has progressed when the harmonic component is detected.
請求項12に記載のレール波状摩耗進展検知方法において、
前記検知工程は、前記高調波成分の検知を前記基本周波数の整数倍近傍の探索周波数帯域のピークパワー比を用いて判断することを特徴とするレール波状摩耗進展検知方法。
In the rail wavy wear progress detection method according to claim 12,
The detection step is a rail wavy wear progress detection method, characterized in that the detection of the harmonic component is determined by using the peak power ratio of the search frequency band in the vicinity of an integral multiple of the fundamental frequency.
請求項12に記載のレール波状摩耗進展検知方法において、
前記検知工程は、前記高調波成分の検知を前記基本周波数の整数倍近傍において一定の範囲をもった周波数バンドの面積比を用いて判断することを特徴とするレール波状摩耗進展検知方法。
In the rail wavy wear progress detection method according to claim 12,
The detection step is a rail wavy wear progress detection method, characterized in that the detection of the harmonic component is determined by using the area ratio of a frequency band having a certain range in the vicinity of an integral multiple of the fundamental frequency.
JP2019200293A 2019-11-01 2019-11-01 Rail wavy wear progress detection method and progress detection system Active JP7177027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019200293A JP7177027B2 (en) 2019-11-01 2019-11-01 Rail wavy wear progress detection method and progress detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200293A JP7177027B2 (en) 2019-11-01 2019-11-01 Rail wavy wear progress detection method and progress detection system

Publications (2)

Publication Number Publication Date
JP2021070462A true JP2021070462A (en) 2021-05-06
JP7177027B2 JP7177027B2 (en) 2022-11-22

Family

ID=75712311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200293A Active JP7177027B2 (en) 2019-11-01 2019-11-01 Rail wavy wear progress detection method and progress detection system

Country Status (1)

Country Link
JP (1) JP7177027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220178739A1 (en) * 2020-12-09 2022-06-09 Hiwin Technologies Corp. Device and Method for Detecting States of a Linear Guideway

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529756A (en) * 1998-11-12 2002-09-10 エステーエヌ アトラス エレクトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Obstacle detection method in rail traffic
JP2018177527A (en) * 2017-04-14 2018-11-15 パロ アルト リサーチ センター インコーポレイテッド Transport monitoring system
WO2019086097A1 (en) * 2017-10-30 2019-05-09 Konux Gmbh Method for determining an element characteristic of a railroad element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529756A (en) * 1998-11-12 2002-09-10 エステーエヌ アトラス エレクトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Obstacle detection method in rail traffic
JP2018177527A (en) * 2017-04-14 2018-11-15 パロ アルト リサーチ センター インコーポレイテッド Transport monitoring system
WO2019086097A1 (en) * 2017-10-30 2019-05-09 Konux Gmbh Method for determining an element characteristic of a railroad element
JP2021501080A (en) * 2017-10-30 2021-01-14 コヌクス ゲーエムベーハー How to determine the elemental characteristics of railroad track elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220178739A1 (en) * 2020-12-09 2022-06-09 Hiwin Technologies Corp. Device and Method for Detecting States of a Linear Guideway
US11788880B2 (en) * 2020-12-09 2023-10-17 Hiwin Technologies Corp. Device and method for detecting states of a linear guideway

Also Published As

Publication number Publication date
JP7177027B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
KR101962992B1 (en) Method for detection of a flaw or flaws in a railway track, and a rail vehicle to be used in such a method
Li et al. Improvements in axle box acceleration measurements for the detection of light squats in railway infrastructure
JP7177028B2 (en) Rail wavy wear progress detection method and progress detection system
JP6663267B2 (en) Method and apparatus for measuring longitudinal creep force between wheel and rail of railway vehicle
CN107560764A (en) A kind of method based on rail lateral dynamic characteristics detection rail longitudinal force
JP7007169B2 (en) Sign detection system and sign detection method for wavy wear on curved tracks for railways
JP2003502624A (en) Method and apparatus for monitoring a running vehicle or a traveling path
CN107328496A (en) A kind of method based on rail vertical motion Characteristics Detection rail longitudinal force
CN105923015B (en) It is a kind of using vibration reduction platform as the rail undulatory wear traverse measurement method of inertia displacement benchmark
JP2012018057A (en) Sleeper displacement measuring system
JP2021070462A (en) Progress detection method and progress detection system of rail wavy abrasion
CN108318126A (en) A method of based on rail vertical motion Characteristics Detection railway rail pad rigidity
CN109855771B (en) Method for detecting temperature based on vertical acceleration power spectrum density of steel rail
US20200369303A1 (en) System and method for determining an angular speed of an axle of a railway vehicle
WO2019081772A1 (en) Monitoring railway track
JP6245466B2 (en) Wheel uneven wear degree determination system, wheel uneven wear degree determination method and program
CN108327742B (en) A method of equivalent support stiffness under rail is detected based on rail lateral dynamic characteristics
JP7189095B2 (en) RAIL BREAK DETECTION DEVICE AND RAIL BREAK DETECTION METHOD
JP2006153547A (en) Axle bearing monitoring system for rolling stock by axle box sound measurement and its monitoring method
CN108318125B (en) Method for detecting ballast rigidity based on vertical vibration characteristic of steel rail
JP3620790B2 (en) Method and apparatus for detecting damage state of wheel tread
US20230258537A1 (en) Defect Detection
Czechyra et al. The impact of changes in the dynamic characteristics of a tram wheels on vibroacoustic effects generated by tram in pass-by test
JP6122702B2 (en) Passing timing determination system, passing timing determination method and program
Stepanova et al. Investigation of the effect of buffing loading on the propagation of elastic vibrations in rails

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R150 Certificate of patent or registration of utility model

Ref document number: 7177027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150