JPH10184436A - Fuel property detector of internal combustion engine - Google Patents

Fuel property detector of internal combustion engine

Info

Publication number
JPH10184436A
JPH10184436A JP34607996A JP34607996A JPH10184436A JP H10184436 A JPH10184436 A JP H10184436A JP 34607996 A JP34607996 A JP 34607996A JP 34607996 A JP34607996 A JP 34607996A JP H10184436 A JPH10184436 A JP H10184436A
Authority
JP
Japan
Prior art keywords
fuel
air
property
fuel ratio
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34607996A
Other languages
Japanese (ja)
Other versions
JP3627417B2 (en
Inventor
Hiroki Matsuoka
広樹 松岡
Masaaki Tanaka
正明 田中
Shigemitsu Iizaka
重光 飯坂
Michio Furuhashi
道雄 古橋
Toshinari Nagai
俊成 永井
Takashi Kawai
孝史 川合
Kenji Harima
謙司 播磨
Yuichi Goto
雄一 後藤
Takayuki Otsuka
孝之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34607996A priority Critical patent/JP3627417B2/en
Publication of JPH10184436A publication Critical patent/JPH10184436A/en
Application granted granted Critical
Publication of JP3627417B2 publication Critical patent/JP3627417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a fuel property with an high accuracy by judging the fuel property on the basis of output frequency of an air-fuel ratio sensor, in an internal combustion engine arranged with the air-fuel ratio sensor at the downstream side of a catalyst insulated in an exhaust passage in the engine. SOLUTION: When a fuel, whose property is predetermined, is used, and an air-fuel ratio feedback is controlled, variable frequency in an air-fuel ratio of an exhaust flowing out of a catalyst 12 becomes less than an oxygen storage action of the catalyst 12. Therefore the output of an oxygen sensor 16 at the downstream side crosses an output equivalent to a theoretical air-fuel ratio alternately with a smaller frequency than that of an oxygen sensor 14 at the upstream side. When such a fuel with a property heavier than the predetermined one, is used, the output of the downstream side oxygen sensor 16 crosses the output equivalent to the theoretical air-fuel ratio alternately with a larger frequency than in the case where the predetermined property fuel is used in consequence. Accordingly, on the basis of a difference in the output frequency of the downstream side oxygen sensor 16 according to the fuel property, the fuel property is detected in an electronic control unit 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の燃料性状
検出装置に関する。
The present invention relates to a fuel property detecting device for an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関では、特定性状の燃料(通常は
最も普及している燃料)を使用した時に最も高い機関出
力が得られるように燃料噴射量を設定しているため、上
記特定性状の燃料よりも重質な燃料が機関へ供給される
と機関出力が低下する。これは燃料が重質になればなる
ほど揮発性が悪化し、機関燃焼に寄与する燃料量が少な
くなるためである。そこで、燃料の性状に伴う揮発性の
違いによって機関の気筒内における燃焼速度(筒内圧縮
行程開始から筒内圧力が最大になるまでの時間)が異な
ることを利用して燃料の性状を判別する燃料性状判別装
置が公知である(特開昭62−282139号公報参
照)。また、燃料の性状に伴う揮発性の違いによって燃
焼行程中の機関の気筒内における最大筒内圧力が異なる
ことを利用して燃料の性状を判別することも公知である
(特開昭62−282265号公報参照)。上記二つの
公知例では、検出した燃料速度又は最大筒内圧力を基準
値と比較し、その差から燃料性状を判別している。
2. Description of the Related Art In an internal combustion engine, a fuel injection amount is set so as to obtain the highest engine output when a fuel having a specific property (usually the most popular fuel) is used. When fuel heavier than fuel is supplied to the engine, the engine output decreases. This is because the heavier the fuel, the lower the volatility and the smaller the amount of fuel that contributes to engine combustion. Therefore, the property of the fuel is determined by utilizing the fact that the combustion speed in the cylinder of the engine (the time from the start of the in-cylinder compression stroke to the time when the in-cylinder pressure reaches a maximum) differs depending on the difference in volatility due to the property of the fuel. A fuel property discriminating apparatus is known (see Japanese Patent Application Laid-Open No. 62-282139). It is also known to determine the fuel property by utilizing the fact that the maximum in-cylinder pressure in the cylinder of the engine during the combustion stroke varies due to the difference in volatility associated with the property of the fuel (Japanese Patent Laid-Open No. 62-282265). Reference). In the above two known examples, the detected fuel speed or the maximum in-cylinder pressure is compared with a reference value, and the fuel property is determined from the difference.

【0003】[0003]

【発明が解決しようとする課題】上記燃焼速度や最大筒
内圧力に基づいて燃料の性状を判別する場合、機関燃焼
行程中という非常に短い間に燃焼速度や筒内圧力を検出
するため、検出値の精度が低いという問題がある。また
検出値と基準値との差も小さく、この理由からも燃料性
状を判別することは困難である。更に、検出値と基準値
との差を増大して検出精度を高めるために、燃料の揮発
性に差が出る機関冷間期間(例えば機関始動直後からの
短い期間)に検出を行うことも考えられるが、これでも
検出期間が短いため検出精度を高めることは困難であ
る。本発明の目的は燃料の性状を高い精度で検出可能な
内燃機関の燃料性状検出装置を提供することにある。
When determining the properties of the fuel based on the combustion speed and the maximum in-cylinder pressure, the combustion speed and the in-cylinder pressure are detected during a very short time during the engine combustion stroke. There is a problem that the value precision is low. In addition, the difference between the detected value and the reference value is small, and for this reason, it is difficult to determine the fuel property. Further, in order to increase the difference between the detected value and the reference value to enhance the detection accuracy, it is also conceivable to perform the detection during an engine cold period (for example, a short period immediately after the start of the engine) where the fuel volatility is different. However, even in this case, it is difficult to increase the detection accuracy because the detection period is short. An object of the present invention is to provide a fuel property detection device for an internal combustion engine that can detect the property of fuel with high accuracy.

【0004】[0004]

【課題を解決するための手段】本発明によれば、内燃機
関の排気通路に触媒を備え、該触媒の下流側に空燃比を
検出するための空燃比センサを配置した内燃機関におい
て、前記空燃比センサの出力周波数に基づいて燃料の性
状を判断する。
According to the present invention, there is provided an internal combustion engine having a catalyst in an exhaust passage of the internal combustion engine and an air-fuel ratio sensor for detecting an air-fuel ratio disposed downstream of the catalyst. The property of the fuel is determined based on the output frequency of the fuel ratio sensor.

【0005】[0005]

【発明の実施の形態】以下、添付図面を用いて本発明の
実施形態について説明する。図1において、10は排気
通路、12は排気通路10に配置された触媒、14は触
媒12の排気上流側の排気通路10に配置された上流側
空燃比センサ、16は触媒12の排気下流側の排気通路
10に配置された下流側空燃比センサである。本願にお
いて『排気上流側』及び『排気下流側』という用語は機
関から排出される排気ガスの流れに関連して用いられる
用語である。上流側空燃比センサ14及び下流側空燃比
センサ16は制御装置(ECU)18に接続される。ま
た制御装置18には、吸気通路(図示せず)に設けら
れ、吸入空気量を検出するエアフローメータ20と、機
関クランク軸(図示せず)の一定回転毎にパルス信号を
発生するクランク角センサ22と、機関シリンダブロッ
クのウォータジャケット(図示せず)に設けられ、機関
冷却水温度に応じたアナログ電圧を出力する冷却水温度
センサ24とが接続される。更に、制御装置18は機関
気筒へ燃料を供給する燃料噴射弁26と、気筒内の燃料
を燃焼開始させる点火プラグ28とに接続される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, reference numeral 10 denotes an exhaust passage, 12 denotes a catalyst disposed in the exhaust passage 10, 14 denotes an upstream air-fuel ratio sensor disposed in the exhaust passage 10 on the exhaust upstream side of the catalyst 12, and 16 denotes an exhaust downstream side of the catalyst 12. 1 is a downstream air-fuel ratio sensor disposed in the exhaust passage 10 of FIG. In the present application, the terms "exhaust upstream" and "exhaust downstream" are terms used in relation to the flow of exhaust gas discharged from the engine. The upstream air-fuel ratio sensor 14 and the downstream air-fuel ratio sensor 16 are connected to a control device (ECU) 18. The control device 18 includes an air flow meter 20 that is provided in an intake passage (not shown) and detects an intake air amount, and a crank angle sensor that generates a pulse signal every constant rotation of an engine crankshaft (not shown). The cooling water temperature sensor 24 is provided on a water jacket (not shown) of the engine cylinder block and outputs an analog voltage corresponding to the engine cooling water temperature. Further, the control device 18 is connected to a fuel injection valve 26 that supplies fuel to the engine cylinder, and a spark plug 28 that starts burning fuel in the cylinder.

【0006】制御装置18は、予め定められた特定の性
状の燃料が使用されている場合に、上流側空燃比センサ
14、下流側空燃比センサ16、エアフローメータ2
0、クランク角センサ22、及び冷却水温度センサ24
からの信号に基づき、機関運転状態に応じて最適な点火
時期となるように点火プラグ28の点火時期を制御す
る。更に、制御装置18は、予め定められた特定の性状
の燃料が使用されている場合に空燃比が理論空燃比近傍
に維持されるように、上流側空燃比センサ14及び下流
側空燃比センサ16からの信号に基づいて燃料噴射弁2
6の開弁時間、即ち、空燃比をフィードバック制御す
る。この空燃比のフィードバック制御は、上流側O2
ンサ14の出力が図2(A)のように理論空燃比相当出
力VR1を中心として上下に変動するように、即ち、空燃
比が理論空燃比近傍でリッチ空燃比とリーン空燃比とを
交互に繰り返すように行われる。
[0006] The control device 18 controls the upstream air-fuel ratio sensor 14, the downstream air-fuel ratio sensor 16, and the air flow meter 2 when fuel of a predetermined specific property is used.
0, crank angle sensor 22, and cooling water temperature sensor 24
, The ignition timing of the ignition plug 28 is controlled so as to obtain the optimal ignition timing in accordance with the engine operating state. Further, the control device 18 controls the upstream air-fuel ratio sensor 14 and the downstream air-fuel ratio sensor 16 so that the air-fuel ratio is maintained near the stoichiometric air-fuel ratio when fuel of a predetermined specific property is used. Injection valve 2 based on the signal from
The feedback control of the valve opening time of 6, that is, the air-fuel ratio is performed. The feedback control of the air-fuel ratio is performed so that the output of the upstream O 2 sensor 14 fluctuates up and down around the stoichiometric air-fuel ratio equivalent output V R1 as shown in FIG. It is performed so that the rich air-fuel ratio and the lean air-fuel ratio are alternately repeated in the vicinity.

【0007】本実施形態の触媒12は三元触媒であり、
この三元触媒は排気中のHC、CO、NOX の三成分を
同時に浄化することができる。触媒12は流入する排気
空燃比がリーンの時(即ち、機関燃焼室で理論空燃比よ
りリーンな混合気の燃焼が行われている時)には排気中
の酸素を吸着し、流入する排気空燃比がリッチの時(燃
焼室で理論空燃比よりリッチな混合気の燃焼が行われて
いる時)には吸着した酸素を放出する酸素の吸放出作用
(O2 ストレージ作用)を行う。本実施形態の空燃比セ
ンサはO2 センサであり、このO2 センサは、図4に示
すように、空燃比がリーンの時に0V、リッチの時に1
Vの出力電圧を発生し、この出力電圧は理論空燃比近傍
で急激に変化して理論空燃比相当出力(比較電圧)VR
を横切る。即ち、O2 センサはそれぞれ排気空燃比が理
論空燃比に対してリーン側かリッチ側かに応じて異なる
出力電圧を発生する。
[0007] The catalyst 12 of the present embodiment is a three-way catalyst,
The three-way catalyst can purify HC in the exhaust gas, CO, the three components of the NO X at the same time. When the inflowing exhaust air-fuel ratio is lean (that is, when the air-fuel mixture leaner than the stoichiometric air-fuel ratio is being burned in the engine combustion chamber), the catalyst 12 adsorbs the oxygen in the exhaust gas and causes the inflowing exhaust air-fuel ratio. When the fuel ratio is rich (when the air-fuel mixture richer than the stoichiometric air-fuel ratio is being burned in the combustion chamber), an oxygen absorbing / releasing action (O 2 storage action) for releasing the adsorbed oxygen is performed. The air-fuel ratio sensor of this embodiment is an O 2 sensor. As shown in FIG. 4, the O 2 sensor has 0 V when the air-fuel ratio is lean and 1 V when the air-fuel ratio is rich.
V output voltage, and this output voltage changes rapidly near the stoichiometric air-fuel ratio, and the stoichiometric air-fuel ratio equivalent output (comparison voltage) V R
Cross. That is, each O 2 sensor generates a different output voltage depending on whether the exhaust air-fuel ratio is lean or rich with respect to the stoichiometric air-fuel ratio.

【0008】次に、燃料の性状検出について説明する。
上述したように、予め定められた性状の燃料が使用さ
れ、空燃比をフィードバック制御した場合、触媒12か
ら流出する排気の空燃比の変動周波数は触媒12のO2
ストレージ作用により小さくなるため、下流側O2 セン
サ16の出力は、図2(B)のように、上流側O2 セン
サ14の出力周波数よりも小さい周波数で理論空燃比相
当出力VR2を交互に横切る。一方、予め定められた性状
よりも重質な性状の燃料が使用され、上述と同様に空燃
比をフィードバック制御した場合、下流側O2 センサ1
6の出力は、図2(C)に示すように、予め定められた
性状の燃料が使用されている場合よりも大きな周波数で
理論空燃比相当出力VR2を交互に横切る。本発明は、こ
の燃料性状に伴う下流側O2 センサの出力周波数の違い
に基づき、燃料性状を検出する。このように、重質な燃
料が使用された場合に、下流側O2 センサの出力周波数
が増大する理由は次のように考えられる。重質の燃料は
揮発性が低く、気筒内において燃焼に消費される燃料量
は少なく、従って、燃焼により消費される酸素量も少な
い。このため、触媒12の上流側においては、排気ガス
中には含有される酸素及び未燃燃料は高く維持される傾
向にある。一方、触媒12内においては、未燃燃料が一
時的に触媒12に吸着し、その吸着した未燃燃料は或る
短い期間を経てから一度に触媒12から放出される。放
出された未燃燃料は排気ガス中の酸素と反応し、排気ガ
ス中の酸素濃度が急激に低下する。従って、下流側O2
センサは、未燃燃料が触媒に吸着されている間はリーン
状態を検出し、未燃燃料が触媒から放出された時にはリ
ッチ状態を検出する。この未燃燃料の吸着と放出とが短
時間の周期で断続的に行われるため、下流側O2 センサ
の出力周波数が増大するものと考えられる。本実施形態
では上流側O2 センサ14及び下流側O2 センサ16の
出力周波数を検出し、これら出力周波数の比を算出し、
該出力周波数比に対応した予め制御装置のマップに格納
された制御パラメータ値を読み取り、燃料噴射弁26の
開弁時間及び点火プラグ28の点火時期を該制御パラメ
ータ値に補正する。この補正は、具体的には、燃料性状
が重質であると検出された時には、燃料噴射弁の開弁時
間を長くして、供給燃料量を増大させるか、或いは、点
火プラグの点火時期を進角、即ち、早める補正を行う。
従って、本発明によれば、空燃比センサの出力周波数比
に基づき燃料の性状を検出するため、機関運転中に比較
的長い期間にわたる検出が可能となり、検出精度が向上
する。
Next, detection of fuel properties will be described.
As described above, when a fuel having a predetermined property is used and the air-fuel ratio is feedback-controlled, the fluctuation frequency of the air-fuel ratio of the exhaust flowing out of the catalyst 12 becomes O 2 of the catalyst 12.
2B, the output of the downstream O 2 sensor 16 alternates with the stoichiometric air-fuel ratio equivalent output V R2 at a frequency lower than the output frequency of the upstream O 2 sensor 14, as shown in FIG. Cross. On the other hand, when a fuel having a property heavier than a predetermined property is used and the air-fuel ratio is feedback-controlled in the same manner as described above, the downstream O 2 sensor 1
As shown in FIG. 2 (C), the output of No. 6 alternately crosses the stoichiometric air-fuel ratio equivalent output V R2 at a higher frequency than when fuel of a predetermined property is used. According to the present invention, the fuel property is detected based on the difference in the output frequency of the downstream O 2 sensor due to the fuel property. Thus, when a heavy fuel is used, why the output frequency of the downstream O 2 sensor increases is considered as follows. Heavy fuel has low volatility, and the amount of fuel consumed in combustion in the cylinder is small, and therefore the amount of oxygen consumed by combustion is also small. Therefore, on the upstream side of the catalyst 12, the oxygen and the unburned fuel contained in the exhaust gas tend to be kept high. On the other hand, in the catalyst 12, the unburned fuel is temporarily adsorbed on the catalyst 12, and the adsorbed unburned fuel is released from the catalyst 12 at once after a certain short period. The released unburned fuel reacts with oxygen in the exhaust gas, and the oxygen concentration in the exhaust gas rapidly decreases. Therefore, the downstream O 2
The sensor detects a lean state while unburned fuel is adsorbed on the catalyst, and detects a rich state when unburned fuel is released from the catalyst. Since the unburned fuel is adsorbed and released intermittently in a short period, it is considered that the output frequency of the downstream O 2 sensor increases. In the present embodiment, the output frequencies of the upstream O 2 sensor 14 and the downstream O 2 sensor 16 are detected, and the ratio of these output frequencies is calculated.
A control parameter value corresponding to the output frequency ratio and stored in a map of the control device in advance is read, and the valve opening time of the fuel injection valve 26 and the ignition timing of the spark plug 28 are corrected to the control parameter value. Specifically, when the fuel property is detected to be heavy, this correction is performed by increasing the valve opening time of the fuel injection valve to increase the amount of supplied fuel, or increasing the ignition timing of the ignition plug. The advance angle, that is, the advance correction is performed.
Therefore, according to the present invention, since the property of the fuel is detected based on the output frequency ratio of the air-fuel ratio sensor, the detection can be performed for a relatively long period during the operation of the engine, and the detection accuracy is improved.

【0009】次に図3を参照し、燃料性状を検出して該
検出された燃料性状に基づいて機関運転状態を制御する
本実施形態の制御フローを説明する。初めにステップS
310において、給油後であるか否かが判別される。こ
の給油後であるか否かの判別は、例えば給油口の蓋の開
閉や燃料ゲージの増大を検出することにより行う。ステ
ップS310において給油後ではないと判別された時に
は使用されている燃料に変化がないものとして処理を終
了する。ステップS310において給油後であると判別
された時にはステップS312へ進み、検出条件が成立
しているか否かが判別される。検出条件は、触媒12の
暖機状態、即ち触媒12が活性化温度に達しているか否
か、O2 センサが活性化されているか否か、燃料噴射フ
ィードバック制御がなされているか否か、機関回転数や
負荷が所定の範囲内にあるか否か等がある。ステップS
312において検出条件が成立していないと判別された
時には処理を終了する。ステップS312において検出
条件が成立していると判別された時にはステップS31
6へ進み、上流側O2 センサ14の出力周波数(VO
M)及び下流側O2 センサ16の出力周波数(VOS)
を検出し、ステップS316へ進む。ステップS316
では、これら出力周波数の比(VOS/VOM)を算出
し、ステップS318へ進む。ステップS318では、
ステップS316において算出された出力周波数比に基
づき、制御装置18に格納されているマップから上記出
力周波数比に対応した制御パラメータ値を読み取り、ス
テップS320へ進む。ステップS320では、上記制
御パラメータ値に現在の制御パラメータ値を補正して処
理を終了する。
Next, with reference to FIG. 3, a description will be given of a control flow of the present embodiment for detecting the fuel property and controlling the engine operating state based on the detected fuel property. First step S
At 310, it is determined whether refueling has occurred. The determination as to whether or not the refueling has been performed is made by, for example, detecting the opening and closing of the lid of the refueling port and the increase in the fuel gauge. If it is determined in step S310 that it is not after refueling, the process is terminated on the assumption that there is no change in the used fuel. When it is determined in step S310 that the fuel has been refueled, the process proceeds to step S312, and it is determined whether the detection condition is satisfied. The detection conditions include a warm-up state of the catalyst 12, that is, whether or not the catalyst 12 has reached the activation temperature, whether or not the O 2 sensor is activated, whether or not the fuel injection feedback control is being performed, and whether or not the engine rotation has been performed. For example, the number or load is within a predetermined range. Step S
If it is determined in 312 that the detection condition is not satisfied, the process ends. When it is determined in step S312 that the detection condition is satisfied, step S31 is performed.
6 and the output frequency of the upstream O 2 sensor 14 (VO
M) and the output frequency (VOS) of the downstream O 2 sensor 16
Is detected, and the process proceeds to step S316. Step S316
Then, the ratio of these output frequencies (VOS / VOM) is calculated, and the process proceeds to step S318. In step S318,
Based on the output frequency ratio calculated in step S316, a control parameter value corresponding to the output frequency ratio is read from the map stored in the control device 18, and the process proceeds to step S320. In step S320, the current control parameter value is corrected to the control parameter value, and the process ends.

【0010】上記実施形態では上流側と下流側とのO2
センサの出力周波数比に基づき、制御パラメータ値を補
正したが、これは本発明を制限するものではなく、下流
側O 2 センサの出力周波数が増大すると下流側O2 セン
サの出力軌跡の長さが増大することを利用して、上流側
と下流側とのO2 センサの出力軌跡長比に基づいて制御
パラメータ値を補正することも可能である。また、上流
側O2 センサの出力周波数は各機関運転状態においてあ
まり変動化しないために、下流側O2 センサの出力周波
数又は出力軌跡長の変化のみにより燃料性状を検出する
ことも可能である。更に、予め定められた特定の性状の
燃料が使用されている時に未燃燃料を発生するような空
燃比制御を行っている場合には、予め定められた特定の
性状の燃料よりも軽質な性状の燃料が使用されると、下
流側O2 センサの出力周波数は上記実施形態とは逆に小
さくなるため、このことを利用して燃料の性状が軽質で
あることを検出することも可能である。
In the above embodiment, the O and O downstreamTwo
The control parameter value is compensated based on the output frequency ratio of the sensor.
Corrected, but this is not a limitation of the present invention,
Side O TwoWhen the output frequency of the sensor increases, the downstream OTwoSen
Utilizing the fact that the length of the output trajectory of the
O with the downstream sideTwoControl based on sensor output trajectory length ratio
It is also possible to correct the parameter values. Also upstream
Side OTwoThe output frequency of the sensor is
In order to avoid fluctuation, the downstream OTwoOutput frequency of sensor
Detect fuel properties only by changes in number or output trajectory length
It is also possible. In addition, specific properties
Empty spaces that generate unburned fuel when fuel is used
If fuel ratio control is being performed, a predetermined specific
If a fuel with a lighter property than that of the property is used,
Outflow side OTwoThe output frequency of the sensor is small contrary to the above embodiment.
Because of this, the properties of the fuel are light and
It is also possible to detect something.

【0011】[0011]

【発明の効果】本発明によれば、空燃比センサの出力周
波数に基づき燃料の性状を検出するため、長い検出期間
にわたり検出が可能であるため、高い精度で燃料性状を
検出することができる。
According to the present invention, since the property of the fuel is detected based on the output frequency of the air-fuel ratio sensor, the detection can be performed over a long detection period, so that the fuel property can be detected with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる内燃機関の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of an internal combustion engine according to the present invention.

【図2】(A)は上流側O2 センサの出力波形を示し、
(B)は予め定められた性状の燃料が用いられている時
における下流側O2 センサの出力波形を示し、(C)は
予め定められた性状の燃料よりも重質な燃料が用いられ
ている時における下流側O2 センサの出力波形を示す図
である。
FIG. 2A shows an output waveform of an upstream O 2 sensor;
(B) shows the output waveform of the downstream O 2 sensor when the fuel of the predetermined property is used, and (C) shows that the fuel heavier than the fuel of the predetermined property is used. FIG. 6 is a diagram showing an output waveform of the downstream O 2 sensor when the power supply is ON.

【図3】燃料性状を検出し、該検出された燃料性状に基
づいて機関運転状態を制御する制御フローを示すフロー
チャートである。
FIG. 3 is a flowchart showing a control flow for detecting a fuel property and controlling an engine operating state based on the detected fuel property.

【図4】O2 センサの出力特性を説明する図である。FIG. 4 is a diagram illustrating output characteristics of an O 2 sensor.

【符号の説明】[Explanation of symbols]

10…排気通路 12…触媒 14…上流側空燃比センサ 16…下流側空燃比センサ 18…制御装置 20…エアフローメータ 22…クランク角センサ 24…冷却水温度センサ 26…燃料噴射弁 28…点火プラグ DESCRIPTION OF SYMBOLS 10 ... Exhaust passage 12 ... Catalyst 14 ... Upstream air-fuel ratio sensor 16 ... Downstream air-fuel ratio sensor 18 ... Control device 20 ... Air flow meter 22 ... Crank angle sensor 24 ... Cooling water temperature sensor 26 ... Fuel injection valve 28 ... Spark plug

フロントページの続き (72)発明者 古橋 道雄 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 永井 俊成 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 川合 孝史 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 播磨 謙司 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 後藤 雄一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 大塚 孝之 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内Continued on the front page (72) Inventor Michio Furuhashi 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd. (72) Inventor Toshinari Nagai 1 Toyota Vehicle Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Invention Person Takashi Kawai 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Kenji Harima 1 Toyota Town Toyota City, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Yuichi Goto Toyota Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Takayuki Otsuka 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に触媒を備え、該触
媒の下流側に空燃比を検出するための空燃比センサを配
置した内燃機関において、前記空燃比センサの出力周波
数に基づいて燃料の性状を検出することを特徴とする内
燃機関の燃料性状検出装置。
1. An internal combustion engine having a catalyst in an exhaust passage of an internal combustion engine, and an air-fuel ratio sensor for detecting an air-fuel ratio disposed downstream of the catalyst, wherein fuel is detected based on an output frequency of the air-fuel ratio sensor. A fuel property detection device for an internal combustion engine, which detects property.
JP34607996A 1996-12-25 1996-12-25 Fuel property detection device for internal combustion engine Expired - Fee Related JP3627417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34607996A JP3627417B2 (en) 1996-12-25 1996-12-25 Fuel property detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34607996A JP3627417B2 (en) 1996-12-25 1996-12-25 Fuel property detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10184436A true JPH10184436A (en) 1998-07-14
JP3627417B2 JP3627417B2 (en) 2005-03-09

Family

ID=18381003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34607996A Expired - Fee Related JP3627417B2 (en) 1996-12-25 1996-12-25 Fuel property detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3627417B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270677A (en) * 2009-05-21 2010-12-02 Mitsubishi Electric Corp Controller for internal combustion engine
JP2011163261A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Control device for internal combustion engine
DE102008050299B4 (en) 2007-10-29 2019-04-25 Ford Global Technologies, Llc Input of the fuel / air sensor for controlled modulation of the air / fuel ratio

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050299B4 (en) 2007-10-29 2019-04-25 Ford Global Technologies, Llc Input of the fuel / air sensor for controlled modulation of the air / fuel ratio
JP2010270677A (en) * 2009-05-21 2010-12-02 Mitsubishi Electric Corp Controller for internal combustion engine
JP2011163261A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP3627417B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US9021789B2 (en) Degradation diagnostic apparatus for NOx catalyst
US6594987B2 (en) Apparatus for detecting fault in exhaust system of internal combustion engine
JP5110205B2 (en) Control device for internal combustion engine
JP2010112244A (en) Control device and control method
US7885757B2 (en) Degradation determination apparatus and degradation determination system for oxygen concentration sensor
JP2008175173A (en) Air-fuel ratio control device
JPH1162728A (en) Vaporized fuel concentration determining device for internal combustion engine
JP2008255952A (en) Sulfur concentration detection device of internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JPH10184436A (en) Fuel property detector of internal combustion engine
JP2008255951A (en) Sulfur concentration determination device of internal combustion engine
JP2002364428A (en) Catalyst deterioration decision device
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JPH07158425A (en) Exhaust emission control device for internal combustion engine
JP3721878B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008002440A (en) Abnormality determination device for exhaust gas concentration sensor of internal combustion engine
JP2009024496A (en) Air-fuel ratio control system of internal combustion engine
JP4462419B2 (en) Engine exhaust system abnormality detection device
JP2000205029A (en) Fuel property detector
JP4604361B2 (en) Control device for internal combustion engine
JPH06323185A (en) Air-fuel ratio control device
JP2848037B2 (en) Secondary air control device for internal combustion engine
JP2890908B2 (en) Secondary air control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041116

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041129

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131217

LAPS Cancellation because of no payment of annual fees