JP3627417B2 - Fuel property detection device for internal combustion engine - Google Patents

Fuel property detection device for internal combustion engine Download PDF

Info

Publication number
JP3627417B2
JP3627417B2 JP34607996A JP34607996A JP3627417B2 JP 3627417 B2 JP3627417 B2 JP 3627417B2 JP 34607996 A JP34607996 A JP 34607996A JP 34607996 A JP34607996 A JP 34607996A JP 3627417 B2 JP3627417 B2 JP 3627417B2
Authority
JP
Japan
Prior art keywords
fuel
air
sensor
fuel ratio
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34607996A
Other languages
Japanese (ja)
Other versions
JPH10184436A (en
Inventor
広樹 松岡
正明 田中
重光 飯坂
道雄 古橋
俊成 永井
孝史 川合
謙司 播磨
雄一 後藤
孝之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34607996A priority Critical patent/JP3627417B2/en
Publication of JPH10184436A publication Critical patent/JPH10184436A/en
Application granted granted Critical
Publication of JP3627417B2 publication Critical patent/JP3627417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の燃料性状検出装置に関する。
【0002】
【従来の技術】
内燃機関では、特定性状の燃料(通常は最も普及している燃料)を使用した時に最も高い機関出力が得られるように燃料噴射量を設定しているため、上記特定性状の燃料よりも重質な燃料が機関へ供給されると機関出力が低下する。これは燃料が重質になればなるほど揮発性が悪化し、機関燃焼に寄与する燃料量が少なくなるためである。そこで、燃料の性状に伴う揮発性の違いによって機関の気筒内における燃焼速度(筒内圧縮行程開始から筒内圧力が最大になるまでの時間)が異なることを利用して燃料の性状を判別する燃料性状判別装置が公知である(特開昭62−282139号公報参照)。また、燃料の性状に伴う揮発性の違いによって燃焼行程中の機関の気筒内における最大筒内圧力が異なることを利用して燃料の性状を判別することも公知である(特開昭62−282265号公報参照)。上記二つの公知例では、検出した燃料速度又は最大筒内圧力を基準値と比較し、その差から燃料性状を判別している。
【0003】
【発明が解決しようとする課題】
上記燃焼速度や最大筒内圧力に基づいて燃料の性状を判別する場合、機関燃焼行程中という非常に短い間に燃焼速度や筒内圧力を検出するため、検出値の精度が低いという問題がある。また検出値と基準値との差も小さく、この理由からも燃料性状を判別することは困難である。更に、検出値と基準値との差を増大して検出精度を高めるために、燃料の揮発性に差が出る機関冷間期間(例えば機関始動直後からの短い期間)に検出を行うことも考えられるが、これでも検出期間が短いため検出精度を高めることは困難である。
本発明の目的は燃料の性状を高い精度で検出可能な内燃機関の燃料性状検出装置を提供することにある。
【0004】
【課題を解決するための手段】
本発明によれば、内燃機関の排気通路に触媒を備え、該触媒の上流側と下流側とに空燃比を検出するための空燃比センサを配置した内燃機関において、前記触媒の上流側に配置された空燃比センサの出力周波数と、前記触媒の下流側に配置された空燃比センサの出力周波数との比に基づいて燃料の性状を検出する。
【0005】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。図1において、10は排気通路、12は排気通路10に配置された触媒、14は触媒12の排気上流側の排気通路10に配置された上流側空燃比センサ、16は触媒12の排気下流側の排気通路10に配置された下流側空燃比センサである。本願において『排気上流側』及び『排気下流側』という用語は機関から排出される排気ガスの流れに関連して用いられる用語である。上流側空燃比センサ14及び下流側空燃比センサ16は制御装置(ECU)18に接続される。また制御装置18には、吸気通路(図示せず)に設けられ、吸入空気量を検出するエアフローメータ20と、機関クランク軸(図示せず)の一定回転毎にパルス信号を発生するクランク角センサ22と、機関シリンダブロックのウォータジャケット(図示せず)に設けられ、機関冷却水温度に応じたアナログ電圧を出力する冷却水温度センサ24とが接続される。更に、制御装置18は機関気筒へ燃料を供給する燃料噴射弁26と、気筒内の燃料を燃焼開始させる点火プラグ28とに接続される。
【0006】
制御装置18は、予め定められた特定の性状の燃料が使用されている場合に、上流側空燃比センサ14、下流側空燃比センサ16、エアフローメータ20、クランク角センサ22、及び冷却水温度センサ24からの信号に基づき、機関運転状態に応じて最適な点火時期となるように点火プラグ28の点火時期を制御する。更に、制御装置18は、予め定められた特定の性状の燃料が使用されている場合に空燃比が理論空燃比近傍に維持されるように、上流側空燃比センサ14及び下流側空燃比センサ16からの信号に基づいて燃料噴射弁26の開弁時間、即ち、空燃比をフィードバック制御する。この空燃比のフィードバック制御は、上流側Oセンサ14の出力が図2(A)のように理論空燃比相当出力VR1を中心として上下に変動するように、即ち、空燃比が理論空燃比近傍でリッチ空燃比とリーン空燃比とを交互に繰り返すように行われる。
【0007】
本実施形態の触媒12は三元触媒であり、この三元触媒は排気中のHC、CO、NOの三成分を同時に浄化することができる。触媒12は流入する排気空燃比がリーンの時(即ち、機関燃焼室で理論空燃比よりリーンな混合気の燃焼が行われている時)には排気中の酸素を吸着し、流入する排気空燃比がリッチの時(燃焼室で理論空燃比よりリッチな混合気の燃焼が行われている時)には吸着した酸素を放出する酸素の吸放出作用(Oストレージ作用)を行う。
本実施形態の空燃比センサはOセンサであり、このOセンサは、図4に示すように、空燃比がリーンの時に0V、リッチの時に1Vの出力電圧を発生し、この出力電圧は理論空燃比近傍で急激に変化して理論空燃比相当出力(比較電圧)Vを横切る。即ち、Oセンサはそれぞれ排気空燃比が理論空燃比に対してリーン側かリッチ側かに応じて異なる出力電圧を発生する。
【0008】
次に、燃料の性状検出について説明する。上述したように、予め定められた性状の燃料が使用され、空燃比をフィードバック制御した場合、触媒12から流出する排気の空燃比の変動周波数は触媒12のOストレージ作用により小さくなるため、下流側Oセンサ16の出力は、図2(B)のように、上流側Oセンサ14の出力周波数よりも小さい周波数で理論空燃比相当出力VR2を交互に横切る。一方、予め定められた性状よりも重質な性状の燃料が使用され、上述と同様に空燃比をフィードバック制御した場合、下流側Oセンサ16の出力は、図2(C)に示すように、予め定められた性状の燃料が使用されている場合よりも大きな周波数で理論空燃比相当出力VR2を交互に横切る。本発明は、この燃料性状に伴う下流側Oセンサの出力周波数の違いに基づき、燃料性状を検出する。
このように、重質な燃料が使用された場合に、下流側Oセンサの出力周波数が増大する理由は次のように考えられる。重質の燃料は揮発性が低く、気筒内において燃焼に消費される燃料量は少なく、従って、燃焼により消費される酸素量も少ない。このため、触媒12の上流側においては、排気ガス中には含有される酸素及び未燃燃料は高く維持される傾向にある。一方、触媒12内においては、未燃燃料が一時的に触媒12に吸着し、その吸着した未燃燃料は或る短い期間を経てから一度に触媒12から放出される。放出された未燃燃料は排気ガス中の酸素と反応し、排気ガス中の酸素濃度が急激に低下する。従って、下流側Oセンサは、未燃燃料が触媒に吸着されている間はリーン状態を検出し、未燃燃料が触媒から放出された時にはリッチ状態を検出する。この未燃燃料の吸着と放出とが短時間の周期で断続的に行われるため、下流側Oセンサの出力周波数が増大するものと考えられる。
本実施形態では上流側Oセンサ14及び下流側Oセンサ16の出力周波数を検出し、これら出力周波数の比を算出し、該出力周波数比に対応した予め制御装置のマップに格納された制御パラメータ値を読み取り、燃料噴射弁26の開弁時間及び点火プラグ28の点火時期を該制御パラメータ値に補正する。この補正は、具体的には、燃料性状が重質であると検出された時には、燃料噴射弁の開弁時間を長くして、供給燃料量を増大させるか、或いは、点火プラグの点火時期を進角、即ち、早める補正を行う。従って、本発明によれば、空燃比センサの出力周波数比に基づき燃料の性状を検出するため、機関運転中に比較的長い期間にわたる検出が可能となり、検出精度が向上する。
【0009】
次に図3を参照し、燃料性状を検出して該検出された燃料性状に基づいて機関運転状態を制御する本実施形態の制御フローを説明する。初めにステップS310において、給油後であるか否かが判別される。この給油後であるか否かの判別は、例えば給油口の蓋の開閉や燃料ゲージの増大を検出することにより行う。ステップS310において給油後ではないと判別された時には使用されている燃料に変化がないものとして処理を終了する。ステップS310において給油後であると判別された時にはステップS312へ進み、検出条件が成立しているか否かが判別される。検出条件は、触媒12の暖機状態、即ち触媒12が活性化温度に達しているか否か、Oセンサが活性化されているか否か、燃料噴射フィードバック制御がなされているか否か、機関回転数や負荷が所定の範囲内にあるか否か等がある。ステップS312において検出条件が成立していないと判別された時には処理を終了する。ステップS312において検出条件が成立していると判別された時にはステップS316へ進み、上流側Oセンサ14の出力周波数(VOM)及び下流側Oセンサ16の出力周波数(VOS)を検出し、ステップS316へ進む。ステップS316では、これら出力周波数の比(VOS/VOM)を算出し、ステップS318へ進む。ステップS318では、ステップS316において算出された出力周波数比に基づき、制御装置18に格納されているマップから上記出力周波数比に対応した制御パラメータ値を読み取り、ステップS320へ進む。ステップS320では、上記制御パラメータ値に現在の制御パラメータ値を補正して処理を終了する。
【0010】
上記実施形態では上流側と下流側とのOセンサの出力周波数比に基づき、制御パラメータ値を補正したが、これは本発明を制限するものではなく、下流側Oセンサの出力周波数が増大すると下流側Oセンサの出力軌跡の長さが増大することを利用して、上流側と下流側とのOセンサの出力軌跡長比に基づいて制御パラメータ値を補正することも可能である。また、上流側Oセンサの出力周波数は各機関運転状態においてあまり変動化しないために、下流側Oセンサの出力周波数又は出力軌跡長の変化のみにより燃料性状を検出することも可能である。更に、予め定められた特定の性状の燃料が使用されている時に未燃燃料を発生するような空燃比制御を行っている場合には、予め定められた特定の性状の燃料よりも軽質な性状の燃料が使用されると、下流側Oセンサの出力周波数は上記実施形態とは逆に小さくなるため、このことを利用して燃料の性状が軽質であることを検出することも可能である。
【0011】
【発明の効果】
本発明によれば、触媒上流側の空燃比センサの出力周波数と触媒下流側の空燃比センサの出力周波数との比に基づいて燃料の性状を検出するため、長い検出期間にわたり検出が可能であることから、高い精度で燃料性状を検出することができる。
【図面の簡単な説明】
【図1】本発明に係わる内燃機関の構成を示す図である。
【図2】(A)は上流側Oセンサの出力波形を示し、(B)は予め定められた性状の燃料が用いられている時における下流側Oセンサの出力波形を示し、(C)は予め定められた性状の燃料よりも重質な燃料が用いられている時における下流側Oセンサの出力波形を示す図である。
【図3】燃料性状を検出し、該検出された燃料性状に基づいて機関運転状態を制御する制御フローを示すフローチャートである。
【図4】Oセンサの出力特性を説明する図である。
【符号の説明】
10…排気通路
12…触媒
14…上流側空燃比センサ
16…下流側空燃比センサ
18…制御装置
20…エアフローメータ
22…クランク角センサ
24…冷却水温度センサ
26…燃料噴射弁
28…点火プラグ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel property detection device for an internal combustion engine.
