JP7007169B2 - Sign detection system and sign detection method for wavy wear on curved tracks for railways - Google Patents

Sign detection system and sign detection method for wavy wear on curved tracks for railways Download PDF

Info

Publication number
JP7007169B2
JP7007169B2 JP2017238254A JP2017238254A JP7007169B2 JP 7007169 B2 JP7007169 B2 JP 7007169B2 JP 2017238254 A JP2017238254 A JP 2017238254A JP 2017238254 A JP2017238254 A JP 2017238254A JP 7007169 B2 JP7007169 B2 JP 7007169B2
Authority
JP
Japan
Prior art keywords
inner rail
wavy wear
side rail
frequency band
vibration acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017238254A
Other languages
Japanese (ja)
Other versions
JP2019104389A (en
Inventor
吉史 小村
通孝 橋本
奈帆美 久保
益久 谷本
実 小林
陽介 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metro Co Ltd
Original Assignee
Tokyo Metro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metro Co Ltd filed Critical Tokyo Metro Co Ltd
Priority to JP2017238254A priority Critical patent/JP7007169B2/en
Publication of JP2019104389A publication Critical patent/JP2019104389A/en
Application granted granted Critical
Publication of JP7007169B2 publication Critical patent/JP7007169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 第24回鉄道技術・政策連合シンポジウム(J-RAIL2017)(開催日)平成29年12月12日(開催場所)朱鷺メッセ:新潟コンベンションセンターApplication of Article 30, Paragraph 2 of the Patent Law 24th Railway Technology and Policy Union Symposium (J-RAIL2017) (Date) December 12, 2017 (Venue) Toki Messe: Niigata Convention Center

本発明は、鉄道車両が走行する曲線軌道において、レールの頭頂面に発生し得る波状摩耗の発生の予兆を検知するシステム及び方法に関する。 The present invention relates to a system and a method for detecting a sign of occurrence of wavy wear that may occur on the crown surface of a rail in a curved track on which a railroad vehicle travels.

鉄道車両が走行する曲線軌道において、レールの頭頂面に波状摩耗と称される摩耗が発生する場合がある。波状摩耗は、レールの長手方向について数cm~数十cm程度の波長を有する略正弦波状の凹凸である。
波状摩耗は、特に曲線半径の小さな曲線軌道の内軌側レールで発生し易い。曲線軌道の曲率半径が、外軌側の車輪と内軌側の車輪との輪径差で吸収できないほど小さくなると、内軌側レールと車輪との間にいわゆるスティックスリップ現象が生じ、これにより内軌側レールの頭頂面が摩耗することが、波状摩耗発生の原因であると考えられている。
In a curved track on which a railroad vehicle travels, wear called wavy wear may occur on the top surface of the rail. The wavy wear is a substantially sinusoidal unevenness having a wavelength of about several cm to several tens of cm in the longitudinal direction of the rail.
Wavy wear is particularly likely to occur on the inner rail side rail of a curved track with a small curve radius. When the radius of curvature of the curved track becomes too small to be absorbed by the wheel diameter difference between the wheels on the outer rail side and the wheels on the inner rail side, a so-called stick-slip phenomenon occurs between the wheels on the inner rail side and the wheels, which causes the inner rail. It is considered that the wear of the crown surface of the rail on the rail side is the cause of the occurrence of wavy wear.

波状摩耗が進展すると(波状摩耗の凹凸が大きくなると)、鉄道車両や曲線軌道に激しい振動や衝撃が与えられることで、鉄道車両の乗り心地が悪化したり、騒音が発生するといった問題が生じる。
このため、波状摩耗が発生した場合には、波状摩耗の進展を抑制するために、水や油等の摩擦係数調整材をレールの頭頂面に供給(散布)して、レールの頭頂面の摩擦係数を低下させる対策が施される場合がある。また、波状摩耗が進展して凹凸が大きくなった場合には、レールを補修(削正)したり、新品レールに交換するといった対策が施される場合もある。
When the wavy wear progresses (when the unevenness of the wavy wear becomes large), the railroad vehicle and the curved track are subjected to violent vibration and impact, which causes problems such as deterioration of the riding comfort of the railroad vehicle and generation of noise.
Therefore, when wavy wear occurs, a friction coefficient adjusting material such as water or oil is supplied (sprayed) to the top surface of the rail in order to suppress the progress of the wavy wear, and the friction on the top surface of the rail is applied. Measures may be taken to reduce the coefficient. In addition, if the wavy wear progresses and the unevenness becomes large, measures such as repairing (correcting) the rail or replacing it with a new rail may be taken.

しかしながら、波状摩耗を自動的に検知できない場合、波状摩耗の発生や進展を把握するには、鉄道事業者の保全者が曲線軌道に赴いてレールの頭頂面の状態を観察しなければならない。したがい、実際には、波状摩耗の発生の有無に関わらず定期的に摩擦係数調整材を供給したり、波状摩耗の進展の有無に関わらず定期的にレールの補修や交換を行っているのが実態である。
このため、過度に摩擦係数調整材を供給してしまうことで、ランニングコストが増加したり、車輪の空転や滑走が生じるおそれがある。また、健全なレールを交換することで、無駄なメンテナンスコストが発生するおそれもある。
However, if wavy wear cannot be detected automatically, the railroad operator's maintenance personnel must go to the curved track and observe the condition of the top surface of the rail in order to grasp the occurrence and progress of wavy wear. Therefore, in reality, the friction coefficient adjusting material is regularly supplied regardless of the presence or absence of wavy wear, and the rail is regularly repaired or replaced regardless of the progress of wavy wear. It is the actual situation.
Therefore, if the friction coefficient adjusting material is excessively supplied, the running cost may increase, and the wheels may slip or slip. In addition, replacing sound rails may result in unnecessary maintenance costs.

上記のような問題を解決するには、波状摩耗を自動的に検知する装置を適用することが考えられる。波状摩耗を自動的に検知する装置としては、例えば、特許文献1~4に記載の装置が提案されている。特許文献1~4に記載の装置は、いずれも鉄道車両に設置された複数の距離計を備え、各距離計によってレールの頭頂面までの距離を測定することで、波状摩耗の凹凸の大きさを算出するものである。 In order to solve the above problems, it is conceivable to apply a device that automatically detects wavy wear. As a device for automatically detecting wavy wear, for example, the devices described in Patent Documents 1 to 4 have been proposed. The devices described in Patent Documents 1 to 4 are all provided with a plurality of rangefinders installed in a railroad vehicle, and the distance to the top surface of the rail is measured by each rangefinder to measure the magnitude of the unevenness of wavy wear. Is calculated.

特許文献1~4に記載の装置によれば、波状摩耗を自動的に検知できるため、波状摩耗の発生の有無に関わらず定期的に摩擦係数調整材を供給したり、波状摩耗の進展の有無に関わらず定期的にレールの補修や交換を行う必要がなくなる可能性がある。すなわち、波状摩耗の発生を検知した時点で摩擦係数調整材を供給したり、波状摩耗の進展を検知した時点でレールの補修や交換を行えばよく、過度に摩擦係数調整材を供給したり、健全なレールの補修や交換を行うおそれが低減する可能性がある。 According to the devices described in Patent Documents 1 to 4, since the wavy wear can be automatically detected, the friction coefficient adjusting material is periodically supplied regardless of the presence or absence of the wavy wear, and the presence or absence of the progress of the wavy wear is present. Regardless, it may not be necessary to repair or replace the rails on a regular basis. That is, the friction coefficient adjusting material may be supplied when the occurrence of wavy wear is detected, or the rail may be repaired or replaced when the progress of wavy wear is detected, and the friction coefficient adjusting material may be excessively supplied. It may reduce the risk of repairing or replacing sound rails.

しかしながら、特許文献1~4に記載の装置は、距離計によるレールの頭頂面までの距離測定によって波状摩耗を検知するものであるため、距離計の測定分解能等に依存して、ある程度凹凸の大きな波状摩耗しか検知できない。したがい、特許文献1~4に記載の装置によって検知した時点では、すでに波状摩耗が進展してしまっており、摩擦係数調整材の供給による波状摩耗進展の抑制効果を十分に発揮できないおそれがある。このため、波状摩耗発生の予兆が生じている段階(波状摩耗の凹凸が生じていないか又は極めて微小な凹凸しか生じていないものの、摩擦係数調整材の供給等の対策を施さなければ、やがて波状摩耗が発生する段階)で、この予兆を自動的に検知可能な装置が望まれている。 However, since the devices described in Patent Documents 1 to 4 detect wavy wear by measuring the distance to the crown surface of the rail with a range finder, the unevenness is large to some extent depending on the measurement resolution of the range finder and the like. Only wavy wear can be detected. Therefore, at the time of detection by the devices described in Patent Documents 1 to 4, wavy wear has already progressed, and there is a possibility that the effect of suppressing the wavy wear progress by supplying the friction coefficient adjusting material cannot be sufficiently exerted. For this reason, at the stage where a sign of wavy wear is occurring (there is no wavy wear unevenness or only extremely minute unevenness is generated, but if measures such as supply of a friction coefficient adjusting material are not taken, the wavy shape will eventually occur. A device that can automatically detect this sign at the stage where wear occurs) is desired.

特開昭63-61909号公報Japanese Unexamined Patent Publication No. 63-61909 特開平4-191609号公報Japanese Unexamined Patent Publication No. 4-191609 特開平6-11331号公報Japanese Unexamined Patent Publication No. 6-11331 特開2000-292150号公報Japanese Unexamined Patent Publication No. 2000-292150

本発明は、上記のような従来技術の問題点を解決するためになされたものであり、鉄道車両が走行する曲線軌道において、レールの頭頂面に発生し得る波状摩耗の発生の予兆を検知するシステム及び方法を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and detects a sign of wavy wear that may occur on the top surface of a rail on a curved track on which a railroad vehicle travels. The challenge is to provide systems and methods.

前記課題を解決するべく、本発明者らは鋭意検討した結果、曲線軌道の内軌側レールに波状摩耗が発生していなくても、波状摩耗の発生の予兆が生じている場合には、鉄道車両が走行する際の内軌側レールの左右振動加速度における特定の周波数帯域(予兆が生じている内軌側レールに対策を施さなければやがて発生するであろう波状摩耗に関連する周波数帯域)の成分が大きくなることを知見した。したがい、鉄道車両が走行する曲線軌道の内軌側レールの左右振動加速度を測定し、その左右振動加速度信号から波状摩耗に関連する特定の周波数帯域の信号成分を抽出すれば、その抽出した信号成分の大きさに基づき、波状摩耗の発生の予兆を自動的に検知可能であることに想到した。
本発明は、本発明者らの上記知見に基づき完成したものである。
As a result of diligent studies to solve the above problems, the present inventors have conducted diligent studies, and even if wavy wear does not occur on the inner rail side rail of the curved track, if there is a sign of wavy wear, the railway A specific frequency band in the lateral vibration acceleration of the inner rail side rail when the vehicle is running (frequency band related to wavy wear that will occur soon if measures are not taken for the inner rail side rail where the sign is occurring). It was found that the components became larger. Therefore, if the left-right vibration acceleration of the rail on the inner rail side of the curved track on which the railroad vehicle travels is measured and the signal component of a specific frequency band related to wavy wear is extracted from the left-right vibration acceleration signal, the extracted signal component is obtained. I came up with the idea that it is possible to automatically detect signs of wavy wear based on the size of the.
The present invention has been completed based on the above findings of the present inventors.

すなわち、前記課題を解決するため、本発明は、鉄道車両が走行する曲線軌道の内軌側レールに設置され、鉄道車両が前記内軌側レールを走行する際の前記内軌側レールの左右振動加速度を測定して左右振動加速度信号を出力する左右振動加速度測定手段と、前記左右振動加速度測定手段から出力された左右振動加速度信号が入力され、該入力された左右振動加速度信号から、予め決定された前記内軌側レールの波状摩耗に関連する周波数帯域の信号成分を抽出し、該抽出した信号成分の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を検知する検知手段と、を備えることを特徴とする鉄道用曲線軌道における波状摩耗の予兆検知システムを提供する。 That is, in order to solve the above problems, the present invention is installed on the inner rail side rail of the curved track on which the railroad vehicle travels, and the lateral vibration of the inner rail side rail when the railroad vehicle travels on the inner rail side rail. The left-right vibration acceleration measuring means that measures the acceleration and outputs the left-right vibration acceleration signal and the left-right vibration acceleration signal output from the left-right vibration acceleration measuring means are input and determined in advance from the input left-right vibration acceleration signal. As a detection means for extracting a signal component in the frequency band related to the wavy wear of the inner rail side rail and detecting a sign of occurrence of the wavy wear of the inner rail side rail based on the magnitude of the extracted signal component. Provided is a sign detection system for wavy wear in a curved track for a railroad, which comprises.

本発明に係る予兆検知システムによれば、左右振動加速度測定手段によって測定した鉄道車両が内軌側レールを走行する際の内軌側レールの左右振動加速度に基づき、検知手段によって波状摩耗の発生の予兆を自動的に検知可能である。このため、例えば、検知したタイミングで内軌側レールに摩擦係数調整材を供給することにより、波状摩耗の発生や進展を十分に抑制可能である。
なお、本発明における「左右振動加速度測定手段」としては、内軌側レールの左右振動加速度を直接測定する加速度計に限るものではなく、例えば、変位計と該変位計で測定した内軌側レールの左右変位を2階微分することで左右振動加速度を算出する演算手段との組み合わせを採用することも可能である。また、例えば、速度計と該速度計で測定した内軌側レールの左右速度を1階微分することで左右振動加速度を算出する演算手段との組み合わせを採用することも可能である。
According to the sign detection system according to the present invention, wavy wear is generated by the detection means based on the left-right vibration acceleration of the inner rail side rail when the railway vehicle measured by the left-right vibration acceleration measuring means travels on the inner rail side rail. Signs can be detected automatically. Therefore, for example, by supplying the friction coefficient adjusting material to the inner rail side rail at the detected timing, it is possible to sufficiently suppress the occurrence and progress of wavy wear.
The "left-right vibration acceleration measuring means" in the present invention is not limited to an accelerometer that directly measures the left-right vibration acceleration of the inner rail side rail, for example, a displacement meter and the inner rail side rail measured by the displacement meter. It is also possible to adopt a combination with a calculation means for calculating the left-right vibration acceleration by second-order differentiating the left-right displacement of. Further, for example, it is also possible to adopt a combination of a speedometer and a calculation means for calculating the left-right vibration acceleration by first-order differentiating the left-right speed of the inner rail side rail measured by the speedometer.

本発明における検知手段において、予め決定された波状摩耗に関連する周波数帯域の信号成分を抽出する方法として、周波数解析を利用する方法を例示できる。
すなわち、好ましくは、前記検知手段は、前記入力された左右振動加速度信号を周波数解析して周波数スペクトルを生成する生成手段と、前記生成手段によって生成された周波数スペクトルから、前記予め決定された周波数帯域のスペクトル成分を抽出する抽出手段と、前記抽出手段によって抽出されたスペクトル成分の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を判定する判定手段と、を具備する。
In the detection means of the present invention, a method using frequency analysis can be exemplified as a method of extracting a signal component in a frequency band related to predetermined wavy wear.
That is, preferably, the detection means has a frequency band determined in advance from a generation means that generates a frequency spectrum by frequency analysis of the input left-right vibration acceleration signal and a frequency spectrum generated by the generation means. It is provided with an extraction means for extracting the spectral component of the above, and a determination means for determining a sign of occurrence of wavy wear of the inner rail side rail based on the size of the spectral component extracted by the extraction means.

上記の好ましい構成によれば、生成手段によって生成した左右振動加速度信号の周波数スペクトルから、抽出手段によって波状摩耗に関連する特定の周波数帯域のスペクトル成分が抽出され、判定手段によって前記抽出されたスペクトル成分の大きさに基づき波状摩耗の発生の予兆を自動的に検知可能である。
なお、上記の好ましい構成における「周波数スペクトル」には、横軸が周波数で縦軸がパワー(左右振動加速度の2乗)であるパワースペクトルと、横軸が周波数で縦軸がパワースペクトル密度(左右振動加速度の2乗/周波数)であるパワースペクトル密度分布とが含まれる。
According to the above preferred configuration, the spectral component of a specific frequency band related to wavy wear is extracted by the extraction means from the frequency spectrum of the left-right vibration acceleration signal generated by the generation means, and the extracted spectral component is extracted by the determination means. It is possible to automatically detect the sign of the occurrence of wavy wear based on the size of the frequency.
The "frequency spectrum" in the above preferred configuration includes a power spectrum in which the horizontal axis is frequency and the vertical axis is power (square of left-right vibration acceleration), and the horizontal axis is frequency and the vertical axis is power spectral density (left and right). The power spectral density distribution, which is the square of the vibration acceleration / frequency), is included.

上記の好ましい構成において、周波数スペクトルとしてパワースペクトルを用いる場合、周波数解析のサンプリング周波数に応じて周波数分解能が変化するため、サンプリング周波数が変化すれば縦軸のパワーの値も変化することになる。一方、周波数スペクトルとしてパワースペクトル密度分布を用いる場合、周波数解析のサンプリング周波数に関わらず周波数分解能は常に1Hzであるため、サンプリング周波数が変化しても縦軸のパワースペクトル密度は変化しない。上記の好ましい構成における判定手段は、周波数スペクトルから抽出したスペクトル成分の大きさに基づき波状摩耗の発生の予兆を判定するため、安定した判定を行う(一定のしきい値との比較でスペクトル成分の大きさを評価可能にする)には、サンプリング周波数が変化しても周波数スペクトルの縦軸の値が変化しない方が好ましい。
すなわち、より好ましくは、前記生成手段は、前記入力された左右振動加速度信号を周波数解析してパワースペクトル密度分布を生成し、前記抽出手段は、前記生成手段によって生成したパワースペクトル密度分布から、前記予め決定された周波数帯域のパワースペクトル密度を抽出し、前記判定手段は、前記抽出手段によって抽出された前記予め決定された周波数帯域のパワースペクトル密度の積分値の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を判定する。
In the above preferred configuration, when a power spectrum is used as the frequency spectrum, the frequency resolution changes according to the sampling frequency of the frequency analysis. Therefore, if the sampling frequency changes, the power value on the vertical axis also changes. On the other hand, when the power spectral density distribution is used as the frequency spectrum, the frequency resolution is always 1 Hz regardless of the sampling frequency of the frequency analysis, so that the power spectral density on the vertical axis does not change even if the sampling frequency changes. The determination means in the above preferred configuration makes a stable determination in order to determine the sign of the occurrence of wavy wear based on the size of the spectral component extracted from the frequency spectrum (comparing with a certain threshold value, the spectral component of the spectrum component). In order to make the magnitude evaluable), it is preferable that the value on the vertical axis of the frequency spectrum does not change even if the sampling frequency changes.
That is, more preferably, the generating means frequency-analyzes the input left-right vibration acceleration signal to generate a power spectral density distribution, and the extracting means obtains the power spectral density distribution from the power spectral density distribution generated by the generating means. The power spectral density of the predetermined frequency band is extracted, and the determination means is based on the magnitude of the integrated value of the power spectral density of the predetermined frequency band extracted by the extraction means. Determine the signs of wavy wear on the rails.

上記の好ましい構成によれば、生成手段によって生成した左右振動加速度信号のパワースペクトル密度分布から、抽出手段によって波状摩耗に関連する特定の周波数帯域のパワースペクトル密度が抽出され、判定手段によって前記抽出されたパワースペクトル密度の積分値の大きさに基づき波状摩耗の発生の予兆を安定して検知可能である。 According to the above preferred configuration, the power spectral density of a specific frequency band related to wavy wear is extracted by the extracting means from the power spectral density distribution of the left-right vibration acceleration signal generated by the generating means, and the power spectral density is extracted by the determining means. It is possible to stably detect the sign of the occurrence of wavy wear based on the magnitude of the integrated value of the power spectral density.

本発明における検知手段において、予め決定された波状摩耗に関連する周波数帯域の信号成分を抽出する方法としては、前述の周波数解析を利用する方法に限るものではなく、バンドパスフィルタを利用する方法も例示できる。
すなわち、好ましくは、前記検知手段は、前記入力された左右振動加速度信号から、前記予め決定された周波数帯域の信号成分を透過させるバンドパスフィルタと、前記バンドパスフィルタを透過した信号成分の振幅の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を判定する判定手段と、を具備する。
In the detection means of the present invention, the method of extracting the signal component of the frequency band related to the predetermined wavy wear is not limited to the method using the frequency analysis described above, but also the method using a bandpass filter. It can be exemplified.
That is, preferably, the detection means has a bandpass filter that transmits a signal component in the predetermined frequency band from the input left-right vibration acceleration signal, and an amplitude of the signal component that has passed through the bandpass filter. A determination means for determining a sign of occurrence of wavy wear of the inner rail side rail based on the size is provided.

上記の好ましい構成によれば、バンドパスフィルタによって波状摩耗に関連する特定の周波数帯域の信号成分が透過し、判定手段によって前記透過した信号成分の振幅の大きさに基づき波状摩耗の発生の予兆を自動的に検知可能である。 According to the above preferred configuration, the bandpass filter transmits a signal component in a specific frequency band related to wavy wear, and the determination means predicts the occurrence of wavy wear based on the magnitude of the amplitude of the transmitted signal component. It can be detected automatically.

好ましくは、本発明に係る予兆検知システムは、前記曲線軌道の内軌側レールに摩擦係数を低下させるための摩擦係数調整材を供給する摩擦係数調整手段を更に備え、前記摩擦係数調整手段は、前記検知手段によって前記内軌側レールの波状摩耗の発生の予兆が検知された場合に、前記曲線軌道の内軌側レールに摩擦係数調整材を供給する。 Preferably, the sign detection system according to the present invention further comprises a friction coefficient adjusting means for supplying a friction coefficient adjusting material for lowering the friction coefficient to the inner rail side rail of the curved track, and the friction coefficient adjusting means includes the friction coefficient adjusting means. When a sign of occurrence of wavy wear of the inner rail side rail is detected by the detection means, a friction coefficient adjusting material is supplied to the inner rail side rail of the curved track.

上記の好ましい構成によれば、検知手段によって波状摩耗の発生の予兆が自動的に検知された場合に、摩擦係数調整手段によって内軌側レールに摩擦係数調整材を適切なタイミングで自動的に供給することができるため、波状摩耗の発生や進展を十分に抑制可能である。 According to the above preferred configuration, when the detection means automatically detects a sign of wavy wear, the friction coefficient adjusting means automatically supplies the friction coefficient adjusting material to the inner rail side rail at an appropriate timing. Therefore, it is possible to sufficiently suppress the occurrence and progress of wavy wear.

上記の好ましい構成において、摩擦係数調整手段によって摩擦係数調整材を供給してからさほど時間が経過していなくても(摩擦係数調整材の効果が維持されると考え得る時間内であっても)、検知手段が内軌側レールの波状摩耗の発生の予兆を検知した場合(波状摩耗に関連する特定の周波数帯域の信号成分が大きくなった場合)には、すでに波状摩耗が進展してしまっており、内軌側レールの補修や交換が必要な状態になっていることが考えられる。或いは、摩擦係数調整材を供給したつもりであっても摩擦係数調整手段の故障により実際には摩擦係数調整材が供給されていない場合も考えられる。
したがい、好ましくは、前記検知手段は、前記摩擦係数調整手段による摩擦係数調整材の供給時点を管理しており、前記摩擦係数調整手段による摩擦係数調整材の供給時点から、該摩擦係数調整材の効果が維持されると考え得る予め決定された所定時間内において、前記内軌側レールの波状摩耗の発生の予兆を検知した場合、前記内軌側レールの補修又は交換が必要であるか、或いは、前記摩擦係数調整手段が故障していると判定する。
In the above preferred configuration, even if not much time has passed since the friction coefficient adjusting material was supplied by the friction coefficient adjusting means (even within the time when the effect of the friction coefficient adjusting material can be considered to be maintained). , If the detection means detects a sign of wavy wear on the inner rail side rail (when the signal component of a specific frequency band related to wavy wear becomes large), wavy wear has already progressed. It is considered that the inner rail side rail needs to be repaired or replaced. Alternatively, it is conceivable that the friction coefficient adjusting material is not actually supplied due to a failure of the friction coefficient adjusting means even if the friction coefficient adjusting material is intended to be supplied.
Therefore, preferably, the detection means manages the supply time of the friction coefficient adjusting material by the friction coefficient adjusting means, and from the supply time of the friction coefficient adjusting material by the friction coefficient adjusting means, the friction coefficient adjusting material of the friction coefficient adjusting material. If a sign of wavy wear of the inner rail side rail is detected within a predetermined predetermined time in which the effect can be considered to be maintained, the inner rail side rail needs to be repaired or replaced, or the inner rail side rail needs to be repaired or replaced. , It is determined that the friction coefficient adjusting means is out of order.

上記の好ましい構成によれば、波状摩耗の発生の予兆を検知するだけではなく、内軌側レールの補修又は交換が必要であること、或いは、摩擦係数調整手段が故障していることをも自動的に判定可能であるため、鉄道事業者の保全者の手間が軽減されるという利点が得られる。
なお、上記の好ましい構成における「所定時間」とは、時間単位で表わされる数値に限られるものではなく、曲線軌道を走行する鉄道車両の本数(編成本数)とすることも可能である。
According to the above preferable configuration, not only the sign of the occurrence of wavy wear is detected, but also the need for repair or replacement of the inner rail side rail or the failure of the friction coefficient adjusting means is automatically detected. Since it can be determined in a specific manner, there is an advantage that the labor of the maintenance person of the railway operator is reduced.
The "predetermined time" in the above preferred configuration is not limited to a numerical value expressed in time units, but may be the number of railroad vehicles (number of trains) traveling on a curved track.

また、前記課題を解決するため、本発明は、鉄道車両が走行する曲線軌道の内軌側レールであって波状摩耗が発生している内軌側レールを周波数帯域決定用内軌側レールとして用い、該周波数帯域決定用内軌側レールに左右振動加速度測定手段を設置し、鉄道車両が前記周波数帯域決定用内軌側レールを走行する際に前記左右振動加速度測定手段によって前記周波数帯域決定用内軌側レールの左右振動加速度を測定して得られた左右振動加速度信号を周波数解析することで、前記波状摩耗に関連する周波数帯域を予め決定する準備工程と、波状摩耗が発生しているか否か未知である前記曲線軌道の内軌側レールを鉄道車両が走行する際に前記左右振動加速度測定手段によって前記内軌側レールの左右振動加速度を測定する測定工程と、前記測定工程によって得られた左右振動加速度信号から、前記準備工程によって予め決定された前記周波数帯域の信号成分を抽出し、該抽出した信号成分の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を検知する検知工程と、を含むことを特徴とする鉄道用曲線軌道における波状摩耗の予兆検知方法としても提供される。 Further, in order to solve the above-mentioned problems, in the present invention, the inner track side rail of the curved track on which the railroad vehicle travels and the wavy wear is generated is used as the inner track side rail for determining the frequency band. The left and right vibration acceleration measuring means is installed on the inner track side rail for determining the frequency band, and when the railway vehicle travels on the inner track side rail for determining the frequency band, the left and right vibration acceleration measuring means is used to determine the frequency band. By frequency-analyzing the left-right vibration acceleration signal obtained by measuring the left-right vibration acceleration of the track-side rail, a preparatory step for predetermining the frequency band related to the wavy wear and whether or not wavy wear has occurred. A measurement step of measuring the left-right vibration acceleration of the inner track side rail by the left-right vibration acceleration measuring means when a railroad vehicle travels on the inner rail side rail of the curved track, which is unknown, and the left and right obtained by the measurement step. Detection that extracts a signal component in the frequency band predetermined by the preparation step from the vibration acceleration signal and detects a sign of wavy wear of the inner track side rail based on the magnitude of the extracted signal component. It is also provided as a method for detecting a sign of wavy wear in a curved track for a railroad, which comprises a process.

本発明に係る予兆検知方法によれば、まず準備工程において、波状摩耗が発生している内軌側レール(周波数帯域決定用内軌側レール)を用いて、波状摩耗に関連する周波数帯域を予め決定する。具体的には、鉄道車両が走行する際に周波数帯域決定用内軌側レールに設置された左右加速度測定手段で得られた左右振動加速度信号を周波数解析することで、波状摩耗に関連する周波数帯域を予め決定する。このように、実際に波状摩耗が発生している周波数帯域決定用内軌側レールを用いるため、この周波数帯域決定用内軌側レールについて得られた左右振動加速度信号を周波数解析することで、波状摩耗に関連する周波数帯域を精度良く決定可能である。なお、波状摩耗が発生しているか否かは、例えば、保全者が実際に曲線軌道に赴いて周波数帯域決定用内軌側レールの頭頂面の状態を目視観察することで判断可能である。最初の準備工程においては、保全者が実際に曲線軌道に赴く手間がかかるものの、波状摩耗に関連する周波数帯域を決定し終えれば、測定工程及び検知工程では曲線軌道に赴く必要がない。
次いで、本発明に係る予兆検知方法によれば、測定工程において、鉄道車両が走行する際に左右振動加速度測定手段によって波状摩耗が発生しているか否かが未知である内軌側レールの左右振動加速度を測定する。この波状摩耗が発生しているか否かが未知である内軌側レール(波状摩耗発生の予兆検知対象である内軌側レール)としては、前記波状摩耗が発生している周波数帯域決定用内軌側レールを補修したレールや、交換した新品のレール(波状摩耗が発生している周波数帯域決定用内軌側レールと構造が同種のレール)を例示できる。
最後に、本発明に係る予兆検知方法によれば、検知工程において、測定工程によって得られた左右振動加速度信号から、準備工程によって予め決定された波状摩耗に関連する周波数帯域の信号成分が抽出されることで、波状摩耗の発生の予兆を自動的に検知可能である。
According to the sign detection method according to the present invention, first, in the preparation step, the frequency band related to the wavy wear is determined in advance by using the inner rail side rail (inner rail side rail for determining the frequency band) in which the wavy wear is generated. decide. Specifically, the frequency band related to wavy wear is obtained by frequency analysis of the left-right vibration acceleration signal obtained by the left-right acceleration measuring means installed on the inner rail side rail for determining the frequency band when the railroad vehicle travels. To be determined in advance. In this way, since the frequency band determination inner rail side rail where the wavy wear actually occurs is used, the left and right vibration acceleration signals obtained for this frequency band determination inner rail side rail are frequency-analyzed to wavy. The frequency band related to wear can be determined accurately. Whether or not wavy wear has occurred can be determined, for example, by the maintenance person actually going to the curved track and visually observing the state of the top surface of the inner rail side rail for determining the frequency band. Although it takes time and effort for the maintenance person to actually go to the curved orbit in the first preparatory step, it is not necessary to go to the curved orbit in the measuring step and the detecting step once the frequency band related to the wavy wear is determined.
Next, according to the sign detection method according to the present invention, in the measurement process, it is unknown whether or not wavy wear is generated by the left-right vibration acceleration measuring means when the railroad vehicle travels. Measure the acceleration. As the inner rail side rail (inner rail side rail for detecting the sign of occurrence of wavy wear) for which it is unknown whether or not this wavy wear has occurred, the inner rail for determining the frequency band in which the wavy wear has occurred is used. Examples thereof include a rail in which the side rail has been repaired and a new rail that has been replaced (a rail having the same structure as the inner rail side rail for determining the frequency band in which wavy wear has occurred).
Finally, according to the sign detection method according to the present invention, in the detection step, the signal component of the frequency band related to the wavy wear determined in advance by the preparation step is extracted from the left-right vibration acceleration signal obtained by the measurement step. By doing so, it is possible to automatically detect the sign of the occurrence of wavy wear.

好ましくは、前記準備工程は、前記周波数帯域決定用内軌側レールの波状摩耗のピッチと、前記周波数帯域決定用内軌側レールを走行する前記鉄道車両の走行速度とを測定し、該測定結果に基づき、前記周波数帯域の中心周波数を決定する中心周波数決定工程と、前記周波数帯域決定用内軌側レールの左右振動加速度を測定して得られた左右振動加速度信号を周波数解析して周波数スペクトルを生成し、該生成した周波数スペクトルのスペクトル成分の大きさに基づき、前記周波数帯域の帯域幅を決定する帯域幅決定工程と、を含む。 Preferably, in the preparatory step, the pitch of wavy wear of the frequency band determining inner rail side rail and the traveling speed of the railroad vehicle traveling on the frequency band determining inner rail side rail are measured, and the measurement result is obtained. Based on the above, the frequency spectrum is obtained by frequency-analyzing the left-right vibration acceleration signal obtained by measuring the left-right vibration acceleration of the inner rail side rail for determining the frequency band and the center frequency determination step of determining the center frequency of the frequency band. It comprises a bandwidth determination step of generating and determining the bandwidth of the frequency band based on the magnitude of the spectral component of the generated frequency spectrum.

上記の好ましい構成によれば、中心周波数決定工程において、周波数帯域決定用内軌側レールの波状摩耗のピッチと、鉄道車両の走行速度とに基づき、波状摩耗に関連する周波数帯域の中心周波数を決定する。具体的には、例えば、波状摩耗のピッチ(波長)をλとし、鉄道車両の走行速度をvとすれば、本発明者らの知見によれば、周波数帯域の中心周波数fcをfc=v/λによって決定可能である。なお、周波数帯域決定用内軌側レールの波状摩耗のピッチ(平均ピッチ)は、例えば、保全者が実際に曲線軌道に赴いて、周波数帯域決定用内軌側レールの頭頂面の凹凸のピッチを定規や巻尺等を用いて測定してその平均値を算出したり、距離計を用いて凹凸の高さを測定した結果から凹凸の平均ピッチを算出すること等によって測定可能である。また、鉄道車両の走行速度は、例えば、鉄道車両が一般的に具備する速度計を用いて測定可能である。
また、上記の好ましい構成によれば、帯域幅決定工程において、周波数帯域決定用内軌側レールの左右振動加速度信号を周波数解析して生成された周波数スペクトルのスペクトル成分の大きさに基づき、波状摩耗に関連する周波数帯域の帯域幅を決定する。具体的には、例えば、前記決定した中心周波数fc及びその近傍の周波数を含む周波数帯域であって、スペクトル成分が所定のしきい値以上の大きさを有する周波数帯域の帯域幅を基準として、波状摩耗に関連する周波数帯域の帯域幅を決定可能である。
According to the above preferred configuration, in the center frequency determination step, the center frequency of the frequency band related to the wavy wear is determined based on the pitch of the wavy wear of the inner rail side rail for determining the frequency band and the traveling speed of the railroad vehicle. do. Specifically, for example, if the pitch (wavelength) of wavy wear is λ and the traveling speed of a railroad vehicle is v, according to the findings of the present inventors, the center frequency fc of the frequency band is fc = v /. It can be determined by λ. The pitch (average pitch) of the wavy wear of the frequency band determination inner rail side rail is, for example, the pitch of the unevenness of the crown surface of the frequency band determination inner rail side rail when the maintenance person actually goes to the curved track. It can be measured by measuring with a ruler, a tape measure, etc. and calculating the average value, or by calculating the average pitch of the unevenness from the result of measuring the height of the unevenness with a distance meter. Further, the traveling speed of the railway vehicle can be measured by using, for example, a speedometer generally provided in the railway vehicle.
Further, according to the above-mentioned preferable configuration, in the bandwidth determination step, wavy wear is based on the magnitude of the spectral component of the frequency spectrum generated by frequency analysis of the left-right vibration acceleration signal of the inner rail side rail for frequency band determination. Determine the bandwidth of the frequency band associated with. Specifically, for example, it is a frequency band including the determined center frequency fc and frequencies in the vicinity thereof, and is wavy with reference to the bandwidth of the frequency band in which the spectral component has a magnitude equal to or larger than a predetermined threshold value. It is possible to determine the bandwidth of the frequency band associated with wear.

本発明によれば、鉄道車両が走行する曲線軌道において、レールの頭頂面に発生し得る波状摩耗の発生の予兆を検知可能である。 According to the present invention, it is possible to detect a sign of wavy wear that may occur on the top surface of a rail on a curved track on which a railroad vehicle travels.

本発明の一実施形態に係る鉄道用曲線軌道における波状摩耗の予兆検知システムの概略構成を説明する模式図である。It is a schematic diagram explaining the schematic structure of the sign detection system of the wavy wear in the curved track for a railroad which concerns on one Embodiment of this invention. 図1に示す予兆検知システムによって得られる左右振動加速度信号(波状摩耗が発生しておらず摩擦係数調整材を供給していない内軌側レールについて得られる左右振動加速度信号)等の一例を示す図である。The figure which shows an example of the left-right vibration acceleration signal (the left-right vibration acceleration signal obtained about the inner rail side rail which has not generated wavy wear and has not supplied the friction coefficient adjusting material) obtained by the sign detection system shown in FIG. Is. 図2に示す左右振動加速度信号等が得られた内軌側レールについて、摩擦係数調整材を供給した後に得られる左右振動加速度信号等の一例を示す。An example of the left-right vibration acceleration signal and the like obtained after supplying the friction coefficient adjusting material is shown for the inner rail side rail from which the left-right vibration acceleration signal and the like shown in FIG. 2 are obtained. 本発明の一実施形態に係る鉄道用曲線軌道における波状摩耗の予兆検知方法の概略手順を説明するフロー図である。It is a flow diagram explaining the schematic procedure of the sign detection method of the wavy wear in the curved track for a railroad which concerns on one Embodiment of this invention. 波状摩耗が発生し、摩擦係数調整材を供給していない状態の周波数帯域決定用内軌側レールについて得られる左右振動加速度信号の一例を示す図である。It is a figure which shows an example of the left-right vibration acceleration signal obtained about the inner rail side rail for frequency band determination in the state where the wavy wear occurs and the friction coefficient adjusting material is not supplied. 図2(b)、図3(b)、図5(b)に示す各パワースペクトル密度分布からそれぞれ抽出された400~500Hzの周波数帯域でのパワースペクトル密度の積分値の大きさを比較した図である。The figure which compared the magnitude of the integrated value of the power spectral density in the frequency band of 400-500Hz extracted from each power spectral density distribution shown in FIG. 2 (b), FIG. 3 (b), and FIG. 5 (b), respectively. Is.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。
図1は、本発明の一実施形態に係る鉄道用曲線軌道における波状摩耗の予兆検知システム(以下、適宜、単に「予兆検知システム」という)の概略構成を説明する模式図である。図1(a)は全体の概略構成を示す図であり、図1(b)は左右振動加速度測定手段の設置状態を示す図であり、図1(c)は検知手段の概略構成を示す図である。
図1(a)に示すように、本実施形態に係る予兆検知システム100の適用対象である曲線軌道(内軌側レールRa、外軌側レールRb)を走行する鉄道車両は、車体1と、車体1の前後(鉄道車両の走行方向の前後)に配置された一対の台車2と、各台車2の左右に配置され車体1を支持する空気ばね3とを有する。各台車2の前後には、一対の輪軸4が配置されている。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.
FIG. 1 is a schematic diagram illustrating a schematic configuration of a sign detection system for wavy wear (hereinafter, simply referred to as “predict detection system” as appropriate) in a curved track for railways according to an embodiment of the present invention. 1A is a diagram showing a schematic configuration of the whole, FIG. 1B is a diagram showing an installed state of a left-right vibration acceleration measuring means, and FIG. 1C is a diagram showing a schematic configuration of a detecting means. Is.
As shown in FIG. 1A, the railroad vehicles traveling on the curved track (inner rail side rail Ra, outer rail side rail Rb) to which the sign detection system 100 according to the present embodiment is applied are the vehicle body 1 and the vehicle body 1. It has a pair of bogies 2 arranged in front of and behind the vehicle body 1 (front and rear in the traveling direction of the railroad vehicle), and air springs 3 arranged on the left and right sides of each bogie 2 to support the vehicle body 1. A pair of wheel sets 4 are arranged in front of and behind each bogie 2.

図1(a)に示すように、本実施形態に係る予兆検知システム100は、左右振動加速度測定手段10と、検知手段20とを備えている。また、好ましい構成として、本実施形態に係る予兆検知システム100は、摩擦係数調整手段30を備えている。さらに、好ましい構成として、本実施形態に係る予兆検知システム100は、伝送手段40と、表示手段50とを備えている。 As shown in FIG. 1A, the sign detection system 100 according to the present embodiment includes a left-right vibration acceleration measuring means 10 and a detecting means 20. Further, as a preferable configuration, the sign detection system 100 according to the present embodiment includes the friction coefficient adjusting means 30. Further, as a preferable configuration, the sign detection system 100 according to the present embodiment includes a transmission means 40 and a display means 50.

本実施形態の左右振動加速度測定手段10は、鉄道車両が走行する曲線軌道の内軌側レールRaに設置され、鉄道車両が内軌側レールRaを走行する際の内軌側レールRaの左右振動加速度を測定して得られた左右振動加速度信号を伝送手段40に出力する。
具体的には、図1(b)に示すように、本実施形態の左右振動加速度測定手段10としては、加速度計が用いられ、曲線軌道を走行する鉄道車両の輪軸4(図1(b)では図示省略)に干渉しないように、内軌側レールRaの頭部R1のフィールド側(軌道外側)の頭部側面R11に取り付けられている。より具体的には、例えば、加速度計の頭部側面R11に対向する側の面に絶縁板(例えば、ベークライト板)を貼り付け、接着剤を用いてこの絶縁板を頭部側面R11に固着させることで、加速度計を内軌側レールRaに取り付ける。その後、加速度計、絶縁板及び内軌側レールRaの頭部側面R11に対してコーティングによる防水処置を施せばよい。
The left-right vibration acceleration measuring means 10 of the present embodiment is installed on the inner rail side rail Ra of the curved track on which the railroad vehicle travels, and the left-right vibration of the inner rail side rail Ra when the railroad vehicle travels on the inner rail side rail Ra. The left-right vibration acceleration signal obtained by measuring the acceleration is output to the transmission means 40.
Specifically, as shown in FIG. 1 (b), an accelerometer is used as the left-right vibration acceleration measuring means 10 of the present embodiment, and the wheelset 4 of a railroad vehicle traveling on a curved track (FIG. 1 (b)). It is attached to the head side surface R11 on the field side (outside the track) of the head R1 of the inner rail side rail Ra so as not to interfere with (not shown). More specifically, for example, an insulating plate (for example, a bakelite plate) is attached to the surface of the accelerometer on the side facing the head side surface R11, and the insulating plate is fixed to the head side surface R11 using an adhesive. Therefore, the accelerometer is attached to the inner rail side rail Ra. After that, the accelerometer, the insulating plate, and the head side surface R11 of the inner rail side rail Ra may be waterproofed by coating.

本実施形態の左右振動加速度測定手段10としては、前述のように、内軌側レールRaの左右振動加速度(図1(b)に示す鉄道車両の走行方向に直交する水平方向である矢符X方向の振動加速度)を直接測定する加速度計を用いることができる。加速度計としては、圧電式加速度計やひずみゲージ式加速度計など、種々の構成の加速度計を採用可能である。しかしながら、左右振動加速度測定手段10としては、加速度計に限るものではなく、例えば、レーザ変位計などの変位計と演算手段との組み合わせを採用することも可能である。すなわち、変位計で内軌側レールRaの頭部側面R11の左右変位を測定し、この測定した内軌側レールRaの左右変位を演算手段で2階微分することで左右振動加速度を算出する構成を採用することも可能である。変位計は、例えば、加速度計と同様に絶縁板を貼り付けて絶縁処置を施した上で、地上に設置した専用治具にボルトで固定すればよい。さらに、例えば、速度計と該速度計で測定した内軌側レールの左右速度を1階微分することで左右振動加速度を算出する演算手段との組み合わせを採用することも可能である。 As the left-right vibration acceleration measuring means 10 of the present embodiment, as described above, the left-right vibration acceleration of the inner rail side rail Ra (arrow X in the horizontal direction orthogonal to the traveling direction of the railway vehicle shown in FIG. 1 (b)). An accelerometer that directly measures the vibration acceleration in the direction can be used. As the accelerometer, an accelerometer having various configurations such as a piezoelectric accelerometer and a strain gauge accelerometer can be adopted. However, the left-right vibration acceleration measuring means 10 is not limited to the accelerometer, and for example, a combination of a displacement meter such as a laser displacement meter and a calculation means can be adopted. That is, the left-right vibration acceleration is calculated by measuring the left-right displacement of the head side surface R11 of the inner rail side rail Ra with a displacement meter and second-order differentiating the measured left-right displacement of the inner rail side rail Ra by a calculation means. It is also possible to adopt. The displacement meter may be fixed to a special jig installed on the ground with a bolt after, for example, an insulating plate is attached to the displacement meter to insulate it in the same manner as the accelerometer. Further, for example, it is also possible to adopt a combination of a speedometer and a calculation means for calculating the left-right vibration acceleration by first-order differentiating the left-right speed of the inner rail side rail measured by the speedometer.

図2(a)は、左右振動加速度測定手段10から出力される左右振動加速度信号の一例を示す図である。図2(a)に示す例は、内軌側レールRaに波状摩耗が発生しておらず(発生した波状摩耗を削正した内軌側レールRaであり)、なお且つ、後述の摩擦係数調整材を供給していない状態(摩擦係数調整材の効果が維持されていない状態)で鉄道車両が内軌側レールRaを走行した際に内軌側レールRaの左右振動加速度を測定して得られた左右振動加速度信号である。 FIG. 2A is a diagram showing an example of a left-right vibration acceleration signal output from the left-right vibration acceleration measuring means 10. In the example shown in FIG. 2A, no wavy wear is generated on the inner rail side rail Ra (the inner rail side rail Ra is obtained by correcting the generated wavy wear), and the friction coefficient adjustment described later is performed. Obtained by measuring the lateral vibration acceleration of the inner rail side rail Ra when the railroad vehicle runs on the inner rail side rail Ra in the state where the material is not supplied (the effect of the friction coefficient adjusting material is not maintained). It is a left-right vibration acceleration signal.

本実施形態の伝送手段40は、左右振動加速度測定手段10が取り付けられた曲線軌道付近に設置され、無線送信を実行するためのモデム等から構成されている。伝送手段40は、入力された左右振動加速度信号を、無線LANや公衆回線等を利用して、検知手段20に無線送信する。 The transmission means 40 of the present embodiment is installed in the vicinity of a curved track to which the left-right vibration acceleration measuring means 10 is attached, and is composed of a modem or the like for executing wireless transmission. The transmission means 40 wirelessly transmits the input left-right vibration acceleration signal to the detection means 20 by using a wireless LAN, a public line, or the like.

本実施形態の検知手段20は、鉄道事業者の管理センターなど曲線軌道から離れた場所に設置されており、例えば、後述の各手段の機能を実現するためのプログラムがインストールされたパーソナルコンピュータから構成されている。検知手段20には、左右振動加速度測定手段10から出力された左右振動加速度信号が伝送手段40を介して入力される。検知手段20は、該入力された左右振動加速度信号から、予め決定された内軌側レールRaの波状摩耗に関連する周波数帯域の信号成分を抽出し、該抽出した信号成分の大きさに基づき、内軌側レールRaの波状摩耗の発生の予兆を検知する。 The detection means 20 of the present embodiment is installed at a place away from a curved track such as a management center of a railway operator, and is composed of, for example, a personal computer in which a program for realizing the functions of each means described later is installed. Has been done. The left-right vibration acceleration signal output from the left-right vibration acceleration measuring means 10 is input to the detecting means 20 via the transmission means 40. The detection means 20 extracts a signal component in a frequency band related to wavy wear of the inner rail side rail Ra determined in advance from the input left-right vibration acceleration signal, and based on the magnitude of the extracted signal component. Detects a sign of wavy wear of the inner rail side rail Ra.

具体的には、図1(c)に示すように、本実施形態の検知手段20は、好ましい構成として、生成手段21と、抽出手段22と、判定手段23とを具備している。
生成手段21は、入力された左右振動加速度信号を周波数解析して周波数スペクトルを生成する。本実施形態の生成手段21は、好ましい構成として、入力された左右振動加速度信号を周波数解析してパワースペクトル密度分布を生成するように構成されている。図2(b)は、生成手段21によって生成されるパワースペクトル密度分布の一例を示す図であり、具体的には、図2(a)に示す左右振動加速度信号を周波数解析して生成したパワースペクトル密度分布である。
Specifically, as shown in FIG. 1 (c), the detection means 20 of the present embodiment includes a generation means 21, an extraction means 22, and a determination means 23 as a preferable configuration.
The generation means 21 frequency-analyzes the input left-right vibration acceleration signal to generate a frequency spectrum. As a preferable configuration, the generation means 21 of the present embodiment is configured to generate a power spectral density distribution by frequency analysis of the input left-right vibration acceleration signal. FIG. 2B is a diagram showing an example of the power spectral density distribution generated by the generation means 21, and specifically, the power generated by frequency analysis of the left-right vibration acceleration signal shown in FIG. 2A. Spectral density distribution.

抽出手段22は、生成手段21によって生成された周波数スペクトルから、予め決定された周波数帯域(内軌側レールRaの波状摩耗に関連する周波数帯域)のスペクトル成分を抽出する。本実施形態の抽出手段22は、好ましい構成として、生成手段21によって生成したパワースペクトル密度分布から、予め決定された周波数帯域のパワースペクトル密度を抽出する。図2(b)に示す例では、内軌側レールRaの波状摩耗に関連する周波数帯域として、400~500Hzの周波数帯域(中心周波数450Hz±50Hz)が予め決定されており、図2(b)から分かるように、パワースペクトル密度が比較的大きなピークを有する周波数帯域のパワースペクトル密度が抽出されることになる。
判定手段23は、抽出手段22によって抽出されたスペクトル成分の大きさに基づき、内軌側レールRaの波状摩耗の発生の予兆を判定することが可能である。本実施形態の判定手段23は、好ましい構成として、抽出手段22によって抽出された予め決定された周波数帯域のパワースペクトル密度の積分値の大きさに基づき、内軌側レールRaの波状摩耗の発生の予兆を判定することが可能である。図2(b)に示す例では、400~500Hzの周波数帯域のパワースペクトル密度が400~500Hzの周波数帯域で積分される。積分値の単位は、パワーの単位である(m/sとなる。
The extraction means 22 extracts a spectrum component of a predetermined frequency band (frequency band related to wavy wear of the inner rail side rail Ra) from the frequency spectrum generated by the generation means 21. As a preferred configuration, the extraction means 22 of the present embodiment extracts the power spectral density in a predetermined frequency band from the power spectral density distribution generated by the generation means 21. In the example shown in FIG. 2 (b), a frequency band of 400 to 500 Hz (center frequency 450 Hz ± 50 Hz) is predetermined as a frequency band related to wavy wear of the inner rail side rail Ra, and FIG. 2 (b) shows. As can be seen from, the power spectral density in the frequency band having a peak with a relatively large power spectral density is extracted.
The determination means 23 can determine a sign of occurrence of wavy wear of the inner rail side rail Ra based on the size of the spectral component extracted by the extraction means 22. As a preferred configuration, the determination means 23 of the present embodiment causes wavy wear of the inner rail side rail Ra based on the magnitude of the integrated value of the power spectral density of the predetermined frequency band extracted by the extraction means 22. It is possible to determine the sign. In the example shown in FIG. 2B, the power spectral density in the frequency band of 400 to 500 Hz is integrated in the frequency band of 400 to 500 Hz. The unit of the integrated value is (m / s 2 ) 2 , which is the unit of power.

また、図1(c)に示すように、本実施形態の検知手段20は、好ましい構成として、バンドパスフィルタ24を具備している。
バンドパスフィルタ24は、入力された左右振動加速度信号から、予め決定された周波数帯域(内軌側レールRaの波状摩耗に関連する周波数帯域)の信号成分を透過させる。図2(a)に示す左右振動加速度信号の例では、内軌側レールRaの波状摩耗に関連する周波数帯域として、400~500Hzの周波数帯域(中心周波数450Hz±50Hz)が予め決定されており、バンドパスフィルタ24は、この決定された周波数帯域の信号成分を透過させる。図2(c)は、バンドパスフィルタ24を透過した信号成分の一例を示す図であり、具体的には、図2(a)に示す左右振動加速度信号から透過した信号成分である。
Further, as shown in FIG. 1 (c), the detection means 20 of the present embodiment includes a bandpass filter 24 as a preferable configuration.
The bandpass filter 24 transmits a signal component of a predetermined frequency band (frequency band related to wavy wear of the inner rail side rail Ra) from the input left-right vibration acceleration signal. In the example of the left-right vibration acceleration signal shown in FIG. 2A, a frequency band of 400 to 500 Hz (center frequency 450 Hz ± 50 Hz) is predetermined as a frequency band related to wavy wear of the inner rail side rail Ra. The bandpass filter 24 transmits the signal component of the determined frequency band. FIG. 2C is a diagram showing an example of a signal component transmitted through the bandpass filter 24, and specifically, is a signal component transmitted from the left-right vibration acceleration signal shown in FIG. 2A.

判定手段23は、前述のように、抽出手段22によって抽出されたスペクトル成分の大きさ(抽出手段22によって抽出された予め決定された周波数帯域のパワースペクトル密度の積分値の大きさ)に基づき、内軌側レールRaの波状摩耗の発生の予兆を判定することが可能である他、バンドパスフィルタ24を透過した信号成分の振幅の大きさに基づき、内軌側レールRaの波状摩耗の発生の予兆を判定することも可能である。すなわち、本実施形態の判定手段23は、抽出手段22によって抽出されたスペクトル成分の大きさに基づく判定と、バンドパスフィルタ24を透過した信号成分の振幅の大きさに基づく判定とを切り替え可能に構成されている。ただし、本発明はこれに限るものではなく、検知手段20がバンドパスフィルタ24を具備せず、判定手段23が抽出手段22によって抽出されたスペクトル成分の大きさに基づく判定のみを行う構成を採用することも可能である。或いは、検知手段20が生成手段21及び抽出手段22を具備せず、判定手段23がバンドパスフィルタ24を透過した信号成分の振幅の大きさに基づく判定のみを行う構成を採用することも可能である。 As described above, the determination means 23 is based on the magnitude of the spectral component extracted by the extraction means 22 (the magnitude of the integrated value of the power spectral density of the predetermined frequency band extracted by the extraction means 22). In addition to being able to determine the sign of the occurrence of wavy wear on the inner rail side rail Ra, the occurrence of wavy wear on the inner rail side rail Ra is based on the magnitude of the amplitude of the signal component transmitted through the bandpass filter 24. It is also possible to determine the sign. That is, the determination means 23 of the present embodiment can switch between the determination based on the magnitude of the spectral component extracted by the extraction means 22 and the determination based on the magnitude of the amplitude of the signal component transmitted through the bandpass filter 24. It is configured. However, the present invention is not limited to this, and the detection means 20 is not provided with the bandpass filter 24, and the determination means 23 adopts a configuration in which the determination means only makes a determination based on the size of the spectral component extracted by the extraction means 22. It is also possible to do. Alternatively, it is also possible to adopt a configuration in which the detection means 20 does not include the generation means 21 and the extraction means 22, and the determination means 23 makes a determination only based on the magnitude of the amplitude of the signal component transmitted through the bandpass filter 24. be.

本実施形態の表示手段50は、検知手段20と同様に、鉄道事業者の管理センターなど曲線軌道から離れた場所に設置されており、例えば、検知手段20を構成するパーソナルコンピュータが具備するモニタから構成されている。表示手段50には、判定手段23による判定結果の他、図2(a)に示すような検知手段20に入力された左右振動加速度信号、図2(b)に示すような生成手段21によって生成された周波数スペクトル、及び、図2(c)に示すようなバンドパスフィルタ24を透過した信号成分を、同時に又は何れかを選択して表示可能とされている。 Similar to the detection means 20, the display means 50 of the present embodiment is installed at a place away from the curved track such as a management center of a railway operator, and is, for example, from a monitor provided by a personal computer constituting the detection means 20. It is configured. In addition to the determination result by the determination means 23, the display means 50 is generated by the left-right vibration acceleration signal input to the detection means 20 as shown in FIG. 2A and the generation means 21 as shown in FIG. 2B. The frequency spectrum obtained and the signal component transmitted through the bandpass filter 24 as shown in FIG. 2C can be displayed simultaneously or by selecting either one.

本実施形態の摩擦係数調整手段30は、曲線軌道付近に設置され、曲線軌道の内軌側レールRaに摩擦係数を低下させるための摩擦係数調整材を供給する。摩擦係数調整手段30は、検知手段20によって内軌側レールRaの波状摩耗の発生の予兆が検知された場合に、内軌側レールRaの頭頂面に水や油等の摩擦係数調整材を散布する塗油装置や水散布装置から構成されている。具体的には、検知手段20は、内軌側レールRaの波状摩耗の発生の予兆を検知した場合に、摩擦係数調整手段30に対して、摩擦係数調整材を供給すべき旨の制御信号を無線送信する。この制御信号を受信した摩擦係数調整手段30は、制御信号に従って開閉弁等を開くことで、摩擦係数調整材を供給する。 The friction coefficient adjusting means 30 of the present embodiment is installed near the curved track, and supplies a friction coefficient adjusting material for reducing the friction coefficient to the inner rail side rail Ra of the curved track. When the detection means 20 detects a sign of wavy wear of the inner rail side rail Ra, the friction coefficient adjusting means 30 sprays a friction coefficient adjusting material such as water or oil on the crown surface of the inner rail side rail Ra. It consists of an oiling device and a water spraying device. Specifically, when the detecting means 20 detects a sign of the occurrence of wavy wear of the inner rail side rail Ra, the detecting means 20 sends a control signal to the friction coefficient adjusting means 30 that the friction coefficient adjusting material should be supplied. Send wirelessly. Upon receiving this control signal, the friction coefficient adjusting means 30 supplies the friction coefficient adjusting material by opening the on-off valve or the like according to the control signal.

図3(a)は、図2(a)に示す左右振動加速度信号が得られた内軌側レールRaについて、摩擦係数調整手段30によって摩擦係数調整材を供給した後に得られた左右振動加速度信号の一例を示す。図3(b)は、図3(a)に示す左右振動加速度信号を周波数解析して生成したパワースペクトル密度分布であり、図3(c)は、図3(a)に示す左右振動加速度信号が透過周波数帯域400~500Hzのバンドパスフィルタ24を透過した後の信号成分である。図3(b)と図2(b)とを比較、又は、図3(c)と図2(c)とを比較すれば分かるように、摩擦係数調整手段30によって内軌側レールRaに摩擦係数調整材を供給することで、内軌側レールRaの波状摩耗に関連する周波数帯域400~500Hzの信号成分の大きさが小さくなる。すなわち、摩擦係数調整材を供給することで、波状摩耗の発生や進展を十分に抑制可能であることが分かる。 FIG. 3A shows a left-right vibration acceleration signal obtained after supplying a friction coefficient adjusting material by the friction coefficient adjusting means 30 for the inner rail side rail Ra from which the left-right vibration acceleration signal shown in FIG. 2A was obtained. An example is shown. FIG. 3B is a power spectral density distribution generated by frequency analysis of the left-right vibration acceleration signal shown in FIG. 3A, and FIG. 3C is a left-right vibration acceleration signal shown in FIG. 3A. Is a signal component after passing through the bandpass filter 24 having a transmission frequency band of 400 to 500 Hz. As can be seen by comparing FIGS. 3 (b) and 2 (b), or comparing FIGS. 3 (c) and 2 (c), the friction coefficient adjusting means 30 rubs against the inner rail side rail Ra. By supplying the coefficient adjusting material, the magnitude of the signal component in the frequency band 400 to 500 Hz related to the wavy wear of the inner rail side rail Ra is reduced. That is, it can be seen that the occurrence and progress of wavy wear can be sufficiently suppressed by supplying the friction coefficient adjusting material.

以下、上記に説明した構成を有する予兆検知システム100を用いた波状摩耗の予兆検知方法について説明する。
図4は、本発明の一実施形態に係る鉄道用曲線軌道における波状摩耗の予兆検知方法(以下、適宜、単に「予兆検知方法」という)の概略手順を説明するフロー図である。図4に示すように、本実施形態に係る予兆検知方法は、準備工程S1と、測定工程S2と、検知工程S3とを含んでいる。また、好ましい態様として、本実施形態に係る予兆検知方法は、表示工程S4と、供給工程S5とを含んでいる。以下、各工程S1~S5の内容について順に説明する。
Hereinafter, a method for detecting a sign of wavy wear using the sign detecting system 100 having the configuration described above will be described.
FIG. 4 is a flow chart illustrating a schematic procedure of a sign detection method of wavy wear in a curved track for a railway according to an embodiment of the present invention (hereinafter, appropriately simply referred to as “predict detection method”). As shown in FIG. 4, the sign detection method according to the present embodiment includes a preparation step S1, a measurement step S2, and a detection step S3. Further, as a preferred embodiment, the sign detection method according to the present embodiment includes a display step S4 and a supply step S5. Hereinafter, the contents of each of the steps S1 to S5 will be described in order.

<準備工程S1>
準備工程S1では、鉄道車両が走行する曲線軌道の内軌側レールRaであって波状摩耗が発生している内軌側レールRaを周波数帯域決定用内軌側レールとして用い、該周波数帯域決定用内軌側レールに左右振動加速度測定手段10を設置する。波状摩耗が発生しているか否かは、例えば、保全者が実際に曲線軌道に赴いて周波数帯域決定用内軌側レールの頭頂面の状態を目視観察することで判断可能である。
<Preparation process S1>
In the preparation step S1, the inner rail side rail Ra of the curved track on which the railroad vehicle travels and the wavy wear occurs is used as the inner rail side rail for determining the frequency band, and the frequency band is determined. The left-right vibration acceleration measuring means 10 is installed on the inner rail side rail. Whether or not wavy wear has occurred can be determined, for example, by the maintenance person actually going to the curved track and visually observing the state of the top surface of the inner rail side rail for determining the frequency band.

次いで、準備工程S1では、鉄道車両が周波数帯域決定用内軌側レールを走行する際に左右振動加速度測定手段10によって周波数帯域決定用内軌側レールの左右振動加速度を測定して得られた左右振動加速度信号を周波数解析することで、波状摩耗に関連する周波数帯域を予め決定する。この周波数帯域決定用内軌側レールの左右振動加速度を測定する際には、摩擦係数調整手段30から周波数帯域決定用内軌側レールに摩擦係数調整材を供給していない状態(摩擦係数調整材の効果が維持されていない状態)であることが好ましい。
図5(a)は、摩擦係数調整材を供給していない状態(摩擦係数調整材の効果が維持されていない状態)の周波数帯域決定用内軌側レールを鉄道車両が走行した際に周波数帯域決定用内軌側レールの左右振動加速度を測定して得られた左右振動加速度信号の一例を示す図である。図5(a)に示す例は、図2(a)に示す左右振動加速度信号が得られた内軌側レールRaの削正前の内軌側レールを周波数帯域決定用内軌側レールとして用いて得られた左右振動加速度信号である。
Next, in the preparation step S1, the left and right obtained by measuring the left and right vibration acceleration of the frequency band determination inner rail side rail by the left and right vibration acceleration measuring means 10 when the railway vehicle travels on the frequency band determination inner rail side rail. By frequency analysis of the vibration acceleration signal, the frequency band related to wavy wear is determined in advance. When measuring the left-right vibration acceleration of the frequency band determination inner rail side rail, the friction coefficient adjusting material 30 does not supply the friction coefficient adjusting material to the frequency band determining inner rail side rail (friction coefficient adjusting material). It is preferable that the effect of the above is not maintained).
FIG. 5A shows a frequency band when the railroad vehicle travels on the inner rail side rail for determining the frequency band in a state where the friction coefficient adjusting material is not supplied (a state in which the effect of the friction coefficient adjusting material is not maintained). It is a figure which shows an example of the left-right vibration acceleration signal obtained by measuring the left-right vibration acceleration of the inner rail side rail for determination. In the example shown in FIG. 5A, the inner rail side rail before the correction of the inner rail side rail Ra from which the left-right vibration acceleration signal shown in FIG. 2A is obtained is used as the inner rail side rail for determining the frequency band. It is a left-right vibration acceleration signal obtained.

具体的には、本実施形態の準備工程S1は、中心周波数決定工程S11と、帯域幅決定工程S12とを含んでいる。
中心周波数決定工程S11では、周波数帯域決定用内軌側レールの波状摩耗のピッチ(波長)λと、周波数帯域決定用内軌側レールを走行する鉄道車両の走行速度vとを測定し、該測定結果に基づき、周波数帯域の中心周波数fcを以下の式(1)によって決定する。
fc=v/λ ・・・(1)
なお、周波数帯域決定用内軌側レールの波状摩耗のピッチ(平均ピッチ)λは、例えば、保全者が実際に曲線軌道に赴いて、周波数帯域決定用内軌側レールの頭頂面の凹凸のピッチを定規や巻尺等を用いて測定してその平均値を算出したり、距離計を用いて凹凸の高さを測定した結果から凹凸の平均ピッチを算出すること等によって測定可能である。また、鉄道車両の走行速度vは、例えば、鉄道車両が一般的に具備する速度計を用いて測定可能である。
Specifically, the preparation step S1 of the present embodiment includes a center frequency determination step S11 and a bandwidth determination step S12.
In the center frequency determination step S11, the pitch (wavelength) λ of the wavy wear of the frequency band determination inner rail side rail and the traveling speed v of the railroad vehicle traveling on the frequency band determination inner rail side rail are measured and measured. Based on the result, the center frequency fc of the frequency band is determined by the following equation (1).
fc = v / λ ・ ・ ・ (1)
The pitch (average pitch) λ of the wavy wear of the frequency band determination inner rail side rail is, for example, the pitch of the unevenness of the crown surface of the frequency band determination inner rail side rail when the maintenance person actually goes to the curved track. Can be measured by measuring with a ruler, a tape measure, etc. and calculating the average value, or by calculating the average pitch of the unevenness from the result of measuring the height of the unevenness with a distance meter. Further, the traveling speed v of the railway vehicle can be measured by using, for example, a speedometer generally provided in the railway vehicle.

帯域幅決定工程S12では、周波数帯域決定用内軌側レールの左右振動加速度を測定して得られた左右振動加速度信号を周波数解析して周波数スペクトルを生成し、該生成した周波数スペクトルのスペクトル成分の大きさに基づき、周波数帯域の帯域幅を決定する。
具体的には、例えば、前記決定した中心周波数fc及びその近傍の周波数を含む周波数帯域であって、スペクトル成分が所定のしきい値以上の大きさを有する周波数帯域の帯域幅を基準として、波状摩耗に関連する周波数帯域の帯域幅を決定可能である。
In the bandwidth determination step S12, the frequency spectrum is generated by frequency analysis of the left-right vibration acceleration signal obtained by measuring the left-right vibration acceleration of the inner rail side rail for frequency band determination, and the spectrum component of the generated frequency spectrum is generated. Determine the bandwidth of the frequency band based on its size.
Specifically, for example, it is a frequency band including the determined center frequency fc and frequencies in the vicinity thereof, and is wavy with reference to the bandwidth of the frequency band in which the spectral component has a magnitude equal to or larger than a predetermined threshold value. It is possible to determine the bandwidth of the frequency band associated with wear.

図5(b)は、図5(a)に示す左右振動加速度信号を生成手段21によって周波数解析して生成した周波数スペクトル(パワースペクトル密度分布)である。図5(a)、(b)に示す例では、周波数帯域決定用内軌側レールの波状摩耗のピッチ(平均ピッチ)λ=0.022mで、鉄道車両の走行速度v=9.9m/sであったため、中心周波数決定工程S11において、式(1)により中心周波数fc=450Hzに決定される。そして、例えば、図5(b)に示すパワースペクトル密度分布において、中心周波数fc=450Hz及びその近傍の周波数を含む周波数帯域であって、パワースペクトル密度が所定のしきい値Th(例えば、しきい値Th=1.5(m/s/Hz)以上の大きさを有する周波数帯域の帯域幅を基準とする。図5(b)に示す例では、しきい値Th以上の大きさを有する周波数帯域の帯域幅は440~485Hzである。この帯域幅を基準にして、これに若干の余裕代を考慮して帯域幅を広げることで、例えば、波状摩耗に関連する周波数帯域の帯域幅を400~500Hz(中心周波数450Hz±50Hz)に決定される。図5(c)は、図5(a)に示す左右振動加速度信号が透過周波数帯域400~500Hzに設定されたバンドパスフィルタ24を透過した後の信号成分である。 FIG. 5B is a frequency spectrum (power spectrum density distribution) generated by frequency analysis of the left-right vibration acceleration signal shown in FIG. 5A by the generation means 21. In the examples shown in FIGS. 5 (a) and 5 (b), the pitch (average pitch) of the wavy wear of the inner rail side rail for determining the frequency band is λ = 0.022 m, and the traveling speed of the railroad vehicle is v = 9.9 m / s. Therefore, in the center frequency determination step S11, the center frequency fc = 450 Hz is determined by the equation (1). Then, for example, in the power spectral density distribution shown in FIG. 5B, in the frequency band including the center frequency fc = 450 Hz and the frequencies in the vicinity thereof, the power spectral density is a predetermined threshold Th (for example, a threshold). The bandwidth of the frequency band having a value Th = 1.5 (m / s 2 ) 2 / Hz) or more is used as a reference. In the example shown in FIG. 5B, the bandwidth of the frequency band having a magnitude equal to or higher than the threshold value Th is 440 to 485 Hz. By expanding the bandwidth based on this bandwidth and considering some margin, for example, the bandwidth of the frequency band related to wavy wear is determined to be 400 to 500 Hz (center frequency 450 Hz ± 50 Hz). Will be done. FIG. 5C is a signal component after the left-right vibration acceleration signal shown in FIG. 5A has passed through the bandpass filter 24 set in the transmission frequency band of 400 to 500 Hz.

<測定工程S2>
測定工程S2では、波状摩耗が発生しているか否か未知である曲線軌道の内軌側レールRaを鉄道車両が走行する際に左右振動加速度測定手段10によって内軌側レールRaの左右振動加速度を測定する。この波状摩耗が発生しているか否かが未知である内軌側レールRa(波状摩耗発生の予兆検知対象である内軌側レールRa)としては、前述の波状摩耗が発生している内軌側レールRa(周波数帯域決定用内軌側レール)を補修(削正)したレールや、交換した新品のレール(周波数帯域決定用内軌側レールと構造が同種のレール)を例示できる。この測定工程S2によって、前述の図2(a)で例示したような左右振動加速度信号が得られ、検知手段20に入力される。
<Measurement step S2>
In the measurement step S2, when the railroad vehicle travels on the inner rail side rail Ra of the curved track where it is unknown whether or not wavy wear has occurred, the left / right vibration acceleration of the inner rail side rail Ra is measured by the left / right vibration acceleration measuring means 10. Measure. As the inner rail side rail Ra (inner rail side rail Ra that is the target of detecting the sign of wavy wear), it is unknown whether or not this wavy wear has occurred, the inner rail side where the above-mentioned wavy wear has occurred. Examples include a rail obtained by repairing (correcting) the rail Ra (inner rail side rail for determining the frequency band) and a new rail (a rail having the same structure as the inner rail side rail for determining the frequency band) that has been replaced. By this measurement step S2, the left-right vibration acceleration signal as illustrated in FIG. 2A described above is obtained and input to the detection means 20.

<検知工程S3>
検知工程S3では、検知手段20が、測定工程S2によって得られた左右振動加速度信号から、準備工程S1によって予め決定された周波数帯域(図2(b)に示す例では400~500Hz)の信号成分を抽出し、該抽出した信号成分の大きさに基づき、内軌側レールRaの波状摩耗の発生の予兆を自動的に検知する。
具体的には、前述のように、検知手段20が具備する判定手段23が、抽出手段22によって抽出されたスペクトル成分の大きさ(パワースペクトル密度の積分値の大きさ)に基づき、波状摩耗の発生の予兆を自動的に判定する。すなわち、例えば、図2(b)に示すような抽出されたパワースペクトル密度の積分値が所定のしきい値以上の大きさを有する場合、波状摩耗の発生の予兆が生じていると判定することになる。
或いは、前述のように、検知手段20が具備する判定手段23が、バンドパスフィルタ24を透過した信号成分の振幅の大きさに基づき、波状摩耗の発生の予兆を自動的に判定する。すなわち、例えば、図2(c)に示すようなバンドパスフィルタ24を透過した信号成分の振幅が所定のしきい値以上の大きさを有する場合、波状摩耗の発生の予兆が生じていると判定することになる。
<Detection process S3>
In the detection step S3, the detection means 20 uses the left-right vibration acceleration signal obtained in the measurement step S2 as a signal component in a frequency band (400 to 500 Hz in the example shown in FIG. 2B) predetermined by the preparation step S1. Is extracted, and based on the magnitude of the extracted signal component, a sign of occurrence of wavy wear of the inner rail side rail Ra is automatically detected.
Specifically, as described above, the determination means 23 included in the detection means 20 causes wavy wear based on the size of the spectral component extracted by the extraction means 22 (the size of the integrated value of the power spectral density). The sign of occurrence is automatically determined. That is, for example, when the integrated value of the extracted power spectral density as shown in FIG. 2B has a magnitude equal to or greater than a predetermined threshold value, it is determined that a sign of occurrence of wavy wear has occurred. become.
Alternatively, as described above, the determination means 23 included in the detection means 20 automatically determines the sign of the occurrence of wavy wear based on the magnitude of the amplitude of the signal component transmitted through the bandpass filter 24. That is, for example, when the amplitude of the signal component transmitted through the bandpass filter 24 as shown in FIG. 2C has a magnitude equal to or larger than a predetermined threshold value, it is determined that a sign of wavy wear has occurred. Will be done.

<表示工程S4>
表示工程S4では、表示手段50が、検知工程S3の結果(判定手段23による判定結果)の他、図2(a)に示すような測定工程S2によって得られた左右振動加速度信号(検知手段20に入力された左右振動加速度信号)、図2(b)に示すような検知工程S3によって得られた周波数スペクトル(生成手段21によって生成された周波数スペクトル)、及び、図2(c)に示すような検知工程S3によって得られた信号成分(バンドパスフィルタ24を透過した信号成分)を、同時に又は何れかを選択して表示する。
本実施形態に係る予兆検知方法では、検知工程S3において、内軌側レールRaの波状摩耗の発生の予兆を自動的に検知するが、本発明はこれに限るものではなく、表示工程S4で表示される周波数スペクトルやバンドパスフィルタ24を透過した信号成分を鉄道事業者のオペレータが目視確認することで波状摩耗の発生の予兆を検知することも可能である。
<Display process S4>
In the display step S4, the display means 50 displays the left-right vibration acceleration signal (detection means 20) obtained by the measurement step S2 as shown in FIG. 2A in addition to the result of the detection step S3 (determination result by the determination means 23). Left and right vibration acceleration signal input to), the frequency spectrum obtained by the detection step S3 as shown in FIG. 2 (b) (frequency spectrum generated by the generation means 21), and as shown in FIG. 2 (c). The signal components (signal components transmitted through the bandpass filter 24) obtained by the detection step S3 are displayed simultaneously or by selecting either one.
In the sign detection method according to the present embodiment, the sign of the occurrence of wavy wear of the inner rail side rail Ra is automatically detected in the detection step S3, but the present invention is not limited to this and is displayed in the display step S4. It is also possible to detect a sign of wavy wear by visually confirming the frequency spectrum and the signal component transmitted through the bandpass filter 24 by the operator of the railroad operator.

<供給工程S5>
供給工程S5では、摩擦係数調整手段30が、内軌側レールRaに摩擦係数を低下させるための摩擦係数調整材を供給する。具体的には、検知工程S3において、検知手段20が内軌側レールRaの波状摩耗の発生の予兆を検知した場合に、供給工程S5において、摩擦係数調整手段30に対して、摩擦係数調整材を供給すべき旨の制御信号を無線送信する。この制御信号を受信した摩擦係数調整手段30は、制御信号に従って開閉弁等を開くことで、摩擦係数調整材を自動的に供給する。
本実施形態に係る予兆検知方法では、供給工程S5において、検知工程S3の結果に基づき内軌側レールRaに摩擦係数調整材を自動的に供給するが、本発明はこれに限るものではない。例えば、検知工程S3において内軌側レールRaの波状摩耗の発生の予兆を検知した場合に、判定手段23がアラーム(音によるアラームや、表示手段50での表示によるアラームなど)を発生するだけの構成とし、このアラームに基づき、鉄道事業者のオペレータが手動操作によって摩擦係数調整手段30を駆動して、内軌側レールRaに摩擦係数調整材を供給する態様を採用することも可能である。
供給工程S5において、摩擦係数調整手段30によって内軌側レールRaに摩擦係数調整材を供給することで、前述の図3(b)、(c)に示すように、内軌側レールRaの波状摩耗に関連する周波数帯域400~500Hzの信号成分の大きさが小さくなる。すなわち、摩擦係数調整材を供給することで、波状摩耗の発生や進展を十分に抑制可能である。
<Supply process S5>
In the supply step S5, the friction coefficient adjusting means 30 supplies the friction coefficient adjusting material for reducing the friction coefficient to the inner rail side rail Ra. Specifically, when the detection means 20 detects a sign of wavy wear of the inner rail side rail Ra in the detection step S3, the friction coefficient adjusting material is used with respect to the friction coefficient adjusting means 30 in the supply step S5. The control signal to the effect that the coefficient should be supplied is transmitted wirelessly. Upon receiving this control signal, the friction coefficient adjusting means 30 automatically supplies the friction coefficient adjusting material by opening the on-off valve or the like according to the control signal.
In the sign detection method according to the present embodiment, in the supply step S5, the friction coefficient adjusting material is automatically supplied to the inner rail side rail Ra based on the result of the detection step S3, but the present invention is not limited to this. For example, when a sign of occurrence of wavy wear of the inner rail side rail Ra is detected in the detection step S3, the determination means 23 only generates an alarm (an alarm by sound, an alarm by display on the display means 50, etc.). Based on this alarm, it is also possible to adopt a mode in which the operator of the railway operator manually drives the friction coefficient adjusting means 30 to supply the friction coefficient adjusting material to the inner rail side rail Ra.
In the supply step S5, by supplying the friction coefficient adjusting material to the inner rail side rail Ra by the friction coefficient adjusting means 30, as shown in FIGS. 3 (b) and 3 (c) above, the wavy shape of the inner rail side rail Ra. The magnitude of the signal component in the frequency band 400-500 Hz associated with wear is reduced. That is, by supplying the friction coefficient adjusting material, it is possible to sufficiently suppress the occurrence and progress of wavy wear.

図6は、図2(b)、図3(b)、図5(b)に示す各パワースペクトル密度分布からそれぞれ抽出された400~500Hzの周波数帯域でのパワースペクトル密度の積分値の大きさを比較した図である。
図6に示すように、波状摩耗が発生している周波数帯域決定用内軌側レールのパワースペクトル密度の積分値は121.3(m/sと大きくなる。一方、内軌側レールRa(予兆検知対象内軌側レール)に波状摩耗が発生していなくても、摩擦係数調整材が供給されていない状態で波状摩耗の発生の予兆が生じている場合には、パワースペクトル密度の積分値は68.8(m/sと比較的大きくなる。これに対し、予兆検知対象内軌側レールに摩擦係数調整材が供給された状態で波状摩耗の発生の予兆が生じていない場合には、パワースペクトル密度の積分値は3.6(m/sと小さくなる。したがい、例えば、図6に示す例では、68.8(m/sと3.6(m/sの中間の値をしきい値に設定することにより、パワースペクトル密度の積分値がこのしきい値以上の大きさを有する場合に、波状摩耗の発生の予兆が生じていると判定することが可能である。
FIG. 6 shows the magnitude of the integrated value of the power spectral density in the frequency band of 400 to 500 Hz extracted from each power spectral density distribution shown in FIGS. 2 (b), 3 (b), and 5 (b). It is a figure comparing.
As shown in FIG. 6, the integrated value of the power spectral density of the inner rail side rail for determining the frequency band in which wavy wear occurs is as large as 121.3 (m / s 2 ) 2 . On the other hand, even if wavy wear does not occur on the inner rail side rail Ra (inner rail side rail subject to sign detection), there is a sign of wavy wear occurring without the friction coefficient adjusting material being supplied. The integrated value of the power spectral density is 68.8 (m / s 2 ) 2 , which is relatively large. On the other hand, if there is no sign of wavy wear when the friction coefficient adjusting material is supplied to the rail on the inner rail side to be detected as a sign, the integrated value of the power spectral density is 3.6 (m / s). 2 ) It becomes as small as 2 . Therefore, for example, in the example shown in FIG. 6, the power spectral density is determined by setting a value between 68.8 (m / s 2 ) 2 and 3.6 (m / s 2 ) 2 as the threshold value. When the integrated value has a magnitude equal to or greater than this threshold value, it can be determined that a sign of occurrence of wavy wear has occurred.

以上に説明したように、本実施形態に係る予兆検知システム100及びこれを用いた予兆検知方法によれば、鉄道車両が走行する曲線軌道において、内軌側レールRaの頭頂面に発生し得る波状摩耗の発生の予兆を検知可能である。 As described above, according to the sign detection system 100 and the sign detection method using the predictive detection system 100 according to the present embodiment, a wavy shape that may occur on the crown surface of the inner rail side rail Ra in a curved track on which a railroad vehicle travels. It is possible to detect signs of wear.

なお、本実施形態の摩擦係数調整手段30によって摩擦係数調整材を供給してからさほど時間が経過していなくても(摩擦係数調整材の効果が維持されると考え得る時間内であっても)、検知手段20が内軌側レールRaの波状摩耗の発生の予兆を検知した場合(波状摩耗に関連する特定の周波数帯域の信号成分が大きくなった場合)には、すでに波状摩耗が進展してしまっており、内軌側レールRaの補修や交換が必要な状態になっていることが考えられる。或いは、摩擦係数調整材を供給したつもりであっても摩擦係数調整手段30の故障により実際には摩擦係数調整材が供給されていない場合も考えられる。 It should be noted that even if not a long time has passed since the friction coefficient adjusting material was supplied by the friction coefficient adjusting means 30 of the present embodiment (even within the time during which the effect of the friction coefficient adjusting material can be considered to be maintained). ), When the detection means 20 detects a sign of occurrence of wavy wear on the inner rail side rail Ra (when the signal component of a specific frequency band related to wavy wear becomes large), wavy wear has already progressed. It is conceivable that the inner rail side rail Ra needs to be repaired or replaced. Alternatively, it is conceivable that the friction coefficient adjusting material is not actually supplied due to the failure of the friction coefficient adjusting means 30 even if the friction coefficient adjusting material is intended to be supplied.

したがい、検知手段20は、摩擦係数調整手段30による摩擦係数調整材の供給時点(摩擦係数調整材を供給すべき旨の制御信号の送信時点)を管理しておくことが好ましい。そして、摩擦係数調整手段30による摩擦係数調整材の供給時点から、該摩擦係数調整材の効果が維持されると考え得る予め決定された所定時間内において、内軌側レールRaの波状摩耗の発生の予兆を検知した場合、内軌側レールRaの補修又は交換が必要であるか、或いは、摩擦係数調整手段30が故障していると判定することが好ましい。そして、この判定結果を例えば表示手段50が表示するように構成することが好ましい。
上記の好ましい構成によれば、波状摩耗の発生の予兆を検知するだけではなく、内軌側レールRaの補修又は交換が必要であること、或いは、摩擦係数調整手段30が故障していることをも自動的に判定可能であるため、鉄道事業者の保全者の手間が軽減されるという利点が得られる。
なお、上記の好ましい構成における「所定時間」とは、時間単位で表わされる数値に限られるものではなく、曲線軌道を走行した鉄道車両の本数(編成本数)とすることも可能である。すなわち、例えば、摩擦係数調整手段30による摩擦係数調整材の供給時点から、N本(例えば10本)の編成が走行する間に、内軌側レールRaの波状摩耗の発生の予兆を検知した場合、内軌側レールRaの補修又は交換が必要であるか、或いは、摩擦係数調整手段30が故障していると判定することが可能である。
Therefore, it is preferable that the detection means 20 manages the time point of supply of the friction coefficient adjusting material by the friction coefficient adjusting means 30 (the time point of transmission of the control signal to supply the friction coefficient adjusting material). Then, from the time when the friction coefficient adjusting material is supplied by the friction coefficient adjusting means 30, wavy wear of the inner rail side rail Ra occurs within a predetermined predetermined time in which the effect of the friction coefficient adjusting material can be considered to be maintained. When the sign of the above is detected, it is preferable to determine that the inner rail side rail Ra needs to be repaired or replaced, or that the friction coefficient adjusting means 30 is out of order. Then, it is preferable to configure the display means 50 to display this determination result, for example.
According to the above-mentioned preferable configuration, not only the sign of the occurrence of wavy wear is detected, but also the inner rail side rail Ra needs to be repaired or replaced, or the friction coefficient adjusting means 30 is out of order. Since it can be automatically determined, there is an advantage that the labor of the maintenance staff of the railway operator is reduced.
The "predetermined time" in the above preferred configuration is not limited to the numerical value expressed in time units, and may be the number of railroad vehicles (number of trains) traveling on a curved track. That is, for example, when a sign of wavy wear of the inner rail side rail Ra is detected while the formation of N lines (for example, 10 lines) is running from the time when the friction coefficient adjusting material is supplied by the friction coefficient adjusting means 30. It is possible to determine that the inner rail side rail Ra needs to be repaired or replaced, or that the friction coefficient adjusting means 30 is out of order.

10・・・左右振動加速度測定手段
20・・・検知手段
30・・・摩擦係数調整手段
40・・・伝送手段
50・・・表示手段
100・・・予兆検知システム
10 ... Left-right vibration acceleration measuring means 20 ... Detection means 30 ... Friction coefficient adjusting means 40 ... Transmission means
50 ... Display means 100 ... Predictive detection system

Claims (8)

鉄道車両が走行する曲線軌道の内軌側レールに設置され、鉄道車両が前記内軌側レールを走行する際の前記内軌側レールの左右振動加速度を測定して左右振動加速度信号を出力する左右振動加速度測定手段と、
前記左右振動加速度測定手段から出力された左右振動加速度信号が入力され、該入力された左右振動加速度信号から、予め決定された前記内軌側レールの波状摩耗に関連する周波数帯域の信号成分を抽出し、該抽出した信号成分の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を検知する検知手段と、
を備えることを特徴とする鉄道用曲線軌道における波状摩耗の予兆検知システム。
It is installed on the inner rail side rail of the curved track on which the railroad vehicle travels, and measures the left-right vibration acceleration of the inner rail side rail when the railroad vehicle travels on the inner rail side rail, and outputs the left-right vibration acceleration signal. Vibration acceleration measuring means and
The left-right vibration acceleration signal output from the left-right vibration acceleration measuring means is input, and the signal component of the frequency band related to the wavy wear of the inner rail side rail determined in advance is extracted from the input left-right vibration acceleration signal. Then, based on the magnitude of the extracted signal component, the detection means for detecting the sign of the occurrence of wavy wear of the inner rail side rail, and the detection means.
A system for detecting signs of wavy wear on curved tracks for railways, which is characterized by being equipped with.
前記検知手段は、
前記入力された左右振動加速度信号を周波数解析して周波数スペクトルを生成する生成手段と、
前記生成手段によって生成された周波数スペクトルから、前記予め決定された周波数帯域のスペクトル成分を抽出する抽出手段と、
前記抽出手段によって抽出されたスペクトル成分の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を判定する判定手段と、
を具備することを特徴とする請求項1に記載の鉄道用曲線軌道における波状摩耗の予兆検知システム。
The detection means
A generation means for generating a frequency spectrum by frequency analysis of the input left-right vibration acceleration signal,
An extraction means for extracting a spectral component of the predetermined frequency band from the frequency spectrum generated by the generation means, and an extraction means.
A determination means for determining a sign of occurrence of wavy wear on the inner rail side rail based on the size of the spectral component extracted by the extraction means, and a determination means.
The system for detecting a sign of wavy wear in a curved track for a railway according to claim 1, wherein the system is provided with.
前記生成手段は、前記入力された左右振動加速度信号を周波数解析してパワースペクトル密度分布を生成し、
前記抽出手段は、前記生成手段によって生成したパワースペクトル密度分布から、前記予め決定された周波数帯域のパワースペクトル密度を抽出し、
前記判定手段は、前記抽出手段によって抽出された前記予め決定された周波数帯域のパワースペクトル密度の積分値の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を判定する、
ことを特徴とする請求項2に記載の鉄道用曲線軌道における波状摩耗の予兆検知システム。
The generation means generates a power spectral density distribution by frequency analysis of the input left-right vibration acceleration signal.
The extraction means extracts the power spectrum density in the predetermined frequency band from the power spectrum density distribution generated by the generation means.
The determination means determines a sign of occurrence of wavy wear on the inner rail side rail based on the magnitude of the integrated value of the power spectral density of the predetermined frequency band extracted by the extraction means.
The predictive detection system for wavy wear in a curved track for a railway according to claim 2.
前記検知手段は、
前記入力された左右振動加速度信号から、前記予め決定された周波数帯域の信号成分を透過させるバンドパスフィルタと、
前記バンドパスフィルタを透過した信号成分の振幅の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を判定する判定手段と、
を具備することを特徴とする請求項1に記載の鉄道用曲線軌道における波状摩耗の予兆検知システム。
The detection means
A bandpass filter that transmits signal components in the predetermined frequency band from the input left-right vibration acceleration signal,
A determination means for determining a sign of occurrence of wavy wear on the inner rail side rail based on the magnitude of the amplitude of the signal component transmitted through the bandpass filter.
The system for detecting a sign of wavy wear in a curved track for a railway according to claim 1, wherein the system is provided with.
前記曲線軌道の内軌側レールに摩擦係数を低下させるための摩擦係数調整材を供給する摩擦係数調整手段を更に備え、
前記摩擦係数調整手段は、前記検知手段によって前記内軌側レールの波状摩耗の発生の予兆が検知された場合に、前記曲線軌道の内軌側レールに摩擦係数調整材を供給する、
ことを特徴とする請求項1から4の何れかに記載の鉄道用曲線軌道における波状摩耗の予兆検知システム。
Further provided with a friction coefficient adjusting means for supplying a friction coefficient adjusting material for reducing the friction coefficient to the inner track side rail of the curved track.
The friction coefficient adjusting means supplies a friction coefficient adjusting material to the inner rail side rail of the curved track when a sign of occurrence of wavy wear of the inner rail side rail is detected by the detecting means.
The predictive detection system for wavy wear in a curved track for a railway according to any one of claims 1 to 4.
前記検知手段は、前記摩擦係数調整手段による摩擦係数調整材の供給時点を管理しており、前記摩擦係数調整手段による摩擦係数調整材の供給時点から、該摩擦係数調整材の効果が維持されると考え得る予め決定された所定時間内において、前記内軌側レールの波状摩耗の発生の予兆を検知した場合、前記内軌側レールの補修又は交換が必要であるか、或いは、前記摩擦係数調整手段が故障していると判定する、
ことを特徴とする請求項5に記載の鉄道用曲線軌道における波状摩耗の予兆検知システム。
The detection means manages the supply time of the friction coefficient adjusting material by the friction coefficient adjusting means, and the effect of the friction coefficient adjusting material is maintained from the supply time of the friction coefficient adjusting material by the friction coefficient adjusting means. If a sign of wavy wear of the inner rail side rail is detected within a predetermined predetermined time, the inner rail side rail needs to be repaired or replaced, or the friction coefficient is adjusted. Determine that the means are out of order,
The predictive detection system for wavy wear in a curved track for a railway according to claim 5.
鉄道車両が走行する曲線軌道の内軌側レールであって波状摩耗が発生している内軌側レールを周波数帯域決定用内軌側レールとして用い、該周波数帯域決定用内軌側レールに左右振動加速度測定手段を設置し、鉄道車両が前記周波数帯域決定用内軌側レールを走行する際に前記左右振動加速度測定手段によって前記周波数帯域決定用内軌側レールの左右振動加速度を測定して得られた左右振動加速度信号を周波数解析することで、前記波状摩耗に関連する周波数帯域を予め決定する準備工程と、
波状摩耗が発生しているか否か未知である前記曲線軌道の内軌側レールを鉄道車両が走行する際に前記左右振動加速度測定手段によって前記内軌側レールの左右振動加速度を測定する測定工程と、
前記測定工程によって得られた左右振動加速度信号から、前記準備工程によって予め決定された前記周波数帯域の信号成分を抽出し、該抽出した信号成分の大きさに基づき、前記内軌側レールの波状摩耗の発生の予兆を検知する検知工程と、
を含むことを特徴とする鉄道用曲線軌道における波状摩耗の予兆検知方法。
The inner rail on the inner rail side of the curved track on which the railroad vehicle travels and the inner rail on the inner rail side where wavy wear occurs is used as the inner rail on the inner rail side for determining the frequency band. Obtained by installing an acceleration measuring means and measuring the left-right vibration acceleration of the frequency band-determining inner rail side rail by the left-right vibration acceleration measuring means when the railway vehicle travels on the frequency band-determining inner rail side rail. The preparatory step of predetermining the frequency band related to the wavy wear by frequency analysis of the left-right vibration acceleration signal, and
A measurement step of measuring the left-right vibration acceleration of the inner rail side rail by the left-right vibration acceleration measuring means when a railway vehicle travels on the inner rail side rail of the curved track where it is unknown whether or not wavy wear has occurred. ,
From the left-right vibration acceleration signal obtained by the measurement step, a signal component of the frequency band determined in advance by the preparation step is extracted, and wavy wear of the inner rail side rail is based on the magnitude of the extracted signal component. Detection process to detect signs of occurrence of
A method for detecting signs of wavy wear in a curved track for railways, which comprises.
前記準備工程は、
前記周波数帯域決定用内軌側レールの波状摩耗のピッチと、前記周波数帯域決定用内軌側レールを走行する前記鉄道車両の走行速度とを測定し、該測定結果に基づき、前記周波数帯域の中心周波数を決定する中心周波数決定工程と、
前記周波数帯域決定用内軌側レールの左右振動加速度を測定して得られた左右振動加速度信号を周波数解析して周波数スペクトルを生成し、該生成した周波数スペクトルのスペクトル成分の大きさに基づき、前記周波数帯域の帯域幅を決定する帯域幅決定工程と、
を含むことを特徴とする請求項7に記載の鉄道用曲線軌道における波状摩耗の予兆検知方法。
The preparation step is
The pitch of the wavy wear of the frequency band determining inner rail side rail and the traveling speed of the railroad vehicle traveling on the frequency band determining inner rail side rail are measured, and based on the measurement result, the center of the frequency band. The center frequency determination process that determines the frequency and
The left-right vibration acceleration signal obtained by measuring the left-right vibration acceleration of the inner track side rail for determining the frequency band is frequency-analyzed to generate a frequency spectrum, and the frequency spectrum is generated based on the magnitude of the spectral component of the generated frequency spectrum. The bandwidth determination process that determines the bandwidth of the frequency band,
7. The method for detecting a sign of wavy wear in a curved track for a railway according to claim 7.
JP2017238254A 2017-12-13 2017-12-13 Sign detection system and sign detection method for wavy wear on curved tracks for railways Active JP7007169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017238254A JP7007169B2 (en) 2017-12-13 2017-12-13 Sign detection system and sign detection method for wavy wear on curved tracks for railways

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238254A JP7007169B2 (en) 2017-12-13 2017-12-13 Sign detection system and sign detection method for wavy wear on curved tracks for railways

Publications (2)

Publication Number Publication Date
JP2019104389A JP2019104389A (en) 2019-06-27
JP7007169B2 true JP7007169B2 (en) 2022-01-24

Family

ID=67061727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238254A Active JP7007169B2 (en) 2017-12-13 2017-12-13 Sign detection system and sign detection method for wavy wear on curved tracks for railways

Country Status (1)

Country Link
JP (1) JP7007169B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116890B1 (en) * 2019-11-07 2020-05-29 주식회사 지에스지 Mobile rail/track defect real-time analysis and monitoring system and method using wireless accelerometer
JP2021143499A (en) * 2020-03-11 2021-09-24 西日本旅客鉄道株式会社 Rail condition prediction method, program, computer memory medium and rail condition prediction system
CN111637964B (en) * 2020-05-12 2021-10-26 西南交通大学 Rail corrugation identification method
JP7402127B2 (en) 2020-06-30 2023-12-20 株式会社日立製作所 Track maintenance necessity determination method, maintenance necessity determination device, and vehicle
CN114112001B (en) * 2021-09-29 2023-12-15 中铁第四勘察设计院集团有限公司 Interlayer defect monitoring method for ballastless track structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136988A (en) 1998-10-30 2000-05-16 East Japan Railway Co Detection method for wave-shaped abrasion of rail
JP2002131042A (en) 2000-10-26 2002-05-09 West Japan Railway Co Noise measure system of rolling sound
JP2005205967A (en) 2004-01-21 2005-08-04 Railway Technical Res Inst Derailing preventive method and derailing preventive device
JP2007145270A (en) 2005-11-30 2007-06-14 Univ Nihon Track status analysis method, track status analysis device and track status analysis program
JP2009053066A (en) 2007-08-28 2009-03-12 Canon Inc Focus adjusting method of wave front measuring interferometer, and manufacturing method of wave front measuring interferometer and projection optical system
CN101850772A (en) 2010-05-17 2010-10-06 唐德尧 Vehicular monitoring device and monitoring method thereof for rail corrugation
JP2012021790A (en) 2010-07-12 2012-02-02 Railway Technical Research Institute Rail wavy abrasion detection method and rail wavy abrasion detection system
JP2012245835A (en) 2011-05-26 2012-12-13 Hitachi Ltd Train control system
US20130312524A1 (en) 2012-05-23 2013-11-28 International Electronic Machines Corporation Ultrasonic Spectroscopic Analysis-Based Inspection of Rail Components

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54165407U (en) * 1978-05-12 1979-11-20
DK174686A (en) * 1986-04-16 1987-10-17 Oedegaard & Danneskiold Samsoe TRAIL-BASED DETECTION OF RAILWAYS AND SURFACES ON RAILWAYS
JPH09226576A (en) * 1996-02-28 1997-09-02 Hitachi Ltd Axle steering device for rolling stock truck

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136988A (en) 1998-10-30 2000-05-16 East Japan Railway Co Detection method for wave-shaped abrasion of rail
JP2002131042A (en) 2000-10-26 2002-05-09 West Japan Railway Co Noise measure system of rolling sound
JP2005205967A (en) 2004-01-21 2005-08-04 Railway Technical Res Inst Derailing preventive method and derailing preventive device
JP2007145270A (en) 2005-11-30 2007-06-14 Univ Nihon Track status analysis method, track status analysis device and track status analysis program
JP2009053066A (en) 2007-08-28 2009-03-12 Canon Inc Focus adjusting method of wave front measuring interferometer, and manufacturing method of wave front measuring interferometer and projection optical system
CN101850772A (en) 2010-05-17 2010-10-06 唐德尧 Vehicular monitoring device and monitoring method thereof for rail corrugation
JP2012021790A (en) 2010-07-12 2012-02-02 Railway Technical Research Institute Rail wavy abrasion detection method and rail wavy abrasion detection system
JP2012245835A (en) 2011-05-26 2012-12-13 Hitachi Ltd Train control system
US20130312524A1 (en) 2012-05-23 2013-11-28 International Electronic Machines Corporation Ultrasonic Spectroscopic Analysis-Based Inspection of Rail Components

Also Published As

Publication number Publication date
JP2019104389A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP7007169B2 (en) Sign detection system and sign detection method for wavy wear on curved tracks for railways
CN107215353B (en) A kind of long-range monitoring and early warning method of track structure disease
Weston et al. Monitoring lateral track irregularity from in-service railway vehicles
Berggren et al. A new approach to the analysis and presentation of vertical track geometry quality and rail roughness
Jones et al. The use of decay rates to analyse the performance of railway track in rolling noise generation
WO2016076307A1 (en) Method for measuring wear of rail-vehicle-wheel flange
Vincent et al. Curve squeal of urban rolling stock—Part 1: State of the art and field measurements
JP4388532B2 (en) Railway vehicle abnormality detection device
Qu et al. Failure analysis on bogie frame with fatigue cracks caused by hunting instability
JP4388594B2 (en) Railway vehicle abnormality detection device
Sichani et al. Differential wear modelling–Effect of weld-induced material inhomogeneity on rail surface quality
RU2659365C1 (en) Method of evaluating stress-strain state of a track
Tanaka et al. Development and verification of monitoring tools for realizing effective maintenance of rail corrugation
de Oliveira et al. Experimental investigation on the use of multiple very low-cost inertial-based devices for comfort assessment and rail track monitoring
CN104420405A (en) Device for measuring static geometrical parameters of railway track
JP2014237348A (en) System and method for determining degree of uneven wear of wheel, and program
Bocz et al. A practical approach to tramway track condition monitoring: vertical track defects detection and identification using time-frequency processing technique
JP7189095B2 (en) RAIL BREAK DETECTION DEVICE AND RAIL BREAK DETECTION METHOD
JP7089921B2 (en) Vehicle test system
JP2008254578A (en) Method and device for detecting traveling abnormality of railroad vehicle
Steišūnas et al. Estimation of ambient temperature impact on vertical dynamic behaviour of passenger rail vehicle with damaged wheels
Yang et al. Wheel-rail dynamic interaction
Real et al. Design and validation of a railway inspection system to detect lateral track geometry defects based on axle-box accelerations registered from in-service trains
JP2021070462A (en) Progress detection method and progress detection system of rail wavy abrasion
Staśkiewicz et al. Out-of-round tram wheels–current state and measurements

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220106

R150 Certificate of patent or registration of utility model

Ref document number: 7007169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150