KR20130032090A - Weigh-in-motion evaluation system and evaluation method - Google Patents

Weigh-in-motion evaluation system and evaluation method Download PDF

Info

Publication number
KR20130032090A
KR20130032090A KR1020110095784A KR20110095784A KR20130032090A KR 20130032090 A KR20130032090 A KR 20130032090A KR 1020110095784 A KR1020110095784 A KR 1020110095784A KR 20110095784 A KR20110095784 A KR 20110095784A KR 20130032090 A KR20130032090 A KR 20130032090A
Authority
KR
South Korea
Prior art keywords
vehicle
weight
axis
measured
error rate
Prior art date
Application number
KR1020110095784A
Other languages
Korean (ko)
Other versions
KR101265149B1 (en
Inventor
김종식
오주삼
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR1020110095784A priority Critical patent/KR101265149B1/en
Publication of KR20130032090A publication Critical patent/KR20130032090A/en
Application granted granted Critical
Publication of KR101265149B1 publication Critical patent/KR101265149B1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/02Detecting movement of traffic to be counted or controlled using treadles built into the road
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/03Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing during motion
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PURPOSE: A weigh in motion evaluating system and an evaluating method thereof are provided to minimize data collecting time required for evaluation by making a plurality of axle load estimation formulas. CONSTITUTION: A piezo sensor part(100) comprises two piezo sensors. The two piezo sensors are laid under the ground perpendicularly to the driving direction of a road. A loop sensor part(200) comprises a loop sensor. The loop sensor is laid under the ground between the piezo sensor parts. A calculating part(300) calculates the speed of a driving vehicle, the distance between shafts, the number of shafts, the weight of the shaft, and a vehicle length. [Reference numerals] (AA) Driving direction;

Description

고속축중계평가시스템 및 평가 방법{Weigh-In-Motion Evaluation System and Evaluation Method}High-speed Axis Evaluation System and Evaluation Method {Weigh-In-Motion Evaluation System and Evaluation Method}

본 발명은 고속으로 주행하는 차량의 축중량을 계측하는 고속축중계를 평가하는 시스템 및 평가 방법에 관한 것으로서, 피에조센서부(100)와 루프센서부(200)에서 계측된 신호가 지표차종에 해당할 경우 축별로 계측된 관측 축중량을 축별 축중량 추정식에 대입하여 중량추정 축중량을 산출하고 이를 관측 축중량과 비교하여 오차율을 계산하여 미리 설정된 오차율을 초과하는지 여부를 판단하는 과정을 통하여 고속축중계평가시스템의 재보정 여부를 결정하는 것을 그 내용으로 한다.
The present invention relates to a system and an evaluation method for evaluating a high speed shaft relay for measuring the axial weight of a vehicle traveling at a high speed, wherein the signals measured by the piezo sensor unit 100 and the roof sensor unit 200 correspond to the ground vehicle model. In this case, the estimated axial weight is calculated by substituting the measured axial weight measured for each axis into the axial weight estimation formula for each axis, and compared with the observed axial weight to calculate the error rate to determine whether the preset error rate is exceeded. The determination shall be made as to whether to recalibrate the livestock rating system.

현재 일반도로에서 고속으로 주행하는 축중량을 계측하는데는 통상 차량의 존재 유무를 인식하기 위한 루프(Loop)센서 1개와 차량의 축중량을 계측하고 차량의 속도를 계측하기 위해서 서로 일정거리 이격된 피에조(Piezo)센서를 2개 설치하게 된다. 이러한 센서들은 차로 별로 도로의 표면에 매설하게 된다. 즉, 차로 별로 차량이 진행하면서 피에조센서, 루프센서, 피에조센서를 순차적으로 통과하게 된다. 이때 두 개의 피에조센서의 반응시간을 이용하여 해당 차량의 속도를 산출하고 또한 속도값을 이용하여 차량의 축간거리를 산출하게 된다. 그리고 피에조센서의 신호의 개수는 차량의 축의 개수와 동일하게 검출된다. 이와 같이 계측된 차량 축의 수, 축간거리, 차량길이를 활용하여 차종분류를 실시하게 되고 이러한 차종분류의 정확도는 통상 95%이상으로 매우 높은 편이다. 왜냐하면 국토해양부의 12종 차종분류법에서 화물차량에 속하는 차종인 3종 이상은 차량의 축수, 축간거리에 의하여 결정되고 도로에 매설된 피에조센서의 축감응 신호는 매우 안정화되어 있기 때문이다. In order to measure the axle weight running at high speed on a general road, a loop sensor for recognizing the existence of a vehicle is usually used and a piezo spaced a certain distance from each other to measure the axle weight of the vehicle and to measure the speed of the vehicle. Two Piezo sensors will be installed. These sensors are embedded in the road surface by car. That is, as the vehicle progresses by lane, the piezoelectric sensor, the loop sensor, and the piezoelectric sensor sequentially pass. At this time, the speed of the vehicle is calculated using the response time of the two piezoelectric sensors, and the inter-axle distance of the vehicle is calculated using the speed value. And the number of signals of the piezo sensor is detected equal to the number of axes of the vehicle. The vehicle classification is carried out by utilizing the number of vehicle shafts measured, the distance between the shafts, and the vehicle length, and the accuracy of such vehicle classification is usually very high, more than 95%. This is because, in the 12 kinds of vehicle classification methods of the Ministry of Land, Transport and Maritime Affairs, three or more kinds of vehicles belonging to freight vehicles are determined by the number of vehicles and the distance between the wheels, and the axial response signals of the piezoelectric sensors embedded in the road are very stable.

또한 피에조센서는 압전센서의 한 종류로 차량 축이 누르는 힘, 차량의 속도에 비례하여 전기적인 신호의 크기가 결정되는 특징이 있는데, 화물 물동량을 추정하고 모니터링하기 위해서 이러한 전기적인 신호의 크기를 분석하여 축중량으로 환산하는 고속축중계(WIM, Weigh-In-Motion)가 많이 사용되고 있다. Piezo sensor is a kind of piezoelectric sensor. The size of the electric signal is determined in proportion to the force applied by the vehicle shaft and the speed of the vehicle. The magnitude of the electric signal is analyzed to estimate and monitor the cargo volume. High speed condensation (WIM, Weigh-In-Motion) which converts into axial weight is used.

이러한 고속축중계는 계측의 정확도를 유지하기 위한 보정이 필요한데, 고속축중계의 자동 영점보정에 관한 외국의 사례를 보면 여러 차량 가운데 3S2(국내 10종 세미트레일러)차량의 조향축 중량을 활용하여 자동보정하는 기술이 개발된 사례가 있다. 해당 기술에서 채택하는 3S2차량은 차량 적재량에 상관없이 조향축이 부담하는 축중량의 변동계수[(표준편차/평균) x 100]가 15%로 다른 차종의 축들에 비해서 적다는 특징이 있다. 따라서 3S2 차량을 이용한 고속축중계의 자동 영점보정 방법은 비교적 단순한 방법임에도 불구하고 지속적으로 사용되어 왔는데, 이 방법에서는 통과하는 차량들 가운데서 3S2차량을 찾고 조향축의 기존 평균값과 계측값의 차이가 크게 발생하는 경우 영정보정을 재실시하게 된다. 이러한 단순한 방법의 적용이 가능했던 이유는 화물 물동량 추정을 위한 통계처리 목적으로 수집하는 차량 중량 자료의 요구 정확도가 축중량 정확도 ±20% 그리고 총중량 정확도 ±15% 수준이기 때문이다. 즉, 기존 방법은 오차가 매우 큰 값을 가지는 단점이 있으나 차량 중량 자료의 요구 정확도가 높지 않기 때문에 별 문제 없이 적용이 가능하였던 것이다. These high speed repeaters need correction to maintain the accuracy of the measurement.A foreign case of automatic zero correction of high speed repeaters shows that the automatic steering is made by utilizing the steering shaft weight of the 3S2 (Domestic 10 Semi-Trailer) vehicles among other vehicles. There is an example of a technique for calibrating. The 3S2 vehicle adopted by this technology has a 15% variation in the axle weight ((standard deviation / average) x 100] of the axle weight on the steering shaft regardless of the vehicle load, which is smaller than that of other models. Therefore, the automatic zero compensation method of the high speed shaft relay using the 3S2 vehicle has been used continuously despite the relatively simple method.In this method, the 3S2 vehicle is found among the passing vehicles, and the difference between the existing average value and the measured value of the steering shaft is greatly generated. If you do, you will be re-run. This simple method was possible because the required accuracy of vehicle weight data collected for statistical purposes for freight volume estimation was about 20% axial weight accuracy and ± 15% gross weight accuracy. That is, the conventional method has a disadvantage in that the error has a very large value, but since the required accuracy of the vehicle weight data is not high, it can be applied without any problem.

그러나 최근 고속축중계의 계측결과를 활용하여 과적행위에 대한 과태료 부과를 하고자 하는 경향으로 고속축중계의 자료의 정확도에 대한 요구가 매우 높기 때문에 기존의 단순한 방법을 적용하는 데는 문제가 있다.However, there is a problem in applying the existing simple method because the demand for the accuracy of data of high speed relay is very high because of the tendency to impose a penalty on overload behavior by utilizing the measurement results of high speed relay.

또한 주행하는 차량들 가운데서 3S2 속하는 차량의 구성비가 높지 않은 관계로 영점보정의 필요성을 평가하는데 일정 수량의 3S2 차량이 통과할 때까지 많은 시간이 소요된다는 문제점도 있다.
In addition, since the composition ratio of the vehicle belonging to the 3S2 among the driving vehicles is not high, there is a problem that it takes a long time until a certain number of 3S2 vehicles pass to evaluate the need for zero calibration.

상기한 문제점을 해결하기 위하여 창작된 본 발명은 평가에 필요한 자료수집 시간을 최소화하고 평가의 정확도를 획기적으로 높일 수 있는 새로운 고속축중계 평가시스템 및 평가방법을 제공함을 그 목적으로 한다.
The present invention, which was created to solve the above problems, aims to provide a new high speed relay evaluation system and evaluation method that can minimize the data collection time required for evaluation and significantly increase the accuracy of the evaluation.

상기한 목적을 달성하기 위하여 창작된 본 발명의 기술적 구성은 다음과 같다.Technical composition of the present invention created to achieve the above object is as follows.

본 발명은 도로의 주행방향과 직각으로 나란하게 지면에 매설되는 2개의 피에조센서부(100); 상기 피에조센서부(100) 사이의 지면에 매설되는 루프센서부(200); 및, 상기 피에조센서부(100)와 상기 루프센서부(200)에서 계측된 신호에 따라 주행차량의 속도, 축간거리, 축의 수, 축중량 및 차량길이를 산출하는 연산부(300);를 포함하여 구성되고, 상기 연산부(300)는 각 지표차종별로 축별 축중량 추정식이 미리 입력되고, 상기 피에조센서부(100)와 상기 루프센서부(200)에서 계측된 신호가 지표차종에 해당할 경우 축별로 계측된 관측 축중량을 축별 축중량 추정식에 대입하여 중량추정 축중량을 산출하고 이를 관측 축중량과 비교하여 오차율을 계산하여 미리 설정된 오차율을 초과하는지 여부를 판단한다.The present invention includes two piezo sensor units (100) embedded in the ground parallel to the running direction of the road; A loop sensor unit 200 embedded in the ground between the piezo sensor units 100; And a calculation unit 300 that calculates the speed, the distance between the shafts, the number of shafts, the shaft weight, and the vehicle length of the traveling vehicle according to the signals measured by the piezoelectric sensor unit 100 and the loop sensor unit 200. When the axial weight estimation formula for each axis vehicle is input in advance, and the signals measured by the piezoelectric sensor unit 100 and the loop sensor unit 200 correspond to the index vehicle type, Substituting the measured observed shaft weight into the estimated shaft weight formula for each axis calculates the estimated weight and compares it with the observed shaft weight to calculate the error rate to determine whether the preset error rate is exceeded.

또한 본 발명은 지표차종의 축별 축중량 추정식을 이용하여 고속축중계평가시스템을 평가하는 방법에 관한 것으로서, 지표차종을 선택하여 지표차종의 제원을 입력하는 제1단계; 각 지표차종의 축별 축중량을 계측하여 축별 상관계수를 산출하고 이를 근거로 축별 축중량 추정식을 생성하는 제2단계; 고속축중계평가시스템에서 계측된 주행차량의 제원이 지표차종에 해당할 경우 축별로 계측된 주행차량의 관측 축중량을 축별 축중량 추정식에 대입하여 주행차량의 중량추정 축중량을 산출하는 제3단계; 및, 주행차량의 중량추정 축중량과 주행차량의 관측 축중량을 비교하여 오차율을 계산하여 미리 설정된 오차율을 초과하는지 여부를 판단하고, 계산된 오차율이 미리 설정된 오차율을 초과하는 경우 고속축중계평가시스템의 재보정이 필요한 것으로 판단하는 제4단계;를 포함하여 구성된다.
In addition, the present invention relates to a method for evaluating a high-speed livestock relay evaluation system using the axial weight estimation formula for each of the ground vehicle model, the first step of selecting the ground vehicle model to input the specifications of the ground vehicle model; A second step of calculating an axis-by-axis correlation coefficient by measuring the axis weight of each indicator vehicle for each axis and generating an axis-by-axis estimation equation based on the axis; A third that calculates the weight estimation axial weight of the driving vehicle by substituting the observed axial weight of the traveling vehicle measured for each axis into the axial weight estimation formula when the specification of the traveling vehicle measured by the high speed shaft evaluation system corresponds to the indicator vehicle type; step; And calculating the error rate by comparing the estimated weight weight of the driving vehicle with the observed shaft weight of the driving vehicle to determine whether the preset error rate exceeds the preset error rate, and when the calculated error rate exceeds the preset error rate The fourth step of determining that the recalibration of the need; comprises a.

본 발명의 구성에 따르면 축중량을 추정할 수 있는 축별 축중량 추정식을 다수 지표차종별로 만들어 활용함으로써 평가에 필요한 자료수집 시간을 최소화하고 평가의 정확도를 획기적으로 높일 수 있다.
According to the configuration of the present invention, by making and using the axial weight estimation formula for each axial vehicle for estimating axial weight for each index vehicle type, it is possible to minimize the data collection time required for the evaluation and to significantly increase the accuracy of the evaluation.

도1은 본 발명의 구성요소를 개략적으로 도시한다.
도2는 차종분류 12종 가운데 축과 축 사이의 상관계수가 높은 차종을 예시한다.
도3은 지표차종별 축별 상관계수의 산출 결과를 보여준다.
도4는 각 차종별로 축별 축중량 추정식을 보여준다.
도5는 고속축중계(WIM) 평가 알고리즘을 보여준다.
도6은 계측 자료 누락시 보안 알고리즘을 보여준다.
1 schematically illustrates the components of the present invention.
2 illustrates a vehicle model having a high correlation coefficient between the axis among the 12 vehicle model classifications.
Figure 3 shows the calculation result of the axis-specific correlation coefficient for each indicator vehicle.
4 shows an axial weight estimation formula for each vehicle model.
5 shows a high speed relay (WIM) evaluation algorithm.
6 shows a security algorithm when missing measurement data.

이하에서는 본 발명의 구체적 실시예를 첨부도면을 참조하여 보다 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

도1은 본 발명의 구성요소를 개략적으로 도시한다.1 schematically illustrates the components of the present invention.

피에조센서부(100)는 도로의 주행방향과 직각으로 나란하게 지면에 매설되는 2개의 피에조센서로 이루어진다.Piezo sensor unit 100 is composed of two piezo sensors embedded in the ground parallel to the running direction of the road at right angles.

루프센서부(200)는 피에조센서부(100) 사이의 지면에 매설되는 루프센서로 이루어진다.The loop sensor unit 200 is composed of a loop sensor embedded in the ground between the piezoelectric sensor unit 100.

연산부(300)는 피에조센서부(100)와 루프센서부(200)에서 계측된 신호에 따라 주행차량의 속도, 축간거리, 축의 수, 축중량 및 차량길이를 산출하는 역할을 한다.The calculation unit 300 calculates the speed, the distance between the shafts, the number of shafts, the shaft weight, and the vehicle length of the traveling vehicle according to the signals measured by the piezoelectric sensor unit 100 and the loop sensor unit 200.

이러한 연산부(300)에는 각 지표차종별로 축별 축중량 추정식이 미리 입력된다.The axial weight estimation formula for each axis vehicle is input to the calculator 300 in advance.

연산부(300)는 피에조센서부(100)와 루프센서부(200)에서 계측된 신호가 지표차종에 해당할 경우 축별로 계측된 관측 축중량을 축별 축중량 추정식에 대입하여 중량추정 축중량을 산출하고 이를 관측 축중량과 비교하여 오차율을 계산하여 미리 설정된 오차율을 초과하는지 여부를 판단하게 된다.When the signal measured by the piezoelectric sensor unit 100 and the loop sensor unit 200 corresponds to the indicator vehicle type, the calculating unit 300 substitutes the observed axial weight measured for each axis into the axial weight estimation formula for each axis to calculate the weight estimation axial weight. The error rate is calculated by comparing the weight with the observed shaft weight to determine whether the preset error rate is exceeded.

여기서 지표차종은 국토해양부의 12종 차종분류법에 근거한 차종 가운데 축과 축 사이의 상관계수가 높은 6, 8, 10, 11, 및 12종 차종을 의미하는데, 도2에는 이러한 지표차종의 축수와 차체 및 차축배열, 각 축 사이의 평균 축간거리(축거)가 제시되어 있으며, 도3에는 지표차종별로 축별 상관계수를 산출한 결과가 제시되어 있다.Here, the surface vehicle model refers to 6, 8, 10, 11, and 12 vehicle models with high correlation coefficients between the axis and the axis among the vehicle models based on the 12 kinds of vehicle classification methods of the Ministry of Land, Transport and Maritime Affairs. And the axle arrangement, the average interaxial distance (wheelbase) between each axis is shown, Figure 3 shows the results of calculating the axis-specific correlation coefficient for each vehicle model.

지표차종별로 산출한 축별 상관계수를 보면 6종 차량에서 1축과 2축, 1축과 3축 사이에는 상관계수가 각각 0.86과 0.85로 높은 것을 알 수 있다. 이와 같은 방법으로 분석해 보면 8종 차량의 3축과 4축, 10종 차량의 2축과 3축, 2축과 4축, 2축과 5축 사이에 높은 상관계수를 보이는 것을 알 수 있다. 또한 11종과 12종 차량에서는 2축과 3축에서 12종 차량에서는 4축과 5축 사이에 높은 상관계수를 보임을 알 수 있다.The correlation coefficients by axis calculated by the surface vehicle models show that the correlation coefficients between the 1st and 2nd axis, and the 1st and 3rd axis of the six types of vehicles are as high as 0.86 and 0.85, respectively. In this way, it can be seen that there is a high correlation coefficient between three and four axes of eight vehicles and two and three axes, two and four axes, and two and five axes of ten vehicles. In addition, 11 and 12 vehicles show high correlation coefficient between 4 and 5 axes in 2 and 3 axes.

도4에는 각 차종별로 축별 축중량 추정식을 보여주는데, 이러한 축별 축중량 추정식은 지표차종별로 산출한 축별 상관계수를 참조하여 각 차종별 특정 축에 대한 추정오차를 줄이는 방향으로 생성한다.Figure 4 shows the axial weight estimation formula for each vehicle model, the axial weight estimation formula for each axis is generated in a direction of reducing the estimation error for a specific axis for each vehicle model with reference to the axis-specific correlation coefficient calculated for each indicator vehicle.

도4에 제시한 각 차종별 축중량 산출식의 계수 추정은 기존의 통계학에서 널리 사용되고 있는 최소자승법(Least Squares Estimation), 최우추정법(Maximum Likehood Estimation) 등을 통하여 추정하게 된다.The coefficient estimation of the axial weight calculation formula for each vehicle model shown in FIG. 4 is estimated through a Least Squares Estimation, a Maximum Likehood Estimation, and the like, which are widely used in conventional statistics.

지표차종의 축별 축중량 추정식을 이용하여 고속축중계평가시스템을 평가하는 방법은 도5에 도시된 바와 같다.A method of evaluating the high speed shaft repeating evaluation system using the axial weight estimation formula for each vehicle model is as shown in FIG. 5.

(1) 제1단계(1) Step 1

지표차종을 선택하여 지표차종의 제원을 입력하는 단계이다. 이러한 제원은 별도의 데이터베이스에 저장되는데 지표차종과 함께 일반차종의 제원도 함께 입력하여 The step of inputting the specifications of the indicator vehicle by selecting the indicator vehicle model. These specifications are stored in a separate database. In addition to the surface model, the specifications of the general model are also entered.

(2) 제2단계(2) Step 2

각 지표차종의 축별 축중량을 계측하여 축별 상관계수를 산출하고 이를 근거로 축별 축중량 추정식을 생성하는 단계이다. 이와 같은 축별 상관계수와 축별 축중량 추정식을 생성하기 위해서는 각 지표차종별로 일정량 이상의 정보가 획득되어야만 한다.It is a step of calculating the correlation coefficient for each axis by measuring the axial weight of each index vehicle model and generating an axial weight estimation formula for each axis. In order to generate the correlation coefficient for each axis and the axial weight estimation formula for each axis, more than a certain amount of information must be obtained for each indicator vehicle.

생성된 추정식에 따라 연산부는 이후 절차에서 필요한 연산을 수행하게 된다.According to the generated estimation equation, the calculation unit performs a calculation required in a subsequent procedure.

제1단계와 제2단계는 도5에 별도로 도시되어 있지 않으면 평가절차를 시작하기 위한 전단계(前段階)로 보면 된다.The first stage and the second stage may be regarded as a preliminary stage for starting the evaluation procedure unless otherwise illustrated in FIG. 5.

(3) 제3단계(3) Step 3

현장에 설치된 고속축중계평가시스템을 통하여 주행차량의 제원(차량속도, 차량축수, 축간거리, 차량길이 각 축별중량)을 계측(수집)하고, 계측된 주행차량의 제원을 이용하여 차종을 결정하는데, 계측된 주행차량의 차량축수, 축간거리 및 차량길이를 미리 저장된 차량의 제원과 비교하여 차종을 결정한다.Measure and collect the specifications of the vehicle (vehicle speed, the number of vehicles, the distance between the wheels, the weight of each vehicle length) through the high speed shaft evaluation system installed in the field, and determine the model using the measured specifications of the vehicle. The vehicle model is determined by comparing the measured vehicle axis number, the inter-axle distance, and the vehicle length with the previously stored specifications of the vehicle.

차종이 결정되면 지표차종에 해당하는지 여부를 확인한다.Once the vehicle model has been determined, check whether it is a ground vehicle model.

그리고 지표차종에 해당할 경우 축별로 계측된 주행차량의 관측 축중량(K)을 축별 축중량 추정식에 대입하여 주행차량의 중량추정 축중량(P)을 산출한다.In the case of the ground vehicle type, the estimated axial weight P of the driving vehicle is calculated by substituting the observed axial weight K of the traveling vehicle measured for each axis into the axial weight estimation formula for each axis.

이러한 제3단계에는 차종이 결정된 후 수집된 각 축별중량이 해당 차종의 최소값(Min 값)보다 작을 경우 재보정(Recalibration)이 필요한 것으로 판단하고, 각 축별중량이 해당 차종의 최소값(Min 값) 이상인 경우에만 지표차종에 해당하는지 여부를 확인하는 과정이 더 포함될 수 있다. In this third step, if the weight of each axle collected after the vehicle model is determined is smaller than the minimum value (Min value) of the vehicle, it is determined that recalibration is necessary, and the weight of each axis is equal to or greater than the minimum value (Min value) of the vehicle model. Only in this case, the process of checking whether or not it corresponds to the indicator vehicle may be further included.

아울러 도6에 도시된 바와 같이 제3단계에는 주행차량의 차종이 결정된 후 주행차량의 임의 축에 대한 중량 계측이 누락될 경우 계측된 나머지 주행차량의 관측 축중량을 해당 차종의 임의 축에 대한 축별 축중량 추정식에 대입하여 산출된 값으로 누락된 관측 축중량을 대체하는 과정이 더 포함될 수 있다.In addition, as shown in FIG. 6, in the third step, when the weight measurement of any axis of the driving vehicle is missed after the vehicle model of the driving vehicle is determined, the observed axle weight of the remaining driving vehicle for each axis of the corresponding vehicle model is determined. Substituting the missing axial weight with a value calculated by substituting the axial weight estimation formula may be further included.

예를 들어 주행차량의 차종이 5종인 경우 축수가 3개인데, 1축 중량은 1.8톤으로 계측되고, 2축 중량은 장비 운영과정에서 센서오류 및 고장 등과 같은 원인으로 계측이 누락되고, 3축 중량은 6.5톤으로 계측되었다고 가정하면, 누락된 2축에 대한 축중량 추정식(축중량2 = 0.58 + 0.59 * 축중량3 + 0.40 * 축중량1)에 계측된 축중량1 및 3에 대한 값을 대입하여 축중량2를 구한 후 이를 2축에 대하여 계측된 값으로 사용하는 것이다.For example, if there are five models of the driving vehicle, the number of axes is three, but the weight of one axle is 1.8 tons, and the weight of two axles is missing due to sensor errors and failures during the operation of the equipment. Assuming that the weight is measured at 6.5 tons, the values for shaft weight 1 and 3 measured in the shaft weight estimation formula (axial weight 2 = 0.58 + 0.59 * shaft weight 3 + 0.40 * shaft weight 1) for the missing two axes Substituting for, obtain the shaft weight 2 and use it as the measured value for the two axes.

(4) 제4단계(4) Step 4

주행차량의 중량추정 축중량(P)과 주행차량의 관측 축중량(K)을 각각 비교하여 오차율을 계산(오차율 = (|P - K| / K) * 100))하여 미리 설정된 오차율을 초과하는지 여부를 판단하고, 계산된 오차율이 미리 설정된 오차율을 초과하는 경우 고속축중계평가시스템의 재보정(Recalibration)이 필요한 것으로 판단하고 이를 요청하는 리포트를 작성하는 단계이다.Compute the error rate by comparing the estimated weight of the driving vehicle (P) and the observed vehicle weight (K) of the driving vehicle, respectively (error rate = (| P-K | / K) * 100) to see if it exceeds the preset error rate. If it is determined whether or not the calculated error rate exceeds the preset error rate, it is determined that recalibration of the high speed relay evaluation system is required and a report is requested.

상기한 바와 같이 본 발명의 구체적 실시예를 첨부도면을 참조하여 설명하였으나 본 발명의 보호범위가 반드시 이러한 실시예에만 한정되는 것은 아니며 본 발명의 기술적 요지를 변경하지 않는 범위 내에서 다양한 설계변경, 공지기술의 부가나 삭제, 단순한 수치한정 등의 경우에도 본 발명의 보호범위에 속함을 분명히 한다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Addition or deletion of a technique, and limitation of a numerical value are included in the protection scope of the present invention.

100:피에조센서부
200:루프센서부
300:연산부
100: piezo sensor unit
200: loop sensor
300: calculation part

Claims (4)

도로의 주행방향과 직각으로 나란하게 지면에 매설되는 2개의 피에조센서로 이루어진 피에조센서부(100);
상기 피에조센서부(100) 사이의 지면에 매설되는 루프센서로 이루어진 루프센서부(200); 및,
상기 피에조센서부(100)와 상기 루프센서부(200)에서 계측된 신호에 따라 주행차량의 속도, 축간거리, 축의 수, 축중량 및 차량길이를 산출하는 연산부(300);
를 포함하여 구성되고,
상기 연산부(300)는,
각 지표차종별로 축별 축중량 추정식이 미리 입력되고, 상기 피에조센서부(100)와 상기 루프센서부(200)에서 계측된 신호가 지표차종에 해당할 경우 축별로 계측된 관측 축중량을 축별 축중량 추정식에 대입하여 중량추정 축중량을 산출하고 이를 관측 축중량과 비교하여 오차율을 계산하여 미리 설정된 오차율을 초과하는지 여부를 판단하는 것을 특징으로 하는 고속축중계평가시스템.
Piezo sensor unit 100 consisting of two piezo sensors embedded in the ground parallel to the running direction of the road;
A loop sensor unit 200 formed of a loop sensor embedded in the ground between the piezo sensor units 100; And
A calculation unit (300) for calculating the speed, the distance between the wheels, the number of shafts, the shaft weight, and the vehicle length of the traveling vehicle according to the signals measured by the piezo sensor unit (100) and the loop sensor unit (200);
And,
The calculation unit 300,
The axial weight estimation formula for each index vehicle is input in advance, and when the signals measured by the piezoelectric sensor unit 100 and the loop sensor unit 200 correspond to the ground vehicle model, the measured axial weight of each axial axis is measured. A high-speed shaft repeating evaluation system, characterized in that it calculates an error rate by calculating the estimated weight by substituting the estimated equation and calculating the error rate by comparing it with the observed weight.
지표차종의 축별 축중량 추정식을 이용하여 고속축중계평가시스템을 평가하는 방법에 관한 것으로서,
지표차종을 선택하여 지표차종의 제원을 입력하는 제1단계;
각 지표차종의 축별 축중량을 계측하여 축별 상관계수를 산출하고 이를 근거로 축별 축중량 추정식을 생성하는 제2단계;
고속축중계평가시스템에서 계측된 주행차량의 제원이 지표차종에 해당할 경우 축별로 계측된 주행차량의 관측 축중량을 축별 축중량 추정식에 대입하여 주행차량의 중량추정 축중량을 산출하는 제3단계; 및,
주행차량의 중량추정 축중량과 주행차량의 관측 축중량을 비교하여 오차율을 계산하여 미리 설정된 오차율을 초과하는지 여부를 판단하고, 계산된 오차율이 미리 설정된 오차율을 초과하는 경우 고속축중계평가시스템의 재보정이 필요한 것으로 판단하는 제4단계;
를 포함하여 구성되는 것을 특징으로 하는 고속축중계평가시스템 평가 방법.
The present invention relates to a method for evaluating a high-speed shaft repeating evaluation system using an axial weight estimation formula for each ground vehicle.
A first step of selecting an indicator vehicle model and inputting a specification of the indicator vehicle model;
A second step of calculating an axis-by-axis correlation coefficient by measuring the axis weight of each indicator vehicle for each axis and generating an axis-by-axis estimation equation based on the axis;
A third that calculates the weight estimation axial weight of the driving vehicle by substituting the observed axial weight of the traveling vehicle measured for each axis into the axial weight estimation formula when the specification of the traveling vehicle measured by the high speed shaft evaluation system corresponds to the indicator vehicle type; step; And
Compute the error rate by comparing the estimated weight of the running vehicle with the observed axle weight of the running vehicle to determine whether the preset error rate exceeds the preset error rate, and if the calculated error rate exceeds the preset error rate, A fourth step of determining that correction is necessary;
High speed axis repeat evaluation system evaluation method comprising a.
제2항에서,
제3단계는,
차종이 결정된 후 고속축중계평가시스템에서 계측된 주행차량의 각 축별중량이 해당 차종의 최소값보다 작은 경우 재보정(Recalibration)이 필요한 것으로 판단하고, 각 축별중량이 해당 차종의 최소값(Min 값) 이상인 경우에만 지표차종에 해당하는지 여부를 확인하는 과정이 더 포함되는 것을 특징으로 하는 고속축중계평가시스템 평가 방법.
In claim 2,
The third step is
After the vehicle model is determined, if the weight of each vehicle in the high-speed axle relay evaluation system is smaller than the minimum value of the vehicle, recalibration is necessary, and the weight of each shaft is more than the minimum value (Min value) of the vehicle. The method of evaluating a high speed relay system, characterized in that it further includes a process of checking whether or not it corresponds to the surface vehicle model only.
제2항에서,
제3단계는,
주행차량의 임의 축에 대한 계측이 누락될 경우 계측된 나머지 주행차량의 관측 축중량을 임의 축에 대한 축별 축중량 추정식에 대입하여 산출된 값으로 누락된 관측 축중량을 대체하는 것을 특징으로 하는 고속축중계평가시스템 평가 방법.
In claim 2,
The third step is
When the measurement of any axis of the driving vehicle is missed, the observed axis weight of the remaining measured vehicle is substituted into the estimated axis weight equation for each axis and replaced with the missing measured axis weight. Evaluation method of high speed relay evaluation system.
KR1020110095784A 2011-09-22 2011-09-22 Weigh-In-Motion Evaluation System and Evaluation Method KR101265149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110095784A KR101265149B1 (en) 2011-09-22 2011-09-22 Weigh-In-Motion Evaluation System and Evaluation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110095784A KR101265149B1 (en) 2011-09-22 2011-09-22 Weigh-In-Motion Evaluation System and Evaluation Method

Publications (2)

Publication Number Publication Date
KR20130032090A true KR20130032090A (en) 2013-04-01
KR101265149B1 KR101265149B1 (en) 2013-05-24

Family

ID=48435074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110095784A KR101265149B1 (en) 2011-09-22 2011-09-22 Weigh-In-Motion Evaluation System and Evaluation Method

Country Status (1)

Country Link
KR (1) KR101265149B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408868B1 (en) * 2014-01-28 2014-06-17 주식회사 스마트비전 Apparatus and method for measuring weight of vehicle using wave
CN109855711A (en) * 2019-03-06 2019-06-07 河南省特利衡器有限公司 A kind of overload of vehicle transfinites dynamic weighing system
KR20200106423A (en) * 2019-03-04 2020-09-14 한국도로공사 Method for monitoring capabil-ity of high-speed weigh-in-motion and apparatus thereof
WO2020245657A1 (en) * 2019-06-06 2020-12-10 Rinstrum Pty., Ltd. Weigh-in-motion system with channel data
CN112161689A (en) * 2020-07-27 2021-01-01 江苏量动信息科技有限公司 Weighing error estimation method and device of dynamic automobile scale based on measurement error theory
CN113358198A (en) * 2021-06-08 2021-09-07 南阳理工学院 Be used for vehicle to move heavy piezoelectric sensor
CN114814287A (en) * 2022-06-29 2022-07-29 江西众加利高科技股份有限公司 Vehicle driving direction analysis method based on dynamic weighing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101597509B1 (en) * 2015-07-13 2016-02-25 정찬권 Weight conduction equation based precipitation and precipitation based automatic inspection methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917051B1 (en) 2008-04-03 2009-09-10 한국도로공사 Traffic information yielding device of the covering car and yielding method for the same
KR100906432B1 (en) 2008-11-04 2009-07-09 이씨엠아시아아이티에스(주) Traffic information detection system using the piezosensor and loop sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408868B1 (en) * 2014-01-28 2014-06-17 주식회사 스마트비전 Apparatus and method for measuring weight of vehicle using wave
KR20200106423A (en) * 2019-03-04 2020-09-14 한국도로공사 Method for monitoring capabil-ity of high-speed weigh-in-motion and apparatus thereof
WO2020180038A3 (en) * 2019-03-04 2021-03-04 한국도로공사 Method and device for monitoring performance of high-speed weigh-in-motion equipment
CN109855711A (en) * 2019-03-06 2019-06-07 河南省特利衡器有限公司 A kind of overload of vehicle transfinites dynamic weighing system
WO2020245657A1 (en) * 2019-06-06 2020-12-10 Rinstrum Pty., Ltd. Weigh-in-motion system with channel data
US11402256B2 (en) 2019-06-06 2022-08-02 Rinstrum Pty. Ltd. Weigh-in-motion system with channel data
CN112161689A (en) * 2020-07-27 2021-01-01 江苏量动信息科技有限公司 Weighing error estimation method and device of dynamic automobile scale based on measurement error theory
CN113358198A (en) * 2021-06-08 2021-09-07 南阳理工学院 Be used for vehicle to move heavy piezoelectric sensor
CN113358198B (en) * 2021-06-08 2022-09-23 南阳理工学院 Be used for vehicle to move heavy piezoelectric sensor
CN114814287A (en) * 2022-06-29 2022-07-29 江西众加利高科技股份有限公司 Vehicle driving direction analysis method based on dynamic weighing system

Also Published As

Publication number Publication date
KR101265149B1 (en) 2013-05-24

Similar Documents

Publication Publication Date Title
KR101265149B1 (en) Weigh-In-Motion Evaluation System and Evaluation Method
US10753827B2 (en) Method and system for measuring vertical wheel impact force in real-time based on tire pressure monitoring
CN108698622B (en) Method, device and program for evaluating track state
CN106706239B (en) Bridge rapid load test method
US10379008B2 (en) Railway vehicle condition monitoring apparatus
KR101166321B1 (en) Single display method of heavy duty vehicle weight and tire inflation pressure
AU2012349349B2 (en) Vehicle abnormality detection method and device
CN102706419A (en) Real-time vehicle overload monitoring system and monitoring method thereof
CN104006978A (en) Method for indirectly measuring acting force between railway vehicle wheel tracks
CN113624311A (en) Multi-parameter dynamic vehicle weighing optical fiber sensing system
CN110926735A (en) Bridge structure rapid diagnosis method based on multidimensional dynamic parameters
CN111750810B (en) Bridge deck roughness identification method based on vibration signals of two connected measuring vehicles
CN111750819B (en) Bridge deck roughness detection system
CN114357614A (en) Bogie fatigue life online estimation method based on axle box vibration
KR100719856B1 (en) Method for ascertaining and correcting velocity error of vehicle detector using auto-calibration algorithm
CN106872008A (en) A kind of dynamic weighing transverse sensitivity of sensor bearing calibration
CN104631292A (en) Roadbed rebound modulus testing method based on double-rear-axle inspection car
CN112344907B (en) Railway track level measurement method and system, readable storage medium and electronic equipment
CN101696891A (en) Multi-shaft dynamic shaft weighing method
CN111655564B (en) Method and device for estimating derailment coefficient
Chen et al. Estimation of wheel-rail forces based on the STF-SCKF-NE algorithm
Prasad et al. Study and Comparison of Road Profile for Representative Patch Extraction and Duty Cycle Generation in Durability Analysis
CN114481771B (en) Pavement flatness video measuring system and method for highway construction survey
CN116952345A (en) Bridge dynamic weighing method based on strain area
RU2483958C1 (en) Monitoring system of tread surface of railway wheel pair

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160428

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180502

Year of fee payment: 6