[0002]
[Prior art]
In an internal combustion engine, the fuel injection amount is set so that the highest engine output can be obtained when fuel with a specific property (usually the most popular fuel) is used, so it is heavier than the fuel with the above specific property. Engine power decreases when the correct fuel is supplied to the engine. This is because the heavier the fuel, the worse the volatility and the smaller the amount of fuel that contributes to engine combustion. Therefore, the characteristics of the fuel are determined using the fact that the combustion speed (the time from the start of the in-cylinder compression stroke to the maximum in-cylinder pressure) varies depending on the volatility associated with the nature of the fuel. A fuel property discriminating device is known (see Japanese Patent Laid-Open No. 62-282139). It is also known to determine the fuel properties by utilizing the fact that the maximum in-cylinder pressure in the cylinder of the engine during the combustion stroke varies depending on the volatility difference associated with the fuel properties (Japanese Patent Laid-Open No. 62-282265). No. publication). In the above two known examples, the detected fuel speed or the maximum in-cylinder pressure is compared with a reference value, and the fuel property is determined from the difference.
[0003]
[Problems to be solved by the invention]
When determining the fuel properties based on the combustion speed and the maximum in-cylinder pressure, the combustion speed and the in-cylinder pressure are detected in a very short period of time during the engine combustion stroke. . Also, the difference between the detected value and the reference value is small, and it is difficult to determine the fuel property for this reason. Furthermore, in order to increase the difference between the detected value and the reference value to improve the detection accuracy, it is also considered that the detection is performed in the engine cold period (for example, a short period immediately after the engine is started) in which the fuel volatility is different. However, even in this case, it is difficult to improve the detection accuracy because the detection period is short.
An object of the present invention is to provide a fuel property detection device for an internal combustion engine capable of detecting the property of fuel with high accuracy.
[0004]
[Means for Solving the Problems]
According to the present invention, in an internal combustion engine provided with a catalyst in the exhaust passage of the internal combustion engine, and an air-fuel ratio sensor for detecting an air-fuel ratio on the upstream side and downstream side of the catalyst , the internal combustion engine is arranged on the upstream side of the catalyst. The property of the fuel is detected on the basis of the ratio between the output frequency of the air-fuel ratio sensor and the output frequency of the air-fuel ratio sensor arranged on the downstream side of the catalyst .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In FIG. 1, 10 is an exhaust passage, 12 is a catalyst disposed in the exhaust passage 10, 14 is an upstream air-fuel ratio sensor disposed in the exhaust passage 10 upstream of the catalyst 12, and 16 is an exhaust downstream side of the catalyst 12. 2 is a downstream air-fuel ratio sensor disposed in the exhaust passage 10 of the engine. In the present application, the terms “exhaust upstream side” and “exhaust downstream side” are terms used in relation to the flow of exhaust gas discharged from the engine. The upstream air-fuel ratio sensor 14 and the downstream air-fuel ratio sensor 16 are connected to a control device (ECU) 18. Further, the control device 18 is provided in an intake passage (not shown), and an air flow meter 20 for detecting an intake air amount, and a crank angle sensor for generating a pulse signal at every constant rotation of an engine crankshaft (not shown). 22 is connected to a coolant temperature sensor 24 that is provided in a water jacket (not shown) of the engine cylinder block and outputs an analog voltage corresponding to the engine coolant temperature. Further, the control device 18 is connected to a fuel injection valve 26 for supplying fuel to the engine cylinder and a spark plug 28 for starting combustion of the fuel in the cylinder.
[0006]
The control device 18 is configured to use an upstream air-fuel ratio sensor 14, a downstream air-fuel ratio sensor 16, an air flow meter 20, a crank angle sensor 22, and a cooling water temperature sensor when a fuel having a predetermined specific property is used. Based on the signal from 24, the ignition timing of the spark plug 28 is controlled so that the optimal ignition timing is obtained according to the engine operating state. Further, the control device 18 controls the upstream air-fuel ratio sensor 14 and the downstream air-fuel ratio sensor 16 so that the air-fuel ratio is maintained in the vicinity of the theoretical air-fuel ratio when fuel having a predetermined specific property is used. The valve opening time of the fuel injection valve 26, that is, the air-fuel ratio is feedback controlled based on the signal from This air-fuel ratio feedback control is performed so that the output of the upstream O 2 sensor 14 fluctuates up and down around the theoretical air-fuel ratio equivalent output VR1 , as shown in FIG. 2A, that is, the air-fuel ratio is the stoichiometric air-fuel ratio. In the vicinity, the rich air-fuel ratio and the lean air-fuel ratio are alternately repeated.
[0007]
The catalyst 12 of the present embodiment is a three-way catalyst, the three-way catalyst can purify HC in the exhaust gas, CO, the three components of the NO X at the same time. The catalyst 12 adsorbs oxygen in the exhaust when the inflowing exhaust air-fuel ratio is lean (that is, when the air-fuel mixture is leaner than the stoichiometric air-fuel ratio in the engine combustion chamber), and the inflowing exhaust air When the fuel ratio is rich (when an air-fuel mixture richer than the stoichiometric air-fuel ratio is burned in the combustion chamber), an oxygen absorption / release action (O 2 storage action) is performed to release the adsorbed oxygen.
The air-fuel ratio sensor of this embodiment is an O 2 sensor, and this O 2 sensor generates an output voltage of 0 V when the air-fuel ratio is lean and 1 V when the air-fuel ratio is rich, as shown in FIG. across the stoichiometric air-fuel ratio corresponding output (comparison voltage) V R sharply changes at the stoichiometric air-fuel ratio near. That is, the O 2 sensors generate different output voltages depending on whether the exhaust air-fuel ratio is leaner or richer than the stoichiometric air-fuel ratio.
[0008]
Next, fuel property detection will be described. As described above, when the fuel having a predetermined property is used and the air-fuel ratio is feedback-controlled, the fluctuation frequency of the air-fuel ratio of the exhaust gas flowing out from the catalyst 12 becomes smaller due to the O 2 storage action of the catalyst 12, and therefore the downstream The output of the side O 2 sensor 16 alternately crosses the theoretical air-fuel ratio equivalent output VR2 at a frequency smaller than the output frequency of the upstream side O 2 sensor 14 as shown in FIG. On the other hand, when fuel having properties heavier than the predetermined properties is used and the air-fuel ratio is feedback controlled in the same manner as described above, the output of the downstream O 2 sensor 16 is as shown in FIG. The stoichiometric air-fuel ratio equivalent output VR2 is alternately traversed at a higher frequency than when a fuel having a predetermined property is used. The present invention detects the fuel property based on the difference in the output frequency of the downstream O 2 sensor associated with the fuel property.
Thus, when heavy fuel is used, the reason why the output frequency of the downstream O 2 sensor increases can be considered as follows. Heavy fuel has low volatility, and the amount of fuel consumed for combustion in the cylinder is small, and therefore the amount of oxygen consumed by combustion is also small. For this reason, on the upstream side of the catalyst 12, the oxygen and unburned fuel contained in the exhaust gas tend to be kept high. On the other hand, in the catalyst 12, unburned fuel is temporarily adsorbed on the catalyst 12, and the adsorbed unburned fuel is released from the catalyst 12 at a time after a short period. The released unburned fuel reacts with oxygen in the exhaust gas, and the oxygen concentration in the exhaust gas rapidly decreases. Therefore, the downstream O 2 sensor detects the lean state while the unburned fuel is adsorbed on the catalyst, and detects the rich state when the unburned fuel is released from the catalyst. Since the unburned fuel is adsorbed and released intermittently in a short cycle, it is considered that the output frequency of the downstream O 2 sensor increases.
In this embodiment, the output frequencies of the upstream O 2 sensor 14 and the downstream O 2 sensor 16 are detected, the ratio of these output frequencies is calculated, and the control stored in advance in the control device map corresponding to the output frequency ratio. The parameter value is read, and the valve opening time of the fuel injection valve 26 and the ignition timing of the spark plug 28 are corrected to the control parameter values. Specifically, when the fuel property is detected to be heavy, this correction increases the amount of fuel to be supplied by increasing the valve opening time of the fuel injection valve or the ignition timing of the spark plug. Advancing, that is, correcting to advance. Therefore, according to the present invention, since the fuel property is detected based on the output frequency ratio of the air-fuel ratio sensor, it is possible to detect over a relatively long period during engine operation, and the detection accuracy is improved.
[0009]
Next, referring to FIG. 3, a control flow of the present embodiment for detecting the fuel property and controlling the engine operating state based on the detected fuel property will be described. First, in step S310, it is determined whether or not it is after refueling. Whether or not it is after refueling is determined, for example, by detecting opening / closing of a fuel filler lid or an increase in fuel gauge. If it is determined in step S310 that the fuel has not been refueled, the processing is terminated assuming that the fuel being used has not changed. When it is determined in step S310 that it is after refueling, the process proceeds to step S312 and it is determined whether or not the detection condition is satisfied. The detection conditions are the warm-up state of the catalyst 12, that is, whether the catalyst 12 has reached the activation temperature, whether the O 2 sensor is activated, whether fuel injection feedback control is being performed, engine rotation The number and the load are within a predetermined range. If it is determined in step S312 that the detection condition is not satisfied, the process ends. When it is determined in step S312 that the detection condition is satisfied, the process proceeds to step S316, and the output frequency (VOM) of the upstream O 2 sensor 14 and the output frequency (VOS) of the downstream O 2 sensor 16 are detected. Proceed to S316. In step S316, the ratio of these output frequencies (VOS / VOM) is calculated, and the process proceeds to step S318. In step S318, based on the output frequency ratio calculated in step S316, the control parameter value corresponding to the output frequency ratio is read from the map stored in the control device 18, and the process proceeds to step S320. In step S320, the current control parameter value is corrected to the control parameter value, and the process ends.
[0010]
In the above embodiment, the control parameter value is corrected based on the output frequency ratio of the upstream and downstream O 2 sensors, but this does not limit the present invention, and the output frequency of the downstream O 2 sensor increases. then by utilizing the fact that the length of the output path of the downstream O 2 sensor increases, it is possible to correct the control parameter values based on the output locus length ratio of the O 2 sensor between the upstream and downstream . Further, since the output frequency of the upstream O 2 sensor does not fluctuate much in each engine operating state, it is possible to detect the fuel property only by changing the output frequency or the output trajectory length of the downstream O 2 sensor. Furthermore, when air-fuel ratio control is performed such that unburned fuel is generated when a fuel having a predetermined specific property is used, the lighter property than the fuel having the predetermined specific property is used. When this fuel is used, the output frequency of the downstream O 2 sensor becomes smaller, contrary to the above embodiment, and it is possible to detect that the property of the fuel is light using this fact. .
[0011]
【The invention's effect】
According to the present invention, since the property of the fuel is detected based on the ratio between the output frequency of the air-fuel ratio sensor upstream of the catalyst and the output frequency of the air-fuel ratio sensor downstream of the catalyst, detection is possible over a long detection period. Therefore , the fuel property can be detected with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an internal combustion engine according to the present invention.
2A shows an output waveform of the upstream O 2 sensor, FIG. 2B shows an output waveform of the downstream O 2 sensor when fuel having a predetermined property is used, and FIG. ) Is a diagram showing an output waveform of the downstream O 2 sensor when fuel heavier than a fuel having a predetermined property is used.
FIG. 3 is a flowchart showing a control flow for detecting a fuel property and controlling an engine operating state based on the detected fuel property.
FIG. 4 is a diagram illustrating output characteristics of an O 2 sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Exhaust passage 12 ... Catalyst 14 ... Upstream air-fuel ratio sensor 16 ... Downstream-side air-fuel ratio sensor 18 ... Control device 20 ... Air flow meter 22 ... Crank angle sensor 24 ... Coolant temperature sensor 26 ... Fuel injection valve 28 ... Spark plug

Claims (1)

内燃機関の排気通路に触媒を備え、該触媒の上流側と下流側とに空燃比を検出するための空燃比センサを配置した内燃機関において、前記触媒の上流側に配置された空燃比センサの出力周波数と、前記触媒の下流側に配置された空燃比センサの出力周波数との比に基づいて燃料の性状を検出することを特徴とする内燃機関の燃料性状検出装置。An internal combustion engine comprising a catalyst in an exhaust passage of an internal combustion engine, and an air-fuel ratio sensