JPWO2019146503A1 - Derailment coefficient estimation methods, devices, and programs - Google Patents
Derailment coefficient estimation methods, devices, and programs Download PDFInfo
- Publication number
- JPWO2019146503A1 JPWO2019146503A1 JP2019567031A JP2019567031A JPWO2019146503A1 JP WO2019146503 A1 JPWO2019146503 A1 JP WO2019146503A1 JP 2019567031 A JP2019567031 A JP 2019567031A JP 2019567031 A JP2019567031 A JP 2019567031A JP WO2019146503 A1 JPWO2019146503 A1 JP WO2019146503A1
- Authority
- JP
- Japan
- Prior art keywords
- estimation formula
- coefficient
- lateral pressure
- normal
- wheel load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F9/00—Rail vehicles characterised by means for preventing derailing, e.g. by use of guide wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K9/00—Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
- B61K9/08—Measuring installations for surveying permanent way
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Machines For Laying And Maintaining Railways (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本発明に係る推定方法は、基準曲線区間1におけるモニタリング台車3の外軌脱線係数Q/P1を推定する第1推定式を作成し、基準曲線区間における通常台車4の外軌脱線係数Q/P2を推定する第2推定式を作成し、通常曲線区間2におけるモニタリング台車の外軌脱線係数Q/P3を推定する第3推定式を作成し、第1推定式における説明変数の係数や第3推定式における説明変数の係数等に基づき、第2推定式における説明変数に対する補正係数を作成し、第2推定式における説明変数の係数に補正係数を加味することで、通常曲線区間における通常台車の外軌脱線係数Q/P4を推定する第4推定式を作成し、基準曲線区間の測定装置11によって通常台車の輪重及び横圧を測定し、これらから演算される演算値等を説明変数として第4推定式に入力して外軌脱線係数Q/P4を推定する。これにより、通常曲線区間における通常台車の外軌脱線係数を推定可能な方法を提供する。In the estimation method according to the present invention, a first estimation formula for estimating the outer gauge derailment coefficient Q / P1 of the monitoring carriage 3 in the reference curve section 1 is created, and the outer gauge derailment coefficient Q / P2 of the normal carriage 4 in the reference curve section 1 is created. Create a second estimation formula to estimate, create a third estimation formula to estimate the outer gauge derailment coefficient Q / P3 of the monitoring carriage in the normal curve section 2, and create an explanatory variable coefficient and a third estimation in the first estimation formula. By creating a correction coefficient for the explanatory variable in the second estimation formula based on the coefficient of the explanatory variable in the equation and adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula, the outside of the normal carriage in the normal curve section A fourth estimation formula for estimating the derailment coefficient Q / P4 is created, the wheel load and lateral pressure of a normal trolley are measured by the measuring device 11 in the reference curve section, and the calculated values calculated from these are used as explanatory variables. 4 Input to the estimation formula to estimate the outer track derailment coefficient Q / P4. This provides a method capable of estimating the outer track derailment coefficient of the normal bogie in the normal curve section.
Description
本発明は、鉄道車両が備える台車が軌道の曲線区間を走行する際の脱線係数を推定する方法、装置、及びプログラムに関する。特に、本発明は、通常曲線区間(輪重及び横圧を測定可能な測定装置が設置されていない曲線区間)における通常台車(輪重及び横圧を測定不能な台車)の脱線係数を推定可能な方法、装置、及びプログラムに関する。 The present invention relates to a method, an apparatus, and a program for estimating a derailment coefficient when a bogie included in a railroad vehicle travels on a curved section of a track. In particular, the present invention can estimate the derailment coefficient of a normal bogie (a bogie whose wheel load and lateral pressure cannot be measured) in a normal curved section (a curved section in which a measuring device capable of measuring wheel load and lateral pressure is not installed). Methods, devices, and programs.
鉄道車両の脱線に対する指標を評価し、評価結果に応じた対策を施すことは、鉄道車両の走行安全性を向上させる上で重要である。
従来、脱線に対する指標として、車輪とレールとの間の水平方向の作用力である横圧Qを、車輪とレールとの間の鉛直方向の作用力である輪重Pで除した値である脱線係数Q/Pが広く用いられている。特に、鉄道車両が軌道の曲線区間を走行する際、鉄道車両の台車が具備する前側輪軸が有する外軌側車輪の脱線係数(外軌脱線係数)Q/Pが広く用いられている。It is important to evaluate the index for derailment of railway vehicles and take measures according to the evaluation results in order to improve the running safety of railway vehicles.
Conventionally, as an index for derailment, derailment is a value obtained by dividing the lateral pressure Q, which is the acting force in the horizontal direction between the wheel and the rail, by the wheel load P, which is the acting force in the vertical direction between the wheel and the rail. The coefficient Q / P is widely used. In particular, when a railroad vehicle travels on a curved section of a track, the derailment coefficient (outer rail derailment coefficient) Q / P of the outer rail side wheel of the front wheelset provided on the bogie of the railroad vehicle is widely used.
脱線係数Q/Pを算出するための輪重P及び横圧Qの測定方法として、以下の2種類が知られている。
(1)地上測定:レールに作用する力を検出することで輪重P及び横圧Qを測定可能な測定装置を曲線区間に設置し、この測定装置によって、前記曲線区間を走行する台車の輪重P及び横圧Qを測定する方法(例えば、特開平10−185666号公報参照)。
(2)車上測定:車輪に作用する力を検出することで輪重P及び横圧Qを測定可能なセンサが取り付けられたPQモニタリング台車と称される台車によって、該台車が走行する曲線区間での輪重P及び横圧Qを測定する方法(例えば、特開2014−54881号公報参照)。The following two types are known as methods for measuring the wheel load P and the lateral pressure Q for calculating the derailment coefficient Q / P.
(1) Ground measurement: A measuring device capable of measuring wheel load P and lateral pressure Q by detecting the force acting on the rail is installed in a curved section, and the wheel of a trolley traveling on the curved section is installed by this measuring device. A method for measuring weight P and lateral pressure Q (see, for example, Japanese Patent Application Laid-Open No. 10-185666).
(2) On-vehicle measurement: A curved section in which the trolley travels by a trolley called a PQ monitoring trolley equipped with a sensor capable of measuring wheel load P and lateral pressure Q by detecting the force acting on the wheels. A method for measuring the wheel load P and the lateral pressure Q in (see, for example, Japanese Patent Application Laid-Open No. 2014-54881).
地上測定によれば、測定装置が設置された曲線区間を走行する全ての台車の輪重P及び横圧Qを測定可能である。しかしながら、測定装置が設置されていない曲線区間においては輪重P及び横圧Qを測定できない。全ての曲線区間に測定装置を設置することは、コストが高騰すると共に、メンテナンスの手間が増大するため、現実的ではない。 According to the ground measurement, it is possible to measure the wheel load P and the lateral pressure Q of all the bogies traveling in the curved section where the measuring device is installed. However, the wheel load P and the lateral pressure Q cannot be measured in the curved section where the measuring device is not installed. It is not realistic to install measuring devices in all curved sections because the cost increases and the maintenance effort increases.
車上測定によれば、PQモニタリング台車が走行する全ての曲線区間での輪重P及び横圧Qを測定可能である。しかしながら、PQモニタリング台車以外の輪重及び横圧を測定不能な台車については輪重P及び横圧Qを測定できない。全ての台車をPQモニタリング台車にすることは、コストが高騰すると共に、メンテナンスの手間が増大するため、現実的ではない。 According to the on-board measurement, it is possible to measure the wheel load P and the lateral pressure Q in all the curved sections in which the PQ monitoring trolley travels. However, the wheel load P and the lateral pressure Q cannot be measured for the trolleys other than the PQ monitoring trolley whose wheel load and lateral pressure cannot be measured. It is not realistic to use all the trolleys as PQ monitoring trolleys because the cost will increase and the maintenance effort will increase.
上記のように、輪重P及び横圧Qの測定方法として、地上測定又は車上測定の何れを用いても、通常曲線区間(輪重P及び横圧Qを測定可能な測定装置が設置されていない曲線区間)を走行する通常台車(輪重P及び横圧Qを測定不能な台車)の輪重P及び横圧Qを測定できないため、通常曲線区間を通常台車が走行するときの外軌脱線係数Q/Pを算出できないという問題がある。 As described above, as a method for measuring the wheel load P and the lateral pressure Q, a measuring device capable of measuring the normal curve section (wheel load P and the lateral pressure Q) is installed regardless of whether the ground measurement or the on-board measurement is used. Since the wheel load P and lateral pressure Q of a normal trolley (a trolley whose wheel load P and lateral pressure Q cannot be measured) traveling on a non-curved section) cannot be measured, the outer track when the normal trolley travels on a normal curved section. There is a problem that the derailment coefficient Q / P cannot be calculated.
本発明は、上記のような従来技術の問題点を解決するためになされたものであり、通常曲線区間(輪重及び横圧を測定可能な測定装置が設置されていない曲線区間)における通常台車(輪重及び横圧を測定不能な台車)の脱線係数を推定可能な方法を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and is a normal trolley in a normal curved section (a curved section in which a measuring device capable of measuring wheel load and lateral pressure is not installed). An object of the present invention is to provide a method capable of estimating the derailment coefficient of (a trolley whose wheel load and lateral pressure cannot be measured).
第1の態様に係る脱線係数の推定方法は、鉄道車両が備える台車が軌道の曲線区間を走行する際の脱線係数を推定する方法であって、輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成する第1推定式作成工程と、前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成する第2推定式作成工程と、輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成する第3推定式作成工程と、前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成する補正係数作成工程と、前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成する第4推定式作成工程と、前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定し、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する推定工程と、を含む。 The method for estimating the derailment coefficient according to the first aspect is a method for estimating the derailment coefficient when a carriage provided in a railroad vehicle travels on a curved section of a track, and a measuring device capable of measuring wheel load and lateral pressure is used. When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of the installed track, the wheel load and lateral pressure of the monitoring trolley are measured by the measuring device, and the measured wheel load and lateral pressure are measured. The reference curve is performed by performing multivariate analysis with the derailment coefficient calculated from the pressure as the objective variable and at least the predetermined calculated value calculated from the measured wheel load and the lateral pressure and the traveling speed of the monitoring trolley as explanatory variables. The first estimation formula creation step for creating the first estimation formula for estimating the derailment coefficient of the monitoring trolley in the section, and the measuring device when a normal trolley whose wheel load and lateral pressure cannot be measured travels in the reference curve section. Measures the wheel load and lateral pressure of the normal carriage, and uses the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure. A second estimation formula creation step for creating a second estimation formula for estimating the derailment coefficient of the normal trolley in the reference curve section by performing multivariate analysis using the traveling speed of the normal trolley as an explanatory variable, a wheel load, and a wheel load. When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which a measuring device capable of measuring lateral pressure is not installed, the monitoring trolley measures the wheel load and lateral pressure of the monitoring trolley. The derailment coefficient that was measured and calculated from the measured wheel load and lateral pressure was used as the objective variable, and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the monitoring trolley were used as explanatory variables. A third estimation formula creation step for creating a third estimation formula for estimating the derailment coefficient of the monitoring carriage in the normal curve section by performing variable analysis, a coefficient of the explanatory variable in the first estimation formula, and the above. The coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the value of the explanatory variable used when the third estimation formula was created. Based on this, by adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula and the correction coefficient creation step of creating the correction coefficient for the explanatory variable in the second estimation formula, the said in the normal curve section. The fourth estimation formula creation process for creating the fourth estimation formula for estimating the derailment coefficient of the normal trolley and the reference curve section for the normal trolley When the vehicle travels, the wheel weight and lateral pressure of the normal trolley are measured by the measuring device, and at least a predetermined calculated value calculated from the measured wheel weight and lateral pressure and the traveling speed of the normal trolley are determined by the fourth. It includes an estimation step of estimating the derailment coefficient of the normal carriage in the normal curve section by inputting it into the estimation formula.
第2の態様に係る脱線係数推定装置は、鉄道車両が備える台車が軌道の曲線区間を走行する際の脱線係数を推定する装置であって、輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成する第1推定式作成部と、前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成する第2推定式作成部と、輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成する第3推定式作成部と、前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成する補正係数作成部と、前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成する第4推定式作成部と、前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する推定部と、を含む。 The derailment coefficient estimation device according to the second aspect is a device for estimating the derailment coefficient when the carriage of the railroad vehicle travels on the curved section of the track, and a measuring device capable of measuring wheel load and lateral pressure is installed. When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of the track, the measured wheel is input from the result of measuring the wheel load and lateral pressure of the monitoring trolley by the measuring device. By performing multivariate analysis with the derailment coefficient calculated from the weight and lateral pressure as the objective variable and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the monitoring carriage as explanatory variables. When the first estimation formula creating unit that creates the first estimation formula for estimating the derailment coefficient of the monitoring trolley in the reference curve section and the normal trolley whose wheel load and lateral pressure cannot be measured travel in the reference curve section. Using the result of measuring the wheel load and lateral pressure of the normal carriage by the measuring device as an input, and using the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least calculated from the measured wheel load and lateral pressure. A second estimation formula for creating a second estimation formula for estimating the derailment coefficient of the normal trolley in the reference curve section by performing multivariate analysis using the predetermined calculated value and the traveling speed of the normal trolley as explanatory variables. When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curve section of a track on which a creating unit and a measuring device capable of measuring wheel load and lateral pressure are not installed, the monitoring trolley is used by the monitoring trolley. With the result of measuring the wheel load and lateral pressure as an input, and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and A third estimation formula creation unit that creates a third estimation formula that estimates the derailment coefficient of the monitoring trolley in the normal curve section by performing multivariate analysis using the traveling speed of the monitoring trolley as an explanatory variable, and the first estimation formula creation unit. The coefficient of the explanatory variable in the estimation formula, the coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the third estimation formula were created. Based on the value of the explanatory variable used at that time, the correction coefficient creating unit for creating the correction coefficient for the explanatory variable in the second estimation formula, and the correction coefficient for the coefficient of the explanatory variable in the second estimation formula Fourth estimation to create a fourth estimation formula that estimates the derailment coefficient of the normal carriage in the normal curve section by adding it. When the normal trolley travels on the formula creation unit and the reference curve section, the result of measuring the wheel load and lateral pressure of the normal trolley by the measuring device is input, and at least calculated from the measured wheel weight and lateral pressure. Includes an estimation unit that estimates the derailment coefficient of the normal trolley in the normal curve section by inputting a predetermined calculated value and the traveling speed of the normal trolley into the fourth estimation formula.
第3の態様に係るプログラムは、鉄道車両が備える台車が軌道の曲線区間を走行する際の脱線係数を推定するプログラムであって、コンピュータに、輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成し、前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成し、輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成し、前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成し、前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成し、前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定することを実行させるためのプログラムである。 The program according to the third aspect is a program for estimating the derailment coefficient when the carriage of the railroad vehicle travels on the curved section of the track, and a measuring device capable of measuring wheel load and lateral pressure is installed in the computer. When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of the track, the measured wheel is input from the result of measuring the wheel load and lateral pressure of the monitoring trolley by the measuring device. By performing multivariate analysis with the derailment coefficient calculated from the weight and lateral pressure as the objective variable and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the monitoring trolley as explanatory variables. A first estimation formula for estimating the derailment coefficient of the monitoring trolley in the reference curve section is created, and when a normal trolley whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the normal trolley is operated by the measuring device. With the result of measuring the wheel load and lateral pressure as an input, and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and By performing multivariate analysis using the traveling speed of the normal trolley as an explanatory variable, a second estimation formula for estimating the derailment coefficient of the normal trolley in the reference curve section is created, and wheel load and lateral pressure can be measured. When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which no device is installed, the result of measuring the wheel load and lateral pressure of the monitoring trolley by the monitoring trolley is used as an input. Multivariate analysis is performed using the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the monitoring trolley as explanatory variables. By doing so, a third estimation formula for estimating the derailment coefficient of the monitoring carriage in the normal curve section is created, and the coefficient of the explanatory variable in the first estimation formula and the coefficient of the explanatory variable in the third estimation formula are created. The explanation in the second estimation formula is based on the value of the explanatory variable used when the first estimation formula was created and the value of the explanatory variable used when the third estimation formula was created. By creating a correction coefficient for the variable and adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula, a fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section is created. , When the normal carriage travels on the reference curve section, the measuring device causes the passage. Using the result of measuring the wheel load and lateral pressure of the normal trolley as an input, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal trolley are input to the fourth estimation formula. Therefore, it is a program for estimating the derailment coefficient of the normal carriage in the normal curve section.
本発明によれば、通常曲線区間における通常台車の脱線係数を推定可能である。 According to the present invention, it is possible to estimate the derailment coefficient of the normal carriage in the normal curve section.
以下、添付図面を適宜参照しつつ、本発明の一実施形態に係る外軌脱線係数の推定方法について説明する。 Hereinafter, a method for estimating the outer gauge derailment coefficient according to the embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.
<本発明の実施の形態の概要>
本発明者らは鋭意検討した結果、輪重及び横圧を測定可能な測定装置が設置された(地上測定が可能な)基準曲線区間を輪重及び横圧を測定可能なモニタリング台車が走行する際の外軌脱線係数を推定する推定式を、前記測定装置で測定可能なデータ等を説明変数とする多変量解析を用いて作成することを考えた。同様に、輪重及び横圧を測定可能な測定装置が設置されていない(地上測定が不能な)通常曲線区間をモニタリング台車が走行する際の外軌脱線係数を推定する推定式を、モニタリング台車で測定可能なデータ等を説明変数とする多変量解析を用いて作成することを考えた。そして、両方の推定式を比較することで、推定式の変化における曲線区間の変化(基準曲線区間から通常曲線区間への変化)の影響を抽出できるのではないかと考えた。<Outline of Embodiment of the present invention>
As a result of diligent studies by the present inventors, a monitoring trolley capable of measuring wheel load and lateral pressure travels in a reference curve section in which a measuring device capable of measuring wheel load and lateral pressure is installed (measurement on the ground is possible). It was considered to create an estimation formula for estimating the outer rail derailment coefficient by using multivariate analysis using data and the like that can be measured by the measuring device as explanatory variables. Similarly, the monitoring trolley uses an estimation formula to estimate the outer track derailment coefficient when the monitoring trolley travels on a normal curve section where a measuring device capable of measuring wheel load and lateral pressure is not installed (ground measurement is not possible). We considered to create it by using multivariate analysis using the data that can be measured in. Then, by comparing both estimation formulas, it was thought that the influence of the change in the curve section (change from the reference curve section to the normal curve section) in the change of the estimation formula could be extracted.
基準曲線区間を通常台車が走行する際の外軌脱線係数を推定する推定式を、前記測定装置で測定可能なデータ等を説明変数とする多変量解析を用いて作成する。推定式の変化における曲線区間の変化の影響を抽出できれば、この作成した推定式に前記抽出した曲線区間の変化の影響を加味することで、従来は算出できなかった通常曲線区間を通常台車が走行する際の外軌脱線係数を推定する推定式を作成できると本発明者らは考えた。 An estimation formula for estimating the outer track derailment coefficient when the bogie normally travels on the reference curve section is created by using multivariate analysis using data and the like that can be measured by the measuring device as explanatory variables. If the effect of the change in the curve section on the change in the estimation formula can be extracted, the normal trolley runs on the normal curve section that could not be calculated in the past by adding the influence of the change in the extracted curve section to the created estimation formula. The present inventors have considered that an estimation formula for estimating the outer curve derailment coefficient can be created.
本発明者らは、上記の着想に基づき、更に鋭意検討した結果、本発明の一実施形態に係る外軌脱線係数の推定方法を完成した。 As a result of further diligent studies based on the above idea, the present inventors have completed a method for estimating the outer track derailment coefficient according to one embodiment of the present invention.
本発明の一実施形態は、鉄道車両が備える台車が軌道の曲線区間を走行する際の外軌脱線係数を推定する方法であって、以下の各工程を含むことを特徴とする外軌脱線係数の推定方法を提供する。 One embodiment of the present invention is a method of estimating an outer rail derailment coefficient when a bogie included in a railroad vehicle travels on a curved section of a track, and is characterized by including the following steps. Provides an estimation method for.
(1)第1推定式作成工程:輪重及び横圧を測定可能な測定装置が設置された基準曲線区間を輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した外軌脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の外軌脱線係数を推定する第1推定式を作成する。 (1) First estimation formula creation step: When a monitoring carriage capable of measuring wheel load and lateral pressure travels in a reference curve section in which a measuring device capable of measuring wheel load and lateral pressure is installed, the measuring device is used. The wheel load and lateral pressure of the monitoring trolley are measured, and the outer rail derailment coefficient calculated from the measured wheel load and lateral pressure is used as the objective variable, and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the predetermined value. By performing multivariate analysis using the traveling speed of the monitoring trolley as an explanatory variable, a first estimation formula for estimating the outer gauge derailment coefficient of the monitoring trolley in the reference curve section is created.
(2)第2推定式作成工程:前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した外軌脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の外軌脱線係数を推定する第2推定式を作成する。 (2) Second estimation formula creation step: When a normal bogie whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the wheel load and lateral pressure of the normal bogie are measured by the measuring device, and the measurement is performed. Multivariate analysis is performed using the outer rail derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal bogie as explanatory variables. By doing so, a second estimation formula for estimating the outer track derailment coefficient of the normal bogie in the reference curve section is created.
(3)第3推定式作成工程:輪重及び横圧を測定可能な測定装置が設置されていない通常曲線区間を輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した外軌脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の外軌脱線係数を推定する第3推定式を作成する。 (3) Third estimation formula creation step: When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curve section in which a measuring device capable of measuring wheel load and lateral pressure is not installed, the monitoring trolley is used. A predetermined calculated value calculated from at least the measured wheel load and lateral pressure by measuring the wheel load and lateral pressure of the monitoring carriage and using the outer rail derailment coefficient calculated from the measured wheel load and lateral pressure as an objective variable. Further, by performing multivariate analysis using the traveling speed of the monitoring trolley as an explanatory variable, a third estimation formula for estimating the outer track derailment coefficient of the monitoring trolley in the normal curve section is created.
(4)補正係数作成工程:前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数と、前記第3推定式を作成したときに用いた前記説明変数とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成する。 (4) Correction coefficient creation step: The coefficient of the explanatory variable in the first estimation formula, the coefficient of the explanatory variable in the third estimation formula, and the explanatory variable used when the first estimation formula was created. , The correction coefficient for the explanatory variable in the second estimation formula is created based on the explanatory variable used when the third estimation formula was created.
(5)第4推定式作成工程:前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の外軌脱線係数を推定する第4推定式を作成する。 (5) Fourth estimation formula creation step: A fourth estimation for estimating the outer track derailment coefficient of the normal carriage in the normal curve section by adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula. Create an expression.
(6)推定工程:前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定し、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の外軌脱線係数を推定する。 (6) Estimating step: When the normal trolley travels on the reference curve section, the wheel weight and lateral pressure of the normal trolley are measured by the measuring device, and at least a predetermined value calculated from the measured wheel weight and lateral pressure. By inputting the calculated value of and the traveling speed of the normal trolley into the fourth estimation formula, the outer track derailment coefficient of the normal trolley in the normal curve section is estimated.
本発明の一実施形態に係る外軌脱線係数の推定方法によれば、第2推定式作成工程において、第2推定式(基準曲線区間における通常台車の外軌脱線係数を推定する推定式)を作成する。また、補正係数作成工程において、第1推定式作成工程で作成した第1推定式(基準曲線区間におけるモニタリング台車の外軌脱線係数を推定する推定式)と、第3推定式作成工程で作成した第3推定式(通常曲線区間におけるモニタリング台車の外軌脱線係数を推定する推定式)とを用いて、推定式の変化における曲線区間の変化(基準曲線区間から通常曲線区間への変化)の影響を抽出する。具体的には、補正係数作成工程において、第1推定式における説明変数の係数と、第3推定式における説明変数の係数と、第1推定式を多変量解析によって作成したときに用いた説明変数と、第3推定式を作成したときに用いた説明変数とに基づき、第2推定式における説明変数に対する補正係数を作成する。 According to the method for estimating the outer gauge derailment coefficient according to the embodiment of the present invention, in the second estimation formula creation step, the second estimation formula (estimation formula for estimating the outer gauge derailment coefficient of the normal carriage in the reference curve section) is used. create. Further, in the correction coefficient creation step, the first estimation formula (estimation formula for estimating the outer gauge derailment coefficient of the monitoring trolley in the reference curve section) created in the first estimation formula creation step and the third estimation formula creation step were created. Effect of change in curve section (change from reference curve section to normal curve section) in change of estimation formula using the third estimation formula (estimation formula for estimating the outer track derailment coefficient of the monitoring carriage in the normal curve section) Is extracted. Specifically, in the correction coefficient creation process, the coefficients of the explanatory variables in the first estimation formula, the coefficients of the explanatory variables in the third estimation formula, and the explanatory variables used when the first estimation formula was created by multivariate analysis. And the explanatory variables used when the third estimation formula was created, the correction coefficient for the explanatory variables in the second estimation formula is created.
次いで、本発明の一実施形態に係る外軌脱線係数の推定方法によれば、第4推定式作成工程において、第2推定式(基準曲線区間における通常台車の外軌脱線係数を推定する推定式)に補正係数を加味する(曲線区間の変化の影響を加味する)ことで、第4推定式(通常曲線区間における通常台車の外軌脱線係数を推定する推定式)を作成可能である。具体的には、第2推定式における説明変数の係数に補正係数を加味することで、第4推定式を作成可能である。 Next, according to the method for estimating the outer gauge derailment coefficient according to the embodiment of the present invention, in the fourth estimation formula creation step, the second estimation formula (estimation formula for estimating the outer gauge derailment coefficient of the normal bogie in the reference curve section). By adding the correction coefficient to) (adding the influence of the change in the curve section), it is possible to create the fourth estimation formula (the estimation formula for estimating the outer track derailment coefficient of the normal bogie in the normal curve section). Specifically, the fourth estimation formula can be created by adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula.
最後に、本発明の一実施形態に係る外軌脱線係数の推定方法によれば、推定工程において、基準曲線区間を通常台車が走行する際、測定装置によって通常台車の輪重及び横圧を測定し、これらを第4推定式に入力することで、通常曲線区間における通常台車の外軌脱線係数を推定することができる。 Finally, according to the method for estimating the outer rail derailment coefficient according to the embodiment of the present invention, when the normal bogie travels on the reference curve section, the wheel load and lateral pressure of the normal bogie are measured by the measuring device. Then, by inputting these into the fourth estimation formula, the outer track derailment coefficient of the normal bogie in the normal curve section can be estimated.
本発明の一実施形態に係る外軌脱線係数の推定方法によれば、従来は算出できなかった通常曲線区間を通常台車が走行する際の外軌脱線係数を推定することが可能である。本発明に係る外軌脱線係数の推定方法を適用する通常曲線区間の数を増やしていけば、全ての曲線区間を通常台車が走行する際の外軌脱線係数を推定することが可能である。また、第1推定式作成工程〜第3推定式作成工程を適宜のタイミングで再実行することで、多変量解析に用いる目的変数及び説明変数のデータ数を増やしたり、曲線区間の状態変化に応じた目的変数及び説明変数のデータを用いることができ、第1推定式〜第3推定式の推定精度を向上させることが可能である。第1推定式作成工程〜第3推定式作成工程を再実行したタイミングで補正係数作成工程及び第4推定式作成工程も再実行すれば、第4推定式の推定精度も向上し、推定工程において外軌脱線係数を精度良く推定可能である。 According to the method for estimating the outer rail derailment coefficient according to the embodiment of the present invention, it is possible to estimate the outer rail derailment coefficient when the normal bogie travels on a normal curve section which could not be calculated in the past. By increasing the number of normal curve sections to which the method for estimating the outer track derailment coefficient according to the present invention is applied, it is possible to estimate the outer track derailment coefficient when the normal bogie travels on all the curve sections. In addition, by re-executing the first estimation formula creation step to the third estimation formula creation step at appropriate timings, the number of data of the objective variable and the explanatory variable used for multivariate analysis can be increased, or the state of the curve section can be changed. The data of the objective variable and the explanatory variable can be used, and the estimation accuracy of the first estimation formula to the third estimation formula can be improved. If the correction coefficient creation step and the fourth estimation formula creation step are also re-executed at the timing when the first estimation formula creation process to the third estimation formula creation step are re-executed, the estimation accuracy of the fourth estimation formula is also improved, and in the estimation process. The outer track derailment coefficient can be estimated accurately.
なお、本発明の一実施形態に係る外軌脱線係数の推定方法において、第1推定式〜第4推定式における説明変数としては、輪重及び横圧から演算される演算値並びに台車(モニタリング台車又は通常台車)の走行速度のみに必ずしも限定されるものではなく、これら以外の外軌脱線係数に影響を及ぼすパラメータ(例えば、基準曲線区間又は通常曲線区間の曲率や、輪重そのものなど)を説明変数に加える事も可能である。 In the method for estimating the outer track derailment coefficient according to the embodiment of the present invention, the explanatory variables in the first estimation formula to the fourth estimation formula are the calculated value calculated from the wheel load and the lateral pressure and the trolley (monitoring trolley). Or, it is not necessarily limited to the traveling speed of the normal trolley), and other parameters that affect the outer rail derailment coefficient (for example, the curvature of the reference curve section or the normal curve section, the wheel load itself, etc.) are explained. It can also be added to variables.
また、本発明の一実施形態に係る外軌脱線係数の推定方法において、第1推定式作成工程、第2推定式作成工程、第3推定式作成工程、補正係数作成工程、第4推定式作成工程及び推定工程は、必ずしもこの順に実行する必要はない。補正係数作成工程、第4推定式作成工程及び推定工程は、必ずこの順に実行する必要があるものの、他の工程は、実行する順を適宜変更してもよい。ただし、第1推定式作成工程及び第3推定式作成工程は、補正係数作成工程の前に実行する必要がある。また、第2推定式作成工程は、第4推定式作成工程の前に実行する必要がある。 Further, in the method for estimating the outer track derailment coefficient according to the embodiment of the present invention, the first estimation formula creation step, the second estimation formula creation step, the third estimation formula creation step, the correction coefficient creation step, and the fourth estimation formula creation step. The steps and estimation steps do not necessarily have to be performed in this order. The correction coefficient creation step, the fourth estimation formula creation step, and the estimation step must be executed in this order, but the execution order of the other steps may be changed as appropriate. However, the first estimation formula creation step and the third estimation formula creation step need to be executed before the correction coefficient creation step. Further, the second estimation formula creation step needs to be executed before the fourth estimation formula creation step.
本発明の一実施形態に係る外軌脱線係数の推定方法において、好ましくは、前記補正係数作成工程において、前記第1推定式における前記説明変数の係数に対する前記第3推定式における前記説明変数の係数の比と、前記第1推定式を作成したときに用いた前記説明変数の平均値に対する前記第3推定式を作成したときに用いた前記説明変数の平均値の比とを乗算することで、前記第2推定式における前記説明変数に対する前記補正係数を作成する。第4推定式作成工程において、前記第2推定式における前記説明変数の係数に前記補正係数を乗算することで、前記通常曲線区間における前記通常台車の外軌脱線係数を推定する前記第4推定式を作成する。 In the method for estimating the outer track derailment coefficient according to the embodiment of the present invention, preferably, in the correction coefficient creating step, the coefficient of the explanatory variable in the third estimation formula with respect to the coefficient of the explanatory variable in the first estimation formula. By multiplying the ratio of the above-mentioned explanatory variables to the ratio of the average value of the explanatory variables used when the third estimation formula was created to the average value of the explanatory variables used when the first estimation formula was created. The correction coefficient for the explanatory variable in the second estimation formula is created. In the fourth estimation formula creation step, the fourth estimation formula estimates the outer track derailment coefficient of the normal carriage in the normal curve section by multiplying the coefficient of the explanatory variable in the second estimation formula by the correction coefficient. To create.
上記の好ましい方法によれば、補正係数を作成する際に、第1推定式における説明変数の係数に対する第3推定式における説明変数の係数の比を用いることで、曲線区間の変化に応じた説明変数の寄与度の変化を補正後の第2推定式(すなわち、作成される第4推定式)に反映させることができると考えられる。また、補正係数を作成する際に、第1推定式を作成したときに用いた説明変数の平均値に対する第3推定式を作成したときに用いた説明変数の平均値の比を用いることで、曲線区間の変化に応じた説明変数の値の変化を補正後の第2推定式(すなわち、作成される第4推定式)に反映させることができると考えられる。
上記の好ましい方法によれば、外軌脱線係数を精度良く推定可能である。According to the above preferred method, when the correction coefficient is created, the ratio of the coefficient of the explanatory variable in the third estimation formula to the coefficient of the explanatory variable in the first estimation formula is used to explain according to the change in the curve interval. It is considered that the change in the contribution of the variable can be reflected in the corrected second estimation formula (that is, the created fourth estimation formula). In addition, when creating the correction coefficient, by using the ratio of the average value of the explanatory variables used when creating the third estimation formula to the average value of the explanatory variables used when creating the first estimation formula, It is considered that the change in the value of the explanatory variable according to the change in the curve section can be reflected in the corrected second estimation formula (that is, the created fourth estimation formula).
According to the above preferred method, the outer rail derailment coefficient can be estimated with high accuracy.
また、本発明の一実施形態に係る外軌脱線係数の推定方法において、好ましくは、前記演算値として、内軌脱線係数、前側輪軸の左右輪重バランス及び後側輪軸の左右輪重バランスのうち、少なくとも1つが用いられる。 Further, in the method for estimating the outer rail derailment coefficient according to the embodiment of the present invention, preferably, as the calculated value, among the inner rail derailment coefficient, the left-right wheel weight balance of the front wheel axle, and the left-right wheel weight balance of the rear wheel axle. , At least one is used.
内軌脱線係数は、台車(モニタリング台車又は通常台車)が具備する前側輪軸が有する内軌側車輪の脱線係数(横圧を輪重で除した値)を意味する。 The inner rail derailment coefficient means the derailment coefficient of the inner rail side wheel (value obtained by dividing the lateral pressure by the wheel weight) of the front wheel set of the bogie (monitoring bogie or normal bogie).
前側輪軸の左右輪重バランスは、台車の走行方向に対して前側輪軸の左側の車輪の輪重をP1とし、前側輪軸の右側の車輪の輪重をP2とした場合、(P1−P2)/(P1+P2)で計算される値を意味する。後側輪軸の左右輪重バランスも同様である。
上記の好ましい方法によれば、外軌脱線係数を精度良く推定可能である。The left-right wheel set balance of the front wheel set is (P1-P2) / when the wheel set on the left side of the front wheel set is P1 and the wheel set on the right side of the front wheel set is P2 with respect to the traveling direction of the bogie. It means the value calculated by (P1 + P2). The same applies to the left-right wheel weight balance of the rear wheel axle.
According to the above preferred method, the outer rail derailment coefficient can be estimated with high accuracy.
さらに、本発明の一実施形態に係る外軌脱線係数の推定方法において、前記第1推定式、前記第2推定式、前記第3推定式及び前記第4推定式として、前記説明変数の1次多項式を用いることが可能である。 Further, in the method for estimating the outer track derailment coefficient according to the embodiment of the present invention, as the first estimation formula, the second estimation formula, the third estimation formula, and the fourth estimation formula, the first order of the explanatory variables is used. It is possible to use polynomials.
しかし、本発明の実施形態はこれに限るものではなく、第1推定式〜第4推定式として、説明変数の2次以上の多項式を用いてもよい。また、次数の異なる説明変数が含まれる多項式を用いてもよい。 However, the embodiment of the present invention is not limited to this, and a polynomial of degree 2 or higher of the explanatory variable may be used as the first estimation formula to the fourth estimation formula. Further, a polynomial containing explanatory variables of different degrees may be used.
図1は、本実施形態に係る外軌脱線係数の推定方法を模式的に説明する平面図である。図2は、本実施形態に係る外軌脱線係数の推定方法の概略手順を示すフロー図である。 FIG. 1 is a plan view schematically explaining a method of estimating an outer rail derailment coefficient according to the present embodiment. FIG. 2 is a flow chart showing a schematic procedure of a method for estimating an outer rail derailment coefficient according to the present embodiment.
図1に示すように、本実施形態に係る外軌脱線係数の推定方法は、鉄道車両が備える台車が軌道の曲線区間を走行する際の外軌脱線係数を推定する方法である。図1に示すように、従来、輪重P及び横圧Qを測定可能な測定装置11が設置された基準曲線区間1を、輪重P及び横圧Qを測定可能なモニタリング台車3が走行する際の外軌脱線係数Q/P1は、測定装置11(又は、モニタリング台車3)の測定値を用いて算出可能であった。また、従来、基準曲線区間1を、輪重P及び横圧Qを測定不能な通常台車4が走行する際の外軌脱線係数Q/P2は、測定装置11の測定値を用いて算出可能であった。さらに、従来、輪重P及び横圧Qを測定可能な測定装置11が設置されていない通常曲線区間2をモニタリング台車3が走行する際の外軌脱線係数Q/P3は、モニタリング台車3の測定値を用いて算出可能であった。しかしながら、従来、通常曲線区間2を通常台車4が走行する際の外軌脱線係数Q/P4は算出できなかった。本実施形態に係る外軌脱線係数の推定方法は、従来は算出できなかった通常曲線区間2を通常台車4が走行する際の外軌脱線係数Q/P4を推定する方法である。As shown in FIG. 1, the method of estimating the outer rail derailment coefficient according to the present embodiment is a method of estimating the outer rail derailment coefficient when the bogie provided in the railway vehicle travels on the curved section of the track. As shown in FIG. 1, the monitoring trolley 3 capable of measuring the wheel load P and the lateral pressure Q travels in the reference curve section 1 in which the measuring device 11 capable of measuring the wheel load P and the lateral pressure Q is conventionally installed. The outer track derailment coefficient Q / P 1 could be calculated using the measured value of the measuring device 11 (or the monitoring carriage 3). Further, conventionally, the outer rail derailment coefficient Q / P 2 when the normal carriage 4 whose wheel load P and lateral pressure Q cannot be measured travels on the reference curve section 1 can be calculated by using the measured value of the measuring device 11. Met. Further, conventionally, the outer track derailment coefficient Q / P 3 when the monitoring carriage 3 travels on the normal curve section 2 in which the measuring device 11 capable of measuring the wheel load P and the lateral pressure Q is not installed is the monitoring carriage 3. It was possible to calculate using the measured values. However, conventionally, it has not been possible to calculate the outer track derailment coefficient Q / P 4 when the normal bogie 4 travels on the normal curve section 2. The method for estimating the outer rail derailment coefficient according to the present embodiment is a method for estimating the outer rail derailment coefficient Q / P 4 when the normal carriage 4 travels on the normal curve section 2 which could not be calculated in the past.
図2に示すように、本実施形態に係る外軌脱線係数Q/P4の推定方法は、第1推定式作成工程S1、第2推定式作成工程S2、第3推定式作成工程S3、補正係数作成工程S4、第4推定式作成工程S5及び推定工程S6を含む。以下、各工程S1〜S6について、順に説明する。As shown in FIG. 2, the estimation method of the outer track derailment coefficient Q / P 4 according to the present embodiment includes the first estimation formula creation step S1, the second estimation formula creation step S2, the third estimation formula creation step S3, and the correction. The coefficient creation step S4, the fourth estimation formula creation step S5, and the estimation step S6 are included. Hereinafter, each steps S1 to S6 will be described in order.
<第1推定式作成工程S1>
第1推定式作成工程S1では、基準曲線区間1をモニタリング台車3が走行する際、測定装置11によってモニタリング台車3の輪重P及び横圧Qを測定する。モニタリング台車3としては、例えば、特開2014−54881号公報に記載のような従来公知のPQモニタリング台車を適用可能である。また、測定装置11としては、例えば、特開平10−185666号公報に記載のような従来公知の測定装置を適用可能である。上記の測定を、同じモニタリング台車3について同じ基準曲線区間1で繰り返し行い、輪重P及び横圧Qの複数の測定データを取得する。<First estimation formula creation process S1>
In the first estimation formula creation step S1, when the monitoring trolley 3 travels on the reference curve section 1, the wheel load P and the lateral pressure Q of the monitoring trolley 3 are measured by the measuring device 11. As the monitoring trolley 3, for example, a conventionally known PQ monitoring trolley as described in Japanese Patent Application Laid-Open No. 2014-54881 can be applied. Further, as the measuring device 11, for example, a conventionally known measuring device as described in Japanese Patent Application Laid-Open No. 10-185666 can be applied. The above measurement is repeated for the same monitoring carriage 3 in the same reference curve section 1, and a plurality of measurement data of the wheel load P and the lateral pressure Q are acquired.
そして、第1推定式作成工程S1では、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P1を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P1は除く)並びにモニタリング台車3の走行速度を説明変数として多変量解析を行うことで、基準曲線区間1におけるモニタリング台車3の外軌脱線係数Q/P1を推定する第1推定式を作成する。なお、モニタリング台車3の走行速度は、鉄道車両が一般的に有する速度計によって容易に測定可能である。Then, in the first estimation formula creation step S1, the outer rail derailment coefficient Q / P 1 calculated from the measured wheel load P and the lateral pressure Q is set as the objective variable, and at least the measured wheel load P and the lateral pressure Q are calculated. By performing multivariate analysis using a predetermined calculated value (however, the outer gauge derailment coefficient Q / P 1 is excluded) and the traveling speed of the monitoring carriage 3 as explanatory variables, the outer gauge derailment coefficient of the monitoring carriage 3 in the reference curve section 1 Create a first estimation formula for estimating Q / P 1 . The traveling speed of the monitoring carriage 3 can be easily measured by a speedometer generally possessed by a railway vehicle.
本実施形態では、第1推定式として、説明変数の1次多項式を用いる。例えば、モニタリング台車3の走行速度をV1とし、輪重P及び横圧Qから演算される演算値を3つ用いるとして、それぞれX1、Y1、Z1とすると、第1推定式は、以下の式(1)で表されることになる。
Q/P1=a1・V1+b1・X1+c1・Y1+d1・Z1+e1 ・・・(1)In this embodiment, the linear polynomial of the explanatory variable is used as the first estimation formula. For example, assuming that the traveling speed of the monitoring carriage 3 is V 1, and three calculated values calculated from the wheel load P and the lateral pressure Q are used, and X 1 , Y 1 , and Z 1 , respectively, the first estimation formula is It will be expressed by the following equation (1).
Q / P 1 = a 1 · V 1 + b 1 · X 1 + c 1 · Y 1 + d 1 · Z 1 + e 1 ... (1)
多変量解析では、第1推定式作成工程で取得した輪重P及び横圧Qの複数の測定データに基づき演算した演算値X1〜Z1の複数のデータと、測定した走行速度V1の複数のデータと、演算した外軌脱線係数Q/P1の複数のデータとに対して、例えば最小二乗法を適用することで、式(1)の説明変数の係数a1〜d1と、定数項であるe1とを同定することになる。In multivariate analysis, the wheel load P and lateral force Q of the plurality of the plurality of data of the computed based on the measured data computed value X 1 to Z 1 obtained by the first estimation formula creation process, the traveling speed V 1 measured By applying, for example, the least squares method to a plurality of data and a plurality of data having the calculated outer track derailment coefficient Q / P 1 , the coefficients a 1 to d 1 of the explanatory variables of the equation (1) can be obtained. It will identify e 1 which is a constant term.
<第2推定式作成工程S2>
第2推定式作成工程S2では、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定する。上記の測定を、同じ通常台車4について同じ基準曲線区間1で繰り返し行い、輪重P及び横圧Qの複数の測定データを取得する。<Second estimation formula creation process S2>
In the second estimation formula creation step S2, when the normal carriage 4 travels on the reference curve section 1, the measuring device 11 measures the wheel load P and the lateral pressure Q of the normal carriage 4. The above measurement is repeated for the same normal carriage 4 in the same reference curve section 1, and a plurality of measurement data of the wheel load P and the lateral pressure Q are acquired.
そして、第2推定式作成工程S2では、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P2を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P2は除く)並びに通常台車4の走行速度を説明変数として多変量解析を行うことで、基準曲線区間1における通常台車4の外軌脱線係数Q/P2を推定する第2推定式を作成する。なお、通常台車4の走行速度は、鉄道車両が一般的に有する速度計によって容易に測定可能である。Then, in the second estimation formula creation step S2, the outer rail derailment coefficient Q / P 2 calculated from the measured wheel load P and the lateral pressure Q is set as the objective variable, and at least the measured wheel load P and the lateral pressure Q are calculated. By performing multivariate analysis using a predetermined calculated value (however, the outer rail derailment coefficient Q / P 2 is excluded) and the traveling speed of the normal bogie 4 as explanatory variables, the outer rail derailment coefficient of the normal bogie 4 in the reference curve section 1 is performed. Create a second estimation formula for estimating Q / P 2 . The traveling speed of the normal bogie 4 can be easily measured by a speedometer generally possessed by a railway vehicle.
本実施形態では、第2推定式として、第1推定式と同様に、説明変数の1次多項式を用いる。例えば、通常台車4の走行速度をV2とし、輪重P及び横圧Qから演算される演算値を3つ用いるとして、それぞれX2、Y2、Z2とすると、第2推定式は、以下の式(2)で表されることになる。
Q/P2=a2・V2+b2・X2+c2・Y2+d2・Z2+e2 ・・・(2)
X2〜Z2は、それぞれ第1推定式のX1〜Z1と同種の演算値である。In the present embodiment, as the second estimation formula, the linear polynomial of the explanatory variable is used as in the first estimation formula. For example, the traveling speed of a normal carriage 4 and V 2, as used three arithmetic value calculated from the wheel load P and lateral force Q, when each X 2, Y 2, and Z 2, the second estimation equation, It will be expressed by the following equation (2).
Q / P 2 = a 2 · V 2 + b 2 · X 2 + c 2 · Y 2 + d 2 · Z 2 + e 2 ... (2)
X 2 to Z 2 are arithmetic values of the same type as X 1 to Z 1 of the first estimation formula, respectively.
多変量解析では、第2推定式作成工程で取得した輪重P及び横圧Qの複数の測定データに基づき演算した演算値X2〜Z2の複数のデータと、測定した走行速度V2の複数のデータと、演算した外軌脱線係数Q/P2の複数のデータとに対して、例えば最小二乗法を適用することで、式(2)の説明変数の係数a2〜d2と、定数項であるe2とを同定することになる。In multivariate analysis, the wheel load P and lateral force Q more based on the measurement data calculated a plurality of operation values X 2 to Z 2 and the data obtained by the second estimation equation generating step, the running speed V 2 measured a plurality of data, with respect to a plurality of data of the calculated outer軌脱line coefficient Q / P 2, for example by applying the least square method, and coefficients a 2 to d 2 explanatory variables of formula (2), The constant term e 2 will be identified.
<第3推定式作成工程S3>
第3推定式作成工程S3では、通常曲線区間2をモニタリング台車3が走行する際、モニタリング台車3によってモニタリング台車3の輪重P及び横圧Qを測定する。上記の測定を、同じモニタリング台車3について同じ通常曲線区間2で繰り返し行い、輪重P及び横圧Qの複数の測定データを取得する。<Third estimation formula creation process S3>
In the third estimation formula creation step S3, when the monitoring carriage 3 travels on the normal curve section 2, the monitoring carriage 3 measures the wheel load P and the lateral pressure Q of the monitoring carriage 3. The above measurement is repeated for the same monitoring carriage 3 in the same normal curve section 2, and a plurality of measurement data of the wheel load P and the lateral pressure Q are acquired.
そして、第3推定式作成工程S3では、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P3を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P3は除く)並びにモニタリング台車3の走行速度を説明変数として多変量解析を行うことで、通常曲線区間2におけるモニタリング台車3の外軌脱線係数Q/P3を推定する第3推定式を作成する。Then, in the third estimation formula creation step S3, the outer rail derailment coefficient Q / P 3 calculated from the measured wheel load P and the lateral pressure Q is set as the objective variable, and at least the measured wheel load P and the lateral pressure Q are calculated. By performing multivariate analysis using a predetermined calculated value (however, the outer gauge derailment coefficient Q / P 3 is excluded) and the traveling speed of the monitoring carriage 3 as explanatory variables, the outer gauge derailment coefficient of the monitoring carriage 3 in the normal curve section 2 is performed. Create a third estimation formula for estimating Q / P 3 .
本実施形態では、第3推定式として、第1推定式及び第2推定式と同様に、説明変数の1次多項式を用いる。例えば、モニタリング台車3の走行速度をV3とし、輪重P及び横圧Qから演算される演算値を3つ用いるとして、それぞれX3、Y3、Z3とすると、第3推定式は、以下の式(3)で表されることになる。
Q/P3=a3・V3+b3・X3+c3・Y3+d3・Z3+e3 ・・・(3)
X3〜Z3は、それぞれ第1推定式のX1〜Z1や第2推定式のX2〜Z2と同種の演算値である。In the present embodiment, as the third estimation formula, the first-order polynomial of the explanatory variables is used as in the first estimation formula and the second estimation formula. For example, the traveling speed of the monitoring vehicle 3 and V 3, as used three calculated value which is calculated from the wheel load P and lateral force Q, When X 3, Y 3, Z 3 respectively, the third estimation equation, It will be expressed by the following equation (3).
Q / P 3 = a 3・ V 3 + b 3・ X 3 + c 3・ Y 3 + d 3・ Z 3 + e 3 ... (3)
X 3 to Z 3 are arithmetic values of the same type as X 1 to Z 1 of the first estimation formula and X 2 to Z 2 of the second estimation formula, respectively.
多変量解析では、第3推定式作成工程で取得した輪重P及び横圧Qの複数の測定データに基づき演算した演算値X3〜Z3の複数のデータと、測定した走行速度V3の複数のデータと、演算した外軌脱線係数Q/P3の複数のデータとに対して、例えば最小二乗法を適用することで、式(3)の説明変数の係数a3〜d3と、定数項であるe3とを同定することになる。In multivariate analysis, the wheel load P and lateral force Q of the plurality of data calculation value X 3 to Z 3 computed based on a plurality of measurement data obtained by the third estimation formula creation process, the traveling speed V 3 as measured a plurality of data, with respect to a plurality of data of the calculated outer軌脱line coefficient Q / P 3, for example by applying the least square method, and coefficients a 3 to d 3 of explanatory variables of formula (3), It will identify and e 3 are constant terms.
<補正係数作成工程S4>
補正係数作成工程S4では、式(1)で表される第1推定式における説明変数V1及びX1〜Z1の係数a1〜d1と、式(3)で表される第3推定式における説明変数V3及びX3〜Z3の係数a3〜d3と、第1推定式を作成したときに用いた説明変数V1及びX1〜Z1の複数のデータ(例えば、最小二乗法を適用するのに用いた説明変数V1及びX1〜Z1の複数のデータ)と、第3推定式を作成したときに用いた説明変数V3及びX3〜Z3の複数のデータ(例えば、最小二乗法を適用するのに用いた説明変数V3及びX3〜Z3の複数のデータ)とに基づき、式(2)で表される第2推定式における説明変数V2及びX2〜Z2に対する補正係数を作成する。<Correction coefficient creation process S4>
In the correction coefficient generating step S4, the third estimate and coefficients a 1 to d 1 of explanatory variables V 1 and X 1 to Z 1 in the first estimation expression represented by the formula (1), the formula (3) Coefficients a 3 to d 3 of the explanatory variables V 3 and X 3 to Z 3 in the equation, and a plurality of data of the explanatory variables V 1 and X 1 to Z 1 used when the first estimation equation was created (for example, the minimum). Multiple data of explanatory variables V 1 and X 1 to Z 1 used to apply the square method) and multiple explanatory variables V 3 and X 3 to Z 3 used when the third estimation formula was created. Based on the data (for example, a plurality of explanatory variables V 3 and X 3 to Z 3 used to apply the least square method), the explanatory variable V 2 in the second estimation equation represented by the equation (2). And the correction coefficients for X 2 to Z 2 are created.
本実施形態では、第1推定式における説明変数V1及びX1〜Z1の係数a1〜d1に対する第3推定式における説明変数V3及びX3〜Z3の係数a3〜d3の比と、第1推定式を作成したときに用いた説明変数V1及びX1〜Z1の平均値に対する第3推定式を作成したときに用いた説明変数V3及びX3〜Z3の平均値の比とを乗算することで、第2推定式における説明変数V2及びX2〜Z2に対する補正係数を作成する。In the present embodiment, the coefficients a 3 to d 3 of the explanatory variables V 3 and X 3 to Z 3 in the third estimation formula are relative to the coefficients a 1 to d 1 of the explanatory variables V 1 and X 1 to Z 1 in the first estimation formula. And the explanatory variables V 3 and X 3 to Z 3 used when the third estimation formula was created for the average value of the explanatory variables V 1 and X 1 to Z 1 used when the first estimation formula was created. By multiplying the ratio of the average values of, the correction coefficients for the explanatory variables V 2 and X 2 to Z 2 in the second estimation formula are created.
すなわち、第2推定式における説明変数V2及びX2〜Z2に対する補正係数をそれぞれα、β、γ、δとし、第1推定式を作成したときに用いた説明変数V1及びX1〜Z1の平均値をそれぞれV1ave及びX1ave〜Z1aveとし、第3推定式を作成したときに用いた説明変数V3及びX3〜Z3の平均値をそれぞれV3ave及びX3ave〜Z3aveとすると、各補正係数α、β、γ、δは、それぞれ以下の式(4)〜(7)で表されることになる。
α=(a3/a1)・(V3ave/V1ave) ・・・(4)
β=(b3/b1)・(X3ave/X1ave) ・・・(5)
γ=(c3/c1)・(Y3ave/Y1ave) ・・・(6)
δ=(d3/d1)・(Z3ave/Z1ave) ・・・(7)That is, the correction coefficients for the explanatory variables V 2 and X 2 to Z 2 in the second estimation formula are α, β, γ, and δ, respectively, and the explanatory variables V 1 and X 1 to used when the first estimation formula was created. mean value of Z 1 to the V 1Ave and X 1ave ~Z 1ave respectively, third mean value of the explanatory variables used when creating the estimated equation V 3 and X 3 to Z 3 each V 3Ave and X 3ave ~Z Assuming that it is 3ave , each correction coefficient α, β, γ, and δ is expressed by the following equations (4) to (7), respectively.
α = (a 3 / a 1 ) ・ (V 3ave / V 1ave ) ・ ・ ・ (4)
β = (b 3 / b 1 ) ・ (X 3ave / X 1ave ) ・ ・ ・ (5)
γ = (c 3 / c 1 ) ・ (Y 3ave / Y 1ave ) ・ ・ ・ (6)
δ = (d 3 / d 1 ) ・ (Z 3ave / Z 1ave ) ・ ・ ・ (7)
なお、本実施形態の補正係数作成工程S4では、第2推定式における定数項e2に対する補正係数も作成する。本実施形態では、第1推定式における定数項e1に対する第3推定式における定数項e3の比を二乗することで、第2推定式における定数項e2に対する補正係数を作成する。
すなわち、第2推定式における定数項e2に対する補正係数をεとすると、補正係数εは、以下の式(8)で表されることになる。
ε=(e3/e1)2 ・・・(8)Incidentally, the correction coefficient producing step S4 in the present embodiment also creates correction factor for the constant term e 2 in the second estimation equation. In the present embodiment, a correction coefficient for the constant term e 2 in the second estimation formula is created by squared the ratio of the constant term e 3 in the third estimation formula to the constant term e 1 in the first estimation formula.
That is, when the correction factor for the constant term e 2 in the second estimation equation to epsilon, the correction factor epsilon will be represented by the following formula (8).
ε = (e 3 / e 1 ) 2 ... (8)
<第4推定式作成工程S5>
第4推定式作成工程S5では、第2推定式における説明変数V2及びX2〜Z2の係数a3〜d3に補正係数α、β、γ、δを加味することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する第4推定式を作成する。なお、本実施形態では、更に第2推定式における定数項e2に対する補正係数εも加味することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する第4推定式を作成する。<Fourth estimation formula creation process S5>
The In 4 estimation formula creation step S5, the correction coefficient in the coefficient a 3 to d 3 of explanatory variables V 2 and X 2 to Z 2 in the second estimation equation α, β, γ, by adding the [delta], usually curved section Create a fourth estimation formula for estimating the outer track derailment coefficient Q / P 4 of the normal carriage 4 in 2. In the present embodiment, the fourth estimation for estimating the outer track derailment coefficient Q / P 4 of the normal carriage 4 in the normal curve section 2 by further adding the correction coefficient ε for the constant term e 2 in the second estimation formula. Create an expression.
具体的には、本実施形態の第4推定式作成工程S5では、第2推定式における説明変数V2及びX2〜Z2の係数a2〜d2に補正係数α、β、γ、δを乗算することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する第4推定式を作成する。また、本実施形態では、第2推定式における定数項e2に補正係数εを乗算することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する第4推定式を作成する。
すなわち、第4推定式は、以下の式(9)で表されることになる。
Q/P4=α・a2・V2+β・b2・X2+γ・c2・Y2+δ・d2・Z2+ε・e2
・・・(9)
以上のようにして作成した第4推定式は記憶され、次の推定工程S6で用いられる。Specifically, in the fourth estimation equation generating step S5 in the present embodiment, the correction coefficient α in the coefficient a 2 to d 2 explanatory variables V 2 and X 2 to Z 2 in the second estimation equation, beta, gamma, [delta] By multiplying by, a fourth estimation formula for estimating the outer track derailment coefficient Q / P 4 of the normal carriage 4 in the normal curve section 2 is created. Further, in the present embodiment, the fourth estimation formula for estimating the outer track derailment coefficient Q / P 4 of the normal carriage 4 in the normal curve section 2 by multiplying the constant term e 2 in the second estimation formula by the correction coefficient ε. To create.
That is, the fourth estimation formula is expressed by the following formula (9).
Q / P 4 = α · a 2 · V 2 + β · b 2 · X 2 + γ · c 2 · Y 2 + δ · d 2 · Z 2 + ε · e 2
... (9)
The fourth estimation formula created as described above is stored and used in the next estimation step S6.
<推定工程S6>
推定工程S6では、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定する。<Estimation process S6>
In the estimation step S6, when the normal carriage 4 travels on the reference curve section 1, the measuring device 11 measures the wheel load P and the lateral pressure Q of the normal carriage 4.
そして、推定工程S6では、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(本実施形態ではX2、Y2、Z2)並びに通常台車4の走行速度V2を第4推定式に入力することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する。Then, in the estimation step S6, at least the predetermined calculated values (X 2 , Y 2 , Z 2 in this embodiment) calculated from the measured wheel load P and the lateral pressure Q and the traveling speed V 2 of the normal carriage 4 are obtained. 4 By inputting to the estimation formula, the outer track derailment coefficient Q / P 4 of the normal bogie 4 in the normal curve section 2 is estimated.
図3A、図3B、図4A、及び図4Bは、式(1)〜(3)及び(9)を用いて推定した外軌脱線係数Q/P1〜Q/P4の推定値と、測定装置11又はモニタリング台車3を用いて測定した外軌脱線係数Q/P1〜Q/P4の測定値とを比較した結果の一例を示す図である。式(1)〜(3)及び(9)の何れの場合も、説明変数X1〜X3として内軌脱線係数を用いた。また、説明変数Y1〜Y3として前側輪軸の左右輪重バランスを用いた。さらに、説明変数Z1〜Z3として後側輪軸の左右輪重バランスを用いた。3A, 3B, 4A, and 4B show the estimated values of the outer gauge derailment coefficients Q / P 1 to Q / P 4 estimated using the equations (1) to (3) and (9), and the measurements. It is a figure which shows an example of the result of having compared with the measured value of the outer rail derailment coefficient Q / P 1 to Q / P 4 measured by using the apparatus 11 or the monitoring carriage 3. In either case the formula (1) to (3) and (9), was used inner軌脱line factor as an explanatory variable X 1 to X 3. In addition, the left and right wheel weight balance of the front wheel set was used as the explanatory variables Y 1 to Y 3 . Further, the left and right wheel weight balance of the rear wheel set was used as the explanatory variables Z 1 to Z 3 .
図3Aは、外軌脱線係数Q/P1の推定値と測定値との比較結果を示す。外軌脱線係数Q/P1の測定値は測定装置11を用いて測定した。図3Bは、外軌脱線係数Q/P2の推定値と測定値との比較結果を示す。外軌脱線係数Q/P2の測定値は測定装置11を用いて測定した。図4Aは、外軌脱線係数Q/P3の推定値と測定値との比較結果を示す。外軌脱線係数Q/P3の測定値はモニタリング台車3を用いて測定した。図4Bは、外軌脱線係数Q/P4の推定値と測定値との比較結果を示す。図4Bに示す結果は、外軌脱線係数Q/P4の推定値を評価するため、通常曲線区間2に測定装置11を仮に設置し、この測定装置11を用いて測定値を測定した。FIG. 3A shows a comparison result between the estimated value and the measured value of the outer rail derailment coefficient Q / P 1 . The measured value of the outer rail derailment coefficient Q / P 1 was measured using the measuring device 11. FIG. 3B shows a comparison result between the estimated value and the measured value of the outer rail derailment coefficient Q / P 2 . The measured value of the outer rail derailment coefficient Q / P 2 was measured using the measuring device 11. FIG. 4A shows a comparison result between the estimated value and the measured value of the outer rail derailment coefficient Q / P 3 . The measured value of the outer track derailment coefficient Q / P 3 was measured using the monitoring carriage 3. FIG. 4B shows a comparison result between the estimated value and the measured value of the outer rail derailment coefficient Q / P 4 . In the result shown in FIG. 4B, in order to evaluate the estimated value of the outer rail derailment coefficient Q / P 4 , the measuring device 11 was tentatively installed in the normal curve section 2, and the measured value was measured using this measuring device 11.
図3A、図3B及び図4Aに示すように、外軌脱線係数Q/P1〜Q/P3は比較的精度良く推定できている。この結果を用いることで、図4Bに示すように、従来は算出できなかった通常曲線区間2を通常台車4が走行する際の外軌脱線係数Q/P4を精度良く推定できることが分かった。As shown in FIGS. 3A, 3B and 4A, the outer rail derailment coefficients Q / P 1 to Q / P 3 can be estimated with relatively high accuracy. By using this result, as shown in FIG. 4B, it was found that the outer track derailment coefficient Q / P 4 when the normal bogie 4 travels on the normal curve section 2 which could not be calculated in the past can be estimated accurately.
<外軌脱線係数推定装置の構成>
図5は、本発明の一実施形態に係る外軌脱線係数推定装置の概略構成を示す模式図である。図5に示すように、本実施形態に係る外軌脱線係数推定装置100は、測定データ記憶部10と、第1推定式作成部12と、第2推定式作成部14と、第3推定式作成部16と、補正係数作成部17と、第4推定式作成部18と、外軌脱線係数推定部20とを備えている。<Configuration of outer rail derailment coefficient estimation device>
FIG. 5 is a schematic diagram showing a schematic configuration of an outer track derailment coefficient estimation device according to an embodiment of the present invention. As shown in FIG. 5, the outer track derailment coefficient estimation device 100 according to the present embodiment includes the measurement data storage unit 10, the first estimation formula creation unit 12, the second estimation formula creation unit 14, and the third estimation formula. It includes a creation unit 16, a correction coefficient creation unit 17, a fourth estimation formula creation unit 18, and an outer track derailment coefficient estimation unit 20.
測定データ記憶部10には、基準曲線区間1をモニタリング台車3が走行する際、測定装置11によってモニタリング台車3の輪重P及び横圧Qを測定する測定を、同じモニタリング台車3について同じ基準曲線区間1で繰り返し行って取得した、輪重P、横圧Q、及び走行速度Vの複数の測定データが記憶されている。 When the monitoring trolley 3 travels on the reference curve section 1, the measurement data storage unit 10 measures the wheel load P and the lateral pressure Q of the monitoring trolley 3 by the measuring device 11, and the same reference curve for the same monitoring trolley 3. A plurality of measurement data of the wheel load P, the lateral pressure Q, and the traveling speed V, which are repeatedly obtained in the section 1, are stored.
また、測定データ記憶部10には、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定する測定を、同じ通常台車4について同じ基準曲線区間1で繰り返し行って取得した、輪重P、横圧Q、及び走行速度Vの複数の測定データが記憶されている。 Further, in the measurement data storage unit 10, when the normal carriage 4 travels on the reference curve section 1, the measurement device 11 measures the wheel load P and the lateral pressure Q of the normal carriage 4 in the same manner for the same normal carriage 4. A plurality of measurement data of the wheel load P, the lateral pressure Q, and the traveling speed V, which are repeatedly acquired in the reference curve section 1, are stored.
また、測定データ記憶部10には、通常曲線区間2をモニタリング台車3が走行する際、モニタリング台車3によってモニタリング台車3の輪重P及び横圧Qを測定する測定を、同じモニタリング台車3について同じ通常曲線区間2で繰り返し行って取得した、輪重P、横圧Q、及び走行速度Vの複数の測定データが記憶されている。 Further, in the measurement data storage unit 10, when the monitoring trolley 3 travels on the normal curve section 2, the measurement for measuring the wheel load P and the lateral pressure Q of the monitoring trolley 3 by the monitoring trolley 3 is the same for the same monitoring trolley 3. A plurality of measurement data of the wheel load P, the lateral pressure Q, and the traveling speed V, which are repeatedly obtained in the normal curve section 2, are stored.
また、測定データ記憶部10には、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定して取得した輪重P、横圧Q、及び走行速度Vの測定データが記憶されている。 Further, in the measurement data storage unit 10, when the normal carriage 4 travels on the reference curve section 1, the wheel load P and the lateral pressure Q obtained by measuring the wheel load P and the lateral pressure Q of the normal carriage 4 by the measuring device 11 are obtained. The measurement data of Q and the traveling speed V are stored.
第1推定式作成部12は、測定データ記憶部10に記憶されている、基準曲線区間1をモニタリング台車3が走行する際、測定装置11によってモニタリング台車3の輪重P及び横圧Qを測定した複数の測定データに基づいて、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P1を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P1は除く)並びにモニタリング台車3の走行速度を説明変数として多変量解析を行うことで、基準曲線区間1におけるモニタリング台車3の外軌脱線係数Q/P1を推定する上記式(1)に示す第1推定式の説明変数の係数と、定数項とを同定し、第1推定式を作成する。When the monitoring trolley 3 travels on the reference curve section 1 stored in the measurement data storage unit 10, the first estimation formula creating unit 12 measures the wheel load P and the lateral pressure Q of the monitoring trolley 3 by the measuring device 11. A predetermined value calculated from at least the measured wheel load P and lateral pressure Q, with the outer rail derailment coefficient Q / P 1 calculated from the measured wheel load P and lateral pressure Q as the objective variable based on the plurality of measured data. By performing multivariate analysis using the calculated value (however, the outer gauge derailment coefficient Q / P 1 is excluded) and the traveling speed of the monitoring carriage 3 as explanatory variables, the outer gauge derailment coefficient Q / of the monitoring carriage 3 in the reference curve section 1 The coefficient of the explanatory variable of the first estimation formula shown in the above formula (1) for estimating P 1 and the constant term are identified, and the first estimation formula is created.
第2推定式作成部14は、測定データ記憶部10に記憶されている、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定した複数の測定データに基づいて、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P2を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P2は除く)並びに通常台車4の走行速度を説明変数として多変量解析を行うことで、基準曲線区間1における通常台車4の外軌脱線係数Q/P2を推定する上記式(2)に示す第2推定式の説明変数の係数と、定数項とを同定し、第2推定式を作成する。The second estimation formula creating unit 14 measures the wheel load P and the lateral pressure Q of the normal trolley 4 by the measuring device 11 when the normal trolley 4 travels on the reference curve section 1 stored in the measurement data storage unit 10. A predetermined value calculated from at least the measured wheel load P and lateral pressure Q, with the outer rail derailment coefficient Q / P 2 calculated from the measured wheel load P and lateral pressure Q as the objective variable based on the plurality of measured data. By performing multivariate analysis using the calculated values (however, the outer gauge derailment coefficient Q / P 2 is excluded) and the traveling speed of the normal carriage 4 as explanatory variables, the outer gauge derailment coefficient Q / of the normal carriage 4 in the reference curve section 1 a coefficient of the second estimated equation of the explanatory variables represented by the above formula (2) estimating the P 2, and a constant term to identify, to create a second estimated equation.
第3推定式作成部16は、測定データ記憶部10に記憶されている、通常曲線区間2をモニタリング台車3が走行する際、モニタリング台車3によってモニタリング台車3の輪重P及び横圧Qを測定した複数の測定データに基づいて、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P3を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P3は除く)並びにモニタリング台車3の走行速度を説明変数として多変量解析を行うことで、通常曲線区間2におけるモニタリング台車3の外軌脱線係数Q/P3を推定する上記式(3)に示す第3推定式の説明変数の係数と、定数項とを同定し、第3推定式を作成する。When the monitoring trolley 3 travels on the normal curve section 2 stored in the measurement data storage unit 10, the third estimation formula creating unit 16 measures the wheel load P and the lateral pressure Q of the monitoring trolley 3 by the monitoring trolley 3. A predetermined value calculated from at least the measured wheel load P and lateral pressure Q, with the outer rail derailment coefficient Q / P 3 calculated from the measured wheel load P and lateral pressure Q as the objective variable based on the plurality of measured data. By performing multivariate analysis using the calculated value (however, the outer gauge derailment coefficient Q / P 3 is excluded) and the traveling speed of the monitoring carriage 3 as explanatory variables, the outer gauge derailment coefficient Q / of the monitoring carriage 3 in the normal curve section 2 a coefficient of the third estimation formula of explanatory variables shown in the equation (3) to estimate P 3, and a constant term to identify, to create a third estimation formula.
補正係数作成部17は、第1推定式における説明変数の係数と、第3推定式における説明変数の係数と、第1推定式を作成したときに用いた説明変数の複数のデータと、第3推定式を作成したときに用いた説明変数の複数のデータとに基づき、第2推定式における説明変数に対する各補正係数を、上記式(4)〜(7)に従って作成する。 The correction coefficient creation unit 17 includes the coefficients of the explanatory variables in the first estimation formula, the coefficients of the explanatory variables in the third estimation formula, a plurality of data of the explanatory variables used when the first estimation formula was created, and a third. Based on the plurality of data of the explanatory variables used when the estimation formula was created, each correction coefficient for the explanatory variable in the second estimation formula is created according to the above equations (4) to (7).
また、補正係数作成部17は、第1推定式における定数項に対する第3推定式における定数項の比に基づいて、上記式(8)に従って、第2推定式における定数項に対する補正係数を作成する。 Further, the correction coefficient creating unit 17 creates a correction coefficient for the constant term in the second estimation formula according to the above equation (8) based on the ratio of the constant term in the third estimation formula to the constant term in the first estimation formula. ..
第4推定式作成部18は、第2推定式における説明変数の係数及び定数項に各補正係数を加味することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する上記式(9)に示す第4推定式を作成する。The fourth estimation formula creation unit 18 estimates the outer gauge derailment coefficient Q / P 4 of the normal carriage 4 in the normal curve section 2 by adding each correction coefficient to the coefficient and the constant term of the explanatory variable in the second estimation formula. The fourth estimation formula shown in the above formula (9) is created.
外軌脱線係数推定部20は、測定データ記憶部10に記憶されている、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定した測定データに基づいて、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(本実施形態ではX2、Y2、Z2)並びに通常台車4の走行速度V2を上記式(9)に示す第4推定式に入力することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する。The outer track derailment coefficient estimation unit 20 measures the wheel load P and lateral pressure Q of the normal trolley 4 by the measuring device 11 when the normal trolley 4 travels on the reference curve section 1 stored in the measurement data storage unit 10. Based on the measured data, at least the predetermined calculated values (X 2 , Y 2 , Z 2 in this embodiment) calculated from the measured wheel load P and lateral pressure Q and the traveling speed V 2 of the normal carriage 4 are calculated as described above. By inputting to the fourth estimation formula shown in the formula (9), the outer track derailment coefficient Q / P 4 of the normal carriage 4 in the normal curve section 2 is estimated.
外軌脱線係数推定装置100は、一例として、図6に示すコンピュータ64によって実現される。コンピュータ64は、CPU66、メモリ68、外軌脱線係数推定プログラム76を記憶した記憶部70、モニタを含む表示部26、及びキーボードやマウスを含む入力部28を含んでいる。CPU66、メモリ68、記憶部70、表示部26、及び入力部28はバス74を介して互いに接続されている。 The outer track derailment coefficient estimation device 100 is realized by the computer 64 shown in FIG. 6 as an example. The computer 64 includes a CPU 66, a memory 68, a storage unit 70 that stores the outer track derailment coefficient estimation program 76, a display unit 26 that includes a monitor, and an input unit 28 that includes a keyboard and a mouse. The CPU 66, the memory 68, the storage unit 70, the display unit 26, and the input unit 28 are connected to each other via the bus 74.
記憶部70はHDD、SSD、フラッシュメモリ等によって実現される。記憶部70には、コンピュータ64を外軌脱線係数推定装置100として機能させるための外軌脱線係数推定プログラム76が記憶されている。CPU66は、外軌脱線係数推定プログラム76を記憶部70から読み出してメモリ68に展開し、外軌脱線係数推定プログラム76を実行する。なお、外軌脱線係数推定プログラム76をコンピュータ可読媒体に格納して提供してもよい。 The storage unit 70 is realized by an HDD, SSD, flash memory, or the like. The storage unit 70 stores an external gauge derailment coefficient estimation program 76 for causing the computer 64 to function as the external gauge derailment coefficient estimation device 100. The CPU 66 reads the outer track derailment coefficient estimation program 76 from the storage unit 70, expands the memory 68, and executes the outer track derailment coefficient estimation program 76. The outer track derailment coefficient estimation program 76 may be stored in a computer-readable medium and provided.
<外軌脱線係数推定装置の作用>
まず、オペレータが、基準曲線区間1をモニタリング台車3が走行する際、測定装置11によってモニタリング台車3の輪重P及び横圧Qを測定した複数の測定データ、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定した複数の測定データ、通常曲線区間2をモニタリング台車3が走行する際、モニタリング台車3によってモニタリング台車3の輪重P及び横圧Qを測定した測定データ、並びに基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定して測定データを、外軌脱線係数推定装置100に入力する。そして、オペレータが、外軌脱線係数推定処理の開始を指示する等の操作を行ったことを契機として外軌脱線係数推定装置100で外軌脱線係数推定処理が実行される。上記図2を参照して、外軌脱線係数推定処理を説明する。なお、外軌脱線係数推定処理の流れを示すフローが、上記図2の外軌脱線係数の推定方法の概略手順を示すフローと同様であるため、同一符号を付して説明する。<Operation of outer rail derailment coefficient estimation device>
First, when the monitoring trolley 3 travels on the reference curve section 1, the operator measures a plurality of measurement data in which the wheel load P and the lateral pressure Q of the monitoring trolley 3 are measured by the measuring device 11, and the reference curve section 1 is subjected to the normal trolley 4. When the monitoring trolley 3 travels on a plurality of measurement data obtained by measuring the wheel load P and the lateral pressure Q of the normal trolley 4 by the measuring device 11 and the normal curve section 2, the wheel load of the monitoring trolley 3 is measured by the monitoring trolley 3. Measurement data that measures P and lateral pressure Q, and when the normal trolley 4 travels on the reference curve section 1, the measuring device 11 measures the wheel load P and lateral pressure Q of the normal trolley 4, and the measurement data is used as the outer track. Input to the derailment coefficient estimation device 100. Then, the outer rail derailment coefficient estimation process is executed by the outer rail derailment coefficient estimation device 100 when the operator performs an operation such as instructing the start of the outer rail derailment coefficient estimation process. The outer track derailment coefficient estimation process will be described with reference to FIG. Since the flow showing the flow of the outer gauge derailment coefficient estimation process is the same as the flow showing the general procedure of the method of estimating the outer gauge derailment coefficient in FIG. 2, the same reference numerals will be given.
外軌脱線係数推定処理のステップS1において、第1推定式作成部12は、測定データ記憶部10に記憶されている、基準曲線区間1をモニタリング台車3が走行する際、測定装置11によってモニタリング台車3の輪重P及び横圧Qを測定した複数の測定データに基づいて、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P1を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P1は除く)並びにモニタリング台車3の走行速度を説明変数として多変量解析を行うことで、基準曲線区間1におけるモニタリング台車3の外軌脱線係数Q/P1を推定する上記式(1)に示す第1推定式の説明変数の係数と、定数項とを同定し、第1推定式を作成する。In step S1 of the outer gauge derailment coefficient estimation process, the first estimation formula creating unit 12 uses the measuring device 11 to monitor the monitoring trolley when the monitoring trolley 3 travels on the reference curve section 1 stored in the measurement data storage unit 10. Based on a plurality of measurement data obtained by measuring the wheel load P and the lateral pressure Q of 3, the outer gauge derailment coefficient Q / P 1 calculated from the measured wheel load P and the lateral pressure Q is set as the objective variable, and at least the measured wheel load is used. The reference curve section 1 is performed by performing multivariate analysis using the predetermined calculated values calculated from P and the lateral pressure Q (however, excluding the outer rail derailment coefficient Q / P 1 ) and the traveling speed of the monitoring carriage 3 as explanatory variables. The coefficient of the explanatory variable of the first estimation formula shown in the above formula (1) for estimating the outer track derailment coefficient Q / P 1 of the monitoring carriage 3 in the above equation (1) and the constant term are identified, and the first estimation formula is created.
ステップS2において、第2推定式作成部14は、測定データ記憶部10に記憶されている、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定した複数の測定データに基づいて、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P2を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P2は除く)並びに通常台車4の走行速度を説明変数として多変量解析を行うことで、基準曲線区間1における通常台車4の外軌脱線係数Q/P2を推定する上記式(2)に示す第2推定式の説明変数の係数と、定数項とを同定し、第2推定式を作成する。In step S2, when the normal trolley 4 travels on the reference curve section 1 stored in the measurement data storage unit 10, the second estimation formula creating unit 14 uses the measuring device 11 to increase the wheel load P of the normal trolley 4 and laterally. Calculated from at least the measured wheel load P and lateral pressure Q, with the outer rail derailment coefficient Q / P 2 calculated from the measured wheel load P and lateral pressure Q as the objective variable based on the plurality of measurement data for which the pressure Q was measured. By performing multivariate analysis using the predetermined calculated value (however, the outer gauge derailment coefficient Q / P 2 is excluded) and the traveling speed of the normal trolley 4 as explanatory variables, the outer gauge of the normal trolley 4 in the reference curve section 1 is performed. The coefficient of the explanatory variable of the second estimation formula shown in the above equation (2) for estimating the derailment coefficient Q / P 2 and the constant term are identified, and the second estimation formula is created.
ステップS3において、第3推定式作成部16は、測定データ記憶部10に記憶されている、通常曲線区間2をモニタリング台車3が走行する際、モニタリング台車3によってモニタリング台車3の輪重P及び横圧Qを測定した複数の測定データに基づいて、測定した輪重P及び横圧Qから演算した外軌脱線係数Q/P3を目的変数とし、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(ただし、外軌脱線係数Q/P3は除く)並びにモニタリング台車3の走行速度を説明変数として多変量解析を行うことで、通常曲線区間2におけるモニタリング台車3の外軌脱線係数Q/P3を推定する上記式(3)に示す第3推定式の説明変数の係数と、定数項とを同定し、第3推定式を作成する。In step S3, when the monitoring trolley 3 travels on the normal curve section 2 stored in the measurement data storage unit 10, the third estimation formula creating unit 16 causes the monitoring trolley 3 to load the wheels P and laterally of the monitoring trolley 3. Calculated from at least the measured wheel load P and lateral pressure Q, with the outer rail derailment coefficient Q / P 3 calculated from the measured wheel load P and lateral pressure Q as the objective variable based on the plurality of measurement data for which the pressure Q was measured. By performing multivariate analysis using the predetermined calculated value (however, the outer gauge derailment coefficient Q / P 3 is excluded) and the traveling speed of the monitoring carriage 3 as explanatory variables, the outer gauge of the monitoring carriage 3 in the normal curve section 2 is performed. The coefficient of the explanatory variable of the third estimation formula shown in the above equation (3) for estimating the derailment coefficient Q / P 3 and the constant term are identified, and the third estimation formula is created.
ステップS4において、補正係数作成部17は、第1推定式における説明変数の係数と、第3推定式における説明変数の係数と、第1推定式を作成したときに用いた説明変数の複数のデータと、第3推定式を作成したときに用いた説明変数の複数のデータとに基づき、第2推定式における説明変数に対する各補正係数を、上記式(4)〜(7)に従って作成する。 In step S4, the correction coefficient creating unit 17 includes the coefficients of the explanatory variables in the first estimation formula, the coefficients of the explanatory variables in the third estimation formula, and a plurality of data of the explanatory variables used when the first estimation formula is created. And, based on the plurality of data of the explanatory variables used when the third estimation formula was created, each correction coefficient for the explanatory variable in the second estimation formula is created according to the above equations (4) to (7).
また、補正係数作成部17は、第1推定式における定数項に対する第3推定式における定数項の比に基づいて、上記式(8)に従って、第2推定式における定数項に対する補正係数を作成する。 Further, the correction coefficient creating unit 17 creates a correction coefficient for the constant term in the second estimation formula according to the above equation (8) based on the ratio of the constant term in the third estimation formula to the constant term in the first estimation formula. ..
ステップS5において、第4推定式作成部18は、第2推定式における説明変数の係数及び定数項に各補正係数を加味することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する上記式(9)に示す第4推定式を作成する。In step S5, the fourth estimation formula creation unit 18 adds each correction coefficient to the coefficient and the constant term of the explanatory variable in the second estimation formula, so that the outer gauge derailment coefficient Q / of the normal carriage 4 in the normal curve section 2 creating a fourth estimation equation shown in the equation (9) for estimating the P 4.
ステップS6において、外軌脱線係数推定部20は、測定データ記憶部10に記憶されている、基準曲線区間1を通常台車4が走行する際、測定装置11によって通常台車4の輪重P及び横圧Qを測定した測定データに基づいて、少なくとも測定した輪重P及び横圧Qから演算される所定の演算値(本実施形態ではX2、Y2、Z2)並びに通常台車4の走行速度V2を上記式(9)に示す第4推定式に入力することで、通常曲線区間2における通常台車4の外軌脱線係数Q/P4を推定する。In step S6, when the normal bogie 4 travels on the reference curve section 1 stored in the measurement data storage unit 10, the outer rail derailment coefficient estimation unit 20 uses the measuring device 11 to measure the wheel load P and the lateral direction of the normal bogie 4. Based on the measured data obtained by measuring the pressure Q, at least the predetermined calculated values (X 2 , Y 2 , Z 2 in this embodiment) calculated from the measured wheel load P and the lateral pressure Q, and the traveling speed of the normal bogie 4. By inputting V 2 into the fourth estimation formula shown in the above formula (9), the outer track derailment coefficient Q / P 4 of the normal bogie 4 in the normal curve section 2 is estimated.
以上説明したように、本実施形態に係る外軌脱線係数推定装置100によれば、通常曲線区間(輪重及び横圧を測定可能な測定装置が設置されていない曲線区間)における通常台車(輪重及び横圧を測定不能な台車)の脱線係数を推定可能である。 As described above, according to the outer rail derailment coefficient estimation device 100 according to the present embodiment, the normal trolley (wheel) in the normal curve section (the curve section in which the measuring device capable of measuring the wheel load and the lateral pressure is not installed). It is possible to estimate the derailment coefficient of a dolly whose weight and lateral pressure cannot be measured.
日本出願2018−011509の開示はその全体が参照により本明細書に取り込まれる。 The entire disclosure of Japanese application 2018-011509 is incorporated herein by reference in its entirety.
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
以上の実施形態に関し、更に以下の付記を開示する。 The following additional notes will be further disclosed with respect to the above embodiments.
(付記1)
鉄道車両が備える台車が軌道の曲線区間を走行する際の脱線係数を推定する方法であって、
輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成する第1推定式作成工程と、
前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成する第2推定式作成工程と、
輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成する第3推定式作成工程と、
前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成する補正係数作成工程と、
前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成する第4推定式作成工程と、
前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定し、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する推定工程と、
を含むことを特徴とする脱線係数の推定方法。
(付記2)
前記補正係数作成工程において、前記第1推定式における前記説明変数の係数に対する前記第3推定式における前記説明変数の係数の比と、前記第1推定式を作成したときに用いた前記説明変数の平均値に対する前記第3推定式を作成したときに用いた前記説明変数の平均値の比とを乗算することで、前記第2推定式における前記説明変数に対する前記補正係数を作成し、
前記第4推定式作成工程において、前記第2推定式における前記説明変数の係数に前記補正係数を乗算することで、前記通常曲線区間における前記通常台車の脱線係数を推定する前記第4推定式を作成する、
ことを特徴とする付記1に記載の脱線係数の推定方法。
(付記3)
前記演算値として、内軌脱線係数、前側輪軸の左右輪重バランス及び後側輪軸の左右輪重バランスのうち、少なくとも1つが用いられる、
ことを特徴とする付記1又は2に記載の脱線係数の推定方法。
(付記4)
前記第1推定式、前記第2推定式、前記第3推定式及び前記第4推定式は、前記説明変数の1次多項式である、
ことを特徴とする付記1から3の何れかに記載の脱線係数の推定方法。
(付記5)
前記脱線係数は、外軌側車輪の脱線係数である、
ことを特徴とする付記1から4の何れかに記載の脱線係数の推定方法。
(付記6)
鉄道車両が備える台車が軌道の曲線区間を走行する際の脱線係数を推定する装置であって、
輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成する第1推定式作成部と、
前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成する第2推定式作成部と、
輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成する第3推定式作成部と、
前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成する補正係数作成部と、
前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成する第4推定式作成部と、
前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する推定部と、
を含むことを特徴とする脱線係数推定装置。
(付記7)
前記補正係数作成部は、前記第1推定式における前記説明変数の係数に対する前記第3推定式における前記説明変数の係数の比と、前記第1推定式を作成したときに用いた前記説明変数の平均値に対する前記第3推定式を作成したときに用いた前記説明変数の平均値の比とを乗算することで、前記第2推定式における前記説明変数に対する前記補正係数を作成し、
前記第4推定式作成部は、前記第2推定式における前記説明変数の係数に前記補正係数を乗算することで、前記通常曲線区間における前記通常台車の脱線係数を推定する前記第4推定式を作成する、
ことを特徴とする付記6に記載の脱線係数推定装置。
(付記8)
前記演算値として、内軌脱線係数、前側輪軸の左右輪重バランス及び後側輪軸の左右輪重バランスのうち、少なくとも1つが用いられる、
ことを特徴とする付記6又は7に記載の脱線係数推定装置。
(付記9)
前記第1推定式、前記第2推定式、前記第3推定式及び前記第4推定式は、前記説明変数の1次多項式である、
ことを特徴とする付記6から8の何れかに記載の脱線係数推定装置。
(付記10)
前記脱線係数は、外軌側車輪の脱線係数である、
ことを特徴とする付記6から9の何れかに記載の脱線係数推定装置。
(付記11)
鉄道車両が備える台車が軌道の曲線区間を走行する際の脱線係数を推定するプログラムであって、
コンピュータに、
輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成し、
前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成し、
輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成し、
前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成し、
前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成し、
前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する
ことを実行させるためのプログラム。
(付記12)
前記補正係数を作成することでは、前記第1推定式における前記説明変数の係数に対する前記第3推定式における前記説明変数の係数の比と、前記第1推定式を作成したときに用いた前記説明変数の平均値に対する前記第3推定式を作成したときに用いた前記説明変数の平均値の比とを乗算することで、前記第2推定式における前記説明変数に対する前記補正係数を作成し、
前記第4推定式を作成することでは、前記第2推定式における前記説明変数の係数に前記補正係数を乗算することで、前記通常曲線区間における前記通常台車の脱線係数を推定する前記第4推定式を作成する、
ことを特徴とする付記12に記載のプログラム。
(付記13)
前記演算値として、内軌脱線係数、前側輪軸の左右輪重バランス及び後側輪軸の左右輪重バランスのうち、少なくとも1つが用いられる、
ことを特徴とする付記11又は12に記載のプログラム。
(付記14)
前記第1推定式、前記第2推定式、前記第3推定式及び前記第4推定式は、前記説明変数の1次多項式である、
ことを特徴とする付記11から13の何れかに記載のプログラム。
(付記15)
前記脱線係数は、外軌側車輪の脱線係数である、
ことを特徴とする付記11から14の何れかに記載のプログラム。
(付記16)
鉄道車両が備える台車が軌道の曲線区間を走行する際の脱線係数を推定するプログラムであって、
コンピュータに、
輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成し、
前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成し、
輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成し、
前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成し、
前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成し、
前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する
ことを実行させるためのプログラムを記憶したコンピュータ可読媒体。(Appendix 1)
It is a method of estimating the derailment coefficient when the bogie of a railroad vehicle travels on a curved section of a track.
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of a track on which a measuring device capable of measuring wheel load and lateral pressure is installed, the measuring device is used to measure the wheel load and lateral pressure of the monitoring trolley. The pressure is measured, the derailment coefficient calculated from the measured wheel load and lateral pressure is used as the objective variable, and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the monitoring trolley are explanatory variables. The first estimation formula creation step of creating the first estimation formula for estimating the derailment coefficient of the monitoring trolley in the reference curve section by performing the multivariate analysis as
When a normal bogie whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the wheel load and lateral pressure of the normal bogie are measured by the measuring device, and derailment calculated from the measured wheel load and lateral pressure. By performing multivariate analysis with the coefficient as the objective variable and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal bogie as explanatory variables, the normal bogie in the reference curve section is performed. The second estimation formula creation process for creating the second estimation formula for estimating the derailment coefficient of
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which a measuring device capable of measuring wheel load and lateral pressure is not installed, the monitoring trolley uses the monitoring trolley to measure the wheel load and lateral pressure of the monitoring trolley. The lateral pressure is measured, and the derailment coefficient calculated from the measured wheel load and the lateral pressure is used as an objective variable, and at least a predetermined calculated value calculated from the measured wheel load and the lateral pressure and the traveling speed of the monitoring carriage are described. A third estimation formula creation step for creating a third estimation formula for estimating the derailment coefficient of the monitoring carriage in the normal curve section by performing multivariate analysis as a variable.
The coefficient of the explanatory variable in the first estimation formula, the coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the third estimation formula. A correction coefficient creation step for creating a correction coefficient for the explanatory variable in the second estimation formula based on the value of the explanatory variable used when the above was created.
A fourth estimation formula creation step for creating a fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section by adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula.
When the normal carriage travels on the reference curve section, the wheel load and lateral pressure of the normal carriage are measured by the measuring device, and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the normal An estimation step of estimating the derailment coefficient of the normal trolley in the normal curve section by inputting the traveling speed of the trolley into the fourth estimation formula, and
A method for estimating a derailment coefficient, which comprises.
(Appendix 2)
In the correction coefficient creating step, the ratio of the coefficient of the explanatory variable in the third estimation formula to the coefficient of the explanatory variable in the first estimation formula and the explanatory variable used when the first estimation formula was created By multiplying the ratio of the average value of the explanatory variables used when the third estimation formula was created to the average value, the correction coefficient for the explanatory variables in the second estimation formula was created.
In the fourth estimation formula creation step, the fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section by multiplying the coefficient of the explanatory variable in the second estimation formula by the correction coefficient. create,
The method for estimating the derailment coefficient according to Appendix 1, wherein the derailment coefficient is estimated.
(Appendix 3)
As the calculated value, at least one of the inner rail derailment coefficient, the left-right wheel weight balance of the front wheel set, and the left-right wheel set balance of the rear wheel set is used.
The method for estimating the derailment coefficient according to Appendix 1 or 2, wherein the derailment coefficient is estimated.
(Appendix 4)
The first estimation formula, the second estimation formula, the third estimation formula, and the fourth estimation formula are linear polynomials of the explanatory variables.
The method for estimating the derailment coefficient according to any one of Supplementary Provisions 1 to 3, wherein the derailment coefficient is estimated.
(Appendix 5)
The derailment coefficient is a derailment coefficient of the outer rail side wheel.
The method for estimating the derailment coefficient according to any one of Supplementary notes 1 to 4, wherein the derailment coefficient is estimated.
(Appendix 6)
It is a device that estimates the derailment coefficient when the bogie of a railroad vehicle travels on a curved section of a track.
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of a track on which a measuring device capable of measuring wheel load and lateral pressure is installed, the measuring device is used to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the running of the monitoring trolley. A first estimation formula creation unit that creates a first estimation formula that estimates the derailment coefficient of the monitoring trolley in the reference curve section by performing multivariate analysis using speed as an explanatory variable.
When a normal trolley whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the measured wheel load and lateral pressure are input by inputting the result of measuring the wheel load and lateral pressure of the normal trolley by the measuring device. The reference curve section is performed by performing multivariate analysis using the derailment coefficient calculated from the above as the objective variable and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal trolley as explanatory variables. A second estimation formula creation unit that creates a second estimation formula for estimating the derailment coefficient of the normal trolley in
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which a measuring device capable of measuring wheel load and lateral pressure is not installed, the monitoring trolley uses the monitoring trolley to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the lateral pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the monitoring carriage. A third estimation formula creation unit that creates a third estimation formula that estimates the derailment coefficient of the monitoring trolley in the normal curve section by performing multivariate analysis using the traveling speed as an explanatory variable.
The coefficient of the explanatory variable in the first estimation formula, the coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the third estimation formula. A correction coefficient creating unit that creates a correction coefficient for the explanatory variable in the second estimation formula based on the value of the explanatory variable used when the above was created.
A fourth estimation formula creation unit that creates a fourth estimation formula that estimates the derailment coefficient of the normal carriage in the normal curve section by adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula.
When the normal trolley travels on the reference curve section, a predetermined calculation calculated from at least the measured wheel weight and lateral pressure by inputting the result of measuring the wheel load and lateral pressure of the normal trolley by the measuring device. An estimation unit that estimates the derailment coefficient of the normal trolley in the normal curve section by inputting the value and the traveling speed of the normal trolley into the fourth estimation formula.
A derailment coefficient estimator comprising.
(Appendix 7)
The correction coefficient creating unit determines the ratio of the coefficient of the explanatory variable in the third estimation formula to the coefficient of the explanatory variable in the first estimation formula, and the explanatory variable used when the first estimation formula is created. By multiplying the ratio of the average value of the explanatory variables used when the third estimation formula was created to the average value, the correction coefficient for the explanatory variables in the second estimation formula was created.
The fourth estimation formula creation unit calculates the fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section by multiplying the coefficient of the explanatory variable in the second estimation formula by the correction coefficient. create,
The derailment coefficient estimation device according to Appendix 6, wherein the derailment coefficient is estimated.
(Appendix 8)
As the calculated value, at least one of the inner rail derailment coefficient, the left-right wheel weight balance of the front wheel set, and the left-right wheel set balance of the rear wheel set is used.
The derailment coefficient estimation device according to Appendix 6 or 7, characterized in that.
(Appendix 9)
The first estimation formula, the second estimation formula, the third estimation formula, and the fourth estimation formula are linear polynomials of the explanatory variables.
The derailment coefficient estimation device according to any one of Supplementary Provisions 6 to 8, characterized in that.
(Appendix 10)
The derailment coefficient is a derailment coefficient of the outer rail side wheel.
The derailment coefficient estimation device according to any one of Supplementary note 6 to 9, wherein the derailment coefficient estimation device is characterized.
(Appendix 11)
It is a program that estimates the derailment coefficient when the bogie of a railroad vehicle travels on a curved section of a track.
On the computer
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of a track on which a measuring device capable of measuring wheel load and lateral pressure is installed, the measuring device is used to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the running of the monitoring trolley. By performing multivariate analysis with speed as the explanatory variable, the first estimation formula for estimating the derailment coefficient of the monitoring carriage in the reference curve section was created.
When a normal bogie whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the measured wheel load and lateral pressure are input by inputting the result of measuring the wheel load and lateral pressure of the normal bogie by the measuring device. The reference curve section is performed by performing multivariate analysis using the derailment coefficient calculated from the above as the objective variable and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal bogie as explanatory variables. A second estimation formula for estimating the derailment coefficient of the normal bogie in
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which a measuring device capable of measuring wheel load and lateral pressure is not installed, the monitoring trolley uses the monitoring trolley to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the lateral pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the monitoring carriage. By performing multivariate analysis using the traveling speed as an explanatory variable, a third estimation formula for estimating the derailment coefficient of the monitoring carriage in the normal curve section was created.
The coefficient of the explanatory variable in the first estimation formula, the coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the third estimation formula. Based on the value of the explanatory variable used when the above was created, a correction coefficient for the explanatory variable in the second estimation formula was created.
By adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula, a fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section is created.
When the normal trolley travels on the reference curve section, a predetermined calculation calculated from at least the measured wheel weight and lateral pressure by inputting the result of measuring the wheel load and lateral pressure of the normal trolley by the measuring device. A program for estimating the derailment coefficient of the normal trolley in the normal curve section by inputting a value and a traveling speed of the normal trolley into the fourth estimation formula.
(Appendix 12)
By creating the correction coefficient, the ratio of the coefficient of the explanatory variable in the third estimation formula to the coefficient of the explanatory variable in the first estimation formula and the description used when the first estimation formula was created. By multiplying the ratio of the average value of the explanatory variables used when the third estimation formula was created to the average value of the variables, the correction coefficient for the explanatory variables in the second estimation formula was created.
In creating the fourth estimation formula, the fourth estimation estimates the derailment coefficient of the normal carriage in the normal curve section by multiplying the coefficient of the explanatory variable in the second estimation formula by the correction coefficient. Create an expression,
The program according to Appendix 12, characterized in that.
(Appendix 13)
As the calculated value, at least one of the inner rail derailment coefficient, the left-right wheel weight balance of the front wheel set, and the left-right wheel set balance of the rear wheel set is used.
The program according to Appendix 11 or 12, characterized in that.
(Appendix 14)
The first estimation formula, the second estimation formula, the third estimation formula, and the fourth estimation formula are linear polynomials of the explanatory variables.
The program according to any one of Supplementary Provisions 11 to 13, characterized in that.
(Appendix 15)
The derailment coefficient is a derailment coefficient of the outer rail side wheel.
The program according to any one of Supplementary note 11 to 14, characterized in that.
(Appendix 16)
It is a program that estimates the derailment coefficient when the bogie of a railroad vehicle travels on a curved section of a track.
On the computer
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of a track on which a measuring device capable of measuring wheel load and lateral pressure is installed, the measuring device is used to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the running of the monitoring trolley. By performing multivariate analysis with speed as the explanatory variable, the first estimation formula for estimating the derailment coefficient of the monitoring carriage in the reference curve section was created.
When a normal bogie whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the measured wheel load and lateral pressure are input by inputting the result of measuring the wheel load and lateral pressure of the normal bogie by the measuring device. The reference curve section is performed by performing multivariate analysis using the derailment coefficient calculated from the above as the objective variable and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal bogie as explanatory variables. A second estimation formula for estimating the derailment coefficient of the normal bogie in
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which a measuring device capable of measuring wheel load and lateral pressure is not installed, the monitoring trolley uses the monitoring trolley to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the lateral pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the monitoring carriage. By performing multivariate analysis using the traveling speed as an explanatory variable, a third estimation formula for estimating the derailment coefficient of the monitoring carriage in the normal curve section was created.
The coefficient of the explanatory variable in the first estimation formula, the coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the third estimation formula. Based on the value of the explanatory variable used when the above was created, a correction coefficient for the explanatory variable in the second estimation formula was created.
By adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula, a fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section is created.
When the normal trolley travels on the reference curve section, a predetermined calculation calculated from at least the measured wheel weight and lateral pressure by inputting the result of measuring the wheel load and lateral pressure of the normal trolley by the measuring device. A computer-readable medium storing a program for estimating the derailment coefficient of the normal trolley in the normal curve section by inputting a value and a traveling speed of the normal trolley into the fourth estimation formula.
Claims (11)
輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成する第1推定式作成工程と、
前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成する第2推定式作成工程と、
輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定し、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成する第3推定式作成工程と、
前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成する補正係数作成工程と、
前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成する第4推定式作成工程と、
前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定し、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する推定工程と、
を含むことを特徴とする脱線係数の推定方法。It is a method of estimating the derailment coefficient when the bogie of a railroad vehicle travels on a curved section of a track.
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of a track on which a measuring device capable of measuring wheel load and lateral pressure is installed, the measuring device is used to measure the wheel load and lateral pressure of the monitoring trolley. The pressure is measured, the derailment coefficient calculated from the measured wheel load and lateral pressure is used as the objective variable, and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the monitoring trolley are explanatory variables. The first estimation formula creation step of creating the first estimation formula for estimating the derailment coefficient of the monitoring trolley in the reference curve section by performing the multivariate analysis as
When a normal bogie whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the wheel load and lateral pressure of the normal bogie are measured by the measuring device, and derailment calculated from the measured wheel load and lateral pressure. By performing multivariate analysis with the coefficient as the objective variable and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal bogie as explanatory variables, the normal bogie in the reference curve section is performed. The second estimation formula creation process for creating the second estimation formula for estimating the derailment coefficient of
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which a measuring device capable of measuring wheel load and lateral pressure is not installed, the monitoring trolley uses the monitoring trolley to measure the wheel load and lateral pressure of the monitoring trolley. The lateral pressure is measured, and the derailment coefficient calculated from the measured wheel load and the lateral pressure is used as an objective variable, and at least a predetermined calculated value calculated from the measured wheel load and the lateral pressure and the traveling speed of the monitoring carriage are described. A third estimation formula creation step for creating a third estimation formula for estimating the derailment coefficient of the monitoring carriage in the normal curve section by performing multivariate analysis as a variable.
The coefficient of the explanatory variable in the first estimation formula, the coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the third estimation formula. A correction coefficient creation step for creating a correction coefficient for the explanatory variable in the second estimation formula based on the value of the explanatory variable used when the above was created.
A fourth estimation formula creation step for creating a fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section by adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula.
When the normal carriage travels on the reference curve section, the wheel load and lateral pressure of the normal carriage are measured by the measuring device, and at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the normal An estimation step of estimating the derailment coefficient of the normal trolley in the normal curve section by inputting the traveling speed of the trolley into the fourth estimation formula, and
A method for estimating a derailment coefficient, which comprises.
前記第4推定式作成工程において、前記第2推定式における前記説明変数の係数に前記補正係数を乗算することで、前記通常曲線区間における前記通常台車の脱線係数を推定する前記第4推定式を作成する、
ことを特徴とする請求項1に記載の脱線係数の推定方法。In the correction coefficient creating step, the ratio of the coefficient of the explanatory variable in the third estimation formula to the coefficient of the explanatory variable in the first estimation formula and the explanatory variable used when the first estimation formula was created By multiplying the ratio of the average value of the explanatory variables used when the third estimation formula was created to the average value, the correction coefficient for the explanatory variables in the second estimation formula was created.
In the fourth estimation formula creation step, the fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section by multiplying the coefficient of the explanatory variable in the second estimation formula by the correction coefficient. create,
The method for estimating a derailment coefficient according to claim 1, wherein the derailment coefficient is estimated.
ことを特徴とする請求項1又は2に記載の脱線係数の推定方法。As the calculated value, at least one of the inner rail derailment coefficient, the left-right wheel weight balance of the front wheel set, and the left-right wheel set balance of the rear wheel set is used.
The method for estimating a derailment coefficient according to claim 1 or 2, wherein the derailment coefficient is estimated.
ことを特徴とする請求項1から3の何れかに記載の脱線係数の推定方法。The first estimation formula, the second estimation formula, the third estimation formula, and the fourth estimation formula are linear polynomials of the explanatory variables.
The method for estimating a derailment coefficient according to any one of claims 1 to 3, wherein the derailment coefficient is estimated.
ことを特徴とする請求項1から4の何れかに記載の脱線係数の推定方法。The derailment coefficient is a derailment coefficient of the outer rail side wheel.
The method for estimating a derailment coefficient according to any one of claims 1 to 4, wherein the derailment coefficient is estimated.
輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成する第1推定式作成部と、
前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成する第2推定式作成部と、
輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成する第3推定式作成部と、
前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成する補正係数作成部と、
前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成する第4推定式作成部と、
前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する推定部と、
を含むことを特徴とする脱線係数推定装置。It is a device that estimates the derailment coefficient when the bogie of a railroad vehicle travels on a curved section of a track.
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of a track on which a measuring device capable of measuring wheel load and lateral pressure is installed, the measuring device is used to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the running of the monitoring trolley. A first estimation formula creation unit that creates a first estimation formula that estimates the derailment coefficient of the monitoring trolley in the reference curve section by performing multivariate analysis using speed as an explanatory variable.
When a normal trolley whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the measured wheel load and lateral pressure are input by inputting the result of measuring the wheel load and lateral pressure of the normal trolley by the measuring device. The reference curve section is performed by performing multivariate analysis using the derailment coefficient calculated from the above as the objective variable and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal trolley as explanatory variables. A second estimation formula creation unit that creates a second estimation formula for estimating the derailment coefficient of the normal trolley in
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which a measuring device capable of measuring wheel load and lateral pressure is not installed, the monitoring trolley uses the monitoring trolley to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the lateral pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the monitoring carriage. A third estimation formula creation unit that creates a third estimation formula that estimates the derailment coefficient of the monitoring trolley in the normal curve section by performing multivariate analysis using the traveling speed as an explanatory variable.
The coefficient of the explanatory variable in the first estimation formula, the coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the third estimation formula. A correction coefficient creating unit that creates a correction coefficient for the explanatory variable in the second estimation formula based on the value of the explanatory variable used when the above was created.
A fourth estimation formula creation unit that creates a fourth estimation formula that estimates the derailment coefficient of the normal carriage in the normal curve section by adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula.
When the normal trolley travels on the reference curve section, a predetermined calculation calculated from at least the measured wheel weight and lateral pressure by inputting the result of measuring the wheel load and lateral pressure of the normal trolley by the measuring device. An estimation unit that estimates the derailment coefficient of the normal trolley in the normal curve section by inputting the value and the traveling speed of the normal trolley into the fourth estimation formula.
A derailment coefficient estimator comprising.
前記第4推定式作成部は、前記第2推定式における前記説明変数の係数に前記補正係数を乗算することで、前記通常曲線区間における前記通常台車の脱線係数を推定する前記第4推定式を作成する、
ことを特徴とする請求項6に記載の脱線係数推定装置。The correction coefficient creating unit determines the ratio of the coefficient of the explanatory variable in the third estimation formula to the coefficient of the explanatory variable in the first estimation formula, and the explanatory variable used when the first estimation formula is created. By multiplying the ratio of the average value of the explanatory variables used when the third estimation formula was created to the average value, the correction coefficient for the explanatory variables in the second estimation formula was created.
The fourth estimation formula creation unit calculates the fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section by multiplying the coefficient of the explanatory variable in the second estimation formula by the correction coefficient. create,
The derailment coefficient estimation device according to claim 6.
ことを特徴とする請求項6又は7に記載の脱線係数推定装置。As the calculated value, at least one of the inner rail derailment coefficient, the left-right wheel weight balance of the front wheel set, and the left-right wheel set balance of the rear wheel set is used.
The derailment coefficient estimation device according to claim 6 or 7.
ことを特徴とする請求項6から8の何れかに記載の脱線係数推定装置。The first estimation formula, the second estimation formula, the third estimation formula, and the fourth estimation formula are linear polynomials of the explanatory variables.
The derailment coefficient estimation device according to any one of claims 6 to 8, wherein the derailment coefficient estimation device is characterized.
ことを特徴とする請求項6から9の何れかに記載の脱線係数推定装置。The derailment coefficient is a derailment coefficient of the outer rail side wheel.
The derailment coefficient estimation device according to any one of claims 6 to 9, wherein the derailment coefficient estimation device is characterized.
コンピュータに、
輪重及び横圧を測定可能な測定装置が設置された軌道の基準曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記測定装置によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記モニタリング台車の脱線係数を推定する第1推定式を作成し、
前記基準曲線区間を輪重及び横圧を測定不能な通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を説明変数として多変量解析を行うことで、前記基準曲線区間における前記通常台車の脱線係数を推定する第2推定式を作成し、
輪重及び横圧を測定可能な測定装置が設置されていない軌道の通常曲線区間を、輪重及び横圧を測定可能なモニタリング台車が走行する際、前記モニタリング台車によって前記モニタリング台車の輪重及び横圧を測定した結果を入力として、前記測定した輪重及び横圧から演算した脱線係数を目的変数とし、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記モニタリング台車の走行速度を説明変数として多変量解析を行うことで、前記通常曲線区間における前記モニタリング台車の脱線係数を推定する第3推定式を作成し、
前記第1推定式における前記説明変数の係数と、前記第3推定式における前記説明変数の係数と、前記第1推定式を作成したときに用いた前記説明変数の値と、前記第3推定式を作成したときに用いた前記説明変数の値とに基づき、前記第2推定式における前記説明変数に対する補正係数を作成し、
前記第2推定式における前記説明変数の係数に前記補正係数を加味することで、前記通常曲線区間における前記通常台車の脱線係数を推定する第4推定式を作成し、
前記基準曲線区間を前記通常台車が走行する際、前記測定装置によって前記通常台車の輪重及び横圧を測定した結果を入力として、少なくとも前記測定した輪重及び横圧から演算される所定の演算値並びに前記通常台車の走行速度を前記第4推定式に入力することで、前記通常曲線区間における前記通常台車の脱線係数を推定する
ことを実行させるためのプログラム。
It is a program that estimates the derailment coefficient when the bogie of a railroad vehicle travels on a curved section of a track.
On the computer
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a reference curve section of a track on which a measuring device capable of measuring wheel load and lateral pressure is installed, the wheel load and lateral pressure of the monitoring trolley are measured by the measuring device. With the result of measuring the pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the running of the monitoring trolley. By performing multivariate analysis with speed as the explanatory variable, the first estimation formula for estimating the derailment coefficient of the monitoring carriage in the reference curve section was created.
When a normal bogie whose wheel load and lateral pressure cannot be measured travels in the reference curve section, the measured wheel load and lateral pressure are input by inputting the result of measuring the wheel load and lateral pressure of the normal bogie by the measuring device. The reference curve section is performed by performing multivariate analysis using the derailment coefficient calculated from the above as the objective variable and at least the predetermined calculated value calculated from the measured wheel load and lateral pressure and the traveling speed of the normal bogie as explanatory variables. A second estimation formula for estimating the derailment coefficient of the normal bogie in
When a monitoring trolley capable of measuring wheel load and lateral pressure travels on a normal curved section of a track on which a measuring device capable of measuring wheel load and lateral pressure is not installed, the monitoring trolley uses the monitoring trolley to measure the wheel load and lateral pressure of the monitoring trolley. With the result of measuring the lateral pressure as an input and the derailment coefficient calculated from the measured wheel load and lateral pressure as the objective variable, at least a predetermined calculated value calculated from the measured wheel load and lateral pressure and the monitoring carriage. By performing multivariate analysis using the traveling speed as an explanatory variable, a third estimation formula for estimating the derailment coefficient of the monitoring carriage in the normal curve section was created.
The coefficient of the explanatory variable in the first estimation formula, the coefficient of the explanatory variable in the third estimation formula, the value of the explanatory variable used when the first estimation formula was created, and the third estimation formula. Based on the value of the explanatory variable used when the above was created, a correction coefficient for the explanatory variable in the second estimation formula was created.
By adding the correction coefficient to the coefficient of the explanatory variable in the second estimation formula, a fourth estimation formula for estimating the derailment coefficient of the normal carriage in the normal curve section is created.
When the normal trolley travels on the reference curve section, a predetermined calculation calculated from at least the measured wheel weight and lateral pressure by inputting the result of measuring the wheel load and lateral pressure of the normal trolley by the measuring device. A program for estimating the derailment coefficient of the normal trolley in the normal curve section by inputting a value and a traveling speed of the normal trolley into the fourth estimation formula.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018011509 | 2018-01-26 | ||
JP2018011509 | 2018-01-26 | ||
PCT/JP2019/001357 WO2019146503A1 (en) | 2018-01-26 | 2019-01-17 | Method, device, and program for estimating derailment coefficient |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019146503A1 true JPWO2019146503A1 (en) | 2021-01-07 |
JP6930609B2 JP6930609B2 (en) | 2021-09-01 |
Family
ID=67395968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019567031A Active JP6930609B2 (en) | 2018-01-26 | 2019-01-17 | Derailment coefficient estimation methods, devices, and programs |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3744608B1 (en) |
JP (1) | JP6930609B2 (en) |
CN (1) | CN111655564B (en) |
ES (1) | ES2980170T3 (en) |
WO (1) | WO2019146503A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10185666A (en) * | 1996-12-25 | 1998-07-14 | Unyusho Senpaku Gijutsu Kenkyusho | Method and device for continuously measuring wheel load and lateral force of rolling stock with ground side measurement |
KR20130013133A (en) * | 2011-07-27 | 2013-02-06 | 서울과학기술대학교 산학협력단 | Prediction methods for derailment of the wheels using the external force acted on the wheelset |
JP2013121774A (en) * | 2011-12-12 | 2013-06-20 | Nippon Steel & Sumitomo Metal Corp | Method for analyzing factor in outer rail derailment coefficient |
JP2014054881A (en) * | 2012-09-11 | 2014-03-27 | Kawasaki Heavy Ind Ltd | Method and device for measuring load, rolling stock comprising device for measuring load, and load control system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2715093B2 (en) * | 1988-04-01 | 1998-02-16 | 株式会社共和電業 | Derailment coefficient measuring device |
JP2007327788A (en) * | 2006-06-06 | 2007-12-20 | Nec San-Ei Instruments Ltd | Wheel load/lateral pressure sensor, measurement method therefor, and wheel load/lateral pressure measuring device and measurement method therefor, and derailment coefficient measuring device and measurement method therefor |
KR100946232B1 (en) * | 2008-06-13 | 2010-03-09 | 한국철도기술연구원 | Apparatus and method for measuring derailment coefficient using vertical displacement and steady-state lateral acceleration |
KR101084157B1 (en) * | 2009-12-24 | 2011-11-16 | 한국철도기술연구원 | Active steering control apparatus for railway vehicles and the method of the same |
CN102567786A (en) * | 2011-12-13 | 2012-07-11 | 北京交通大学 | Method for predicting derailment coefficients |
JP2018011509A (en) | 2017-10-22 | 2018-01-18 | イズオグ,エゼキエルIZUOGU, Ezekiel | Izuogu machine (self-sustaining emagnetodynamics machine) |
-
2019
- 2019-01-17 CN CN201980010217.1A patent/CN111655564B/en active Active
- 2019-01-17 EP EP19743205.7A patent/EP3744608B1/en active Active
- 2019-01-17 ES ES19743205T patent/ES2980170T3/en active Active
- 2019-01-17 WO PCT/JP2019/001357 patent/WO2019146503A1/en unknown
- 2019-01-17 JP JP2019567031A patent/JP6930609B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10185666A (en) * | 1996-12-25 | 1998-07-14 | Unyusho Senpaku Gijutsu Kenkyusho | Method and device for continuously measuring wheel load and lateral force of rolling stock with ground side measurement |
KR20130013133A (en) * | 2011-07-27 | 2013-02-06 | 서울과학기술대학교 산학협력단 | Prediction methods for derailment of the wheels using the external force acted on the wheelset |
JP2013121774A (en) * | 2011-12-12 | 2013-06-20 | Nippon Steel & Sumitomo Metal Corp | Method for analyzing factor in outer rail derailment coefficient |
JP2014054881A (en) * | 2012-09-11 | 2014-03-27 | Kawasaki Heavy Ind Ltd | Method and device for measuring load, rolling stock comprising device for measuring load, and load control system |
Also Published As
Publication number | Publication date |
---|---|
EP3744608A1 (en) | 2020-12-02 |
EP3744608B1 (en) | 2024-05-22 |
JP6930609B2 (en) | 2021-09-01 |
ES2980170T3 (en) | 2024-09-30 |
EP3744608C0 (en) | 2024-05-22 |
CN111655564A (en) | 2020-09-11 |
CN111655564B (en) | 2023-01-17 |
EP3744608A4 (en) | 2021-10-20 |
WO2019146503A1 (en) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6540883B2 (en) | Track state evaluation method, apparatus and program | |
JP6509548B2 (en) | Rail vehicle condition monitoring device | |
JP2006188208A (en) | Friction control device for railway vehicle | |
Muñoz et al. | Estimation of lateral track irregularity through Kalman filtering techniques | |
Muñoz et al. | Estimation of lateral track irregularity using a Kalman filter. Experimental validation | |
CN104598753A (en) | Bridge moving vehicle load recognition method based on Brakhage V method | |
RU2394120C2 (en) | Method to estimate track state | |
WO2019043859A1 (en) | Inspection system, inspection method, and program | |
KR20130032090A (en) | Weigh-in-motion evaluation system and evaluation method | |
Sun et al. | A novel measuring system for high-speed railway vehicles hunting monitoring able to predict wheelset motion and wheel/rail contact characteristics | |
Mosleh et al. | Approaches for weigh-in-motion and wheel defect detection of railway vehicles | |
JP6930609B2 (en) | Derailment coefficient estimation methods, devices, and programs | |
Wang et al. | Numerical simulation of wheel wear evolution for heavy haul railway | |
JP6669600B2 (en) | Railway vehicle condition monitoring system | |
CN113010969A (en) | Calculation and correction method for maximum value of pressure wave of high-speed train entering tunnel | |
JP7017179B2 (en) | Inspection system, inspection method, and program | |
JP6939540B2 (en) | Contact angle estimation system, contact angle estimation method, and program | |
Kraft et al. | Parameter identification of multi-body railway vehicle models–Application of the adjoint state approach | |
JP2013121774A (en) | Method for analyzing factor in outer rail derailment coefficient | |
JP7334138B2 (en) | Displacement Estimation Method for Railway Bridges | |
JP2021131368A (en) | Method for measuring contact position of railroad vehicle's wheel with rail, and railroad vehicle lateral pressure measurement method using the same | |
Bouchama et al. | Observer-based Robust Train Speed Estimation Subject to Wheel-Rail Adhesion Faults | |
CN115900906B (en) | Bridge dynamic weighing method based on strain of measuring point of midspan boundary beam | |
JP7506313B2 (en) | Processing device, processing method, and program | |
JP7560740B2 (en) | Wheelbase measurement system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210726 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6930609 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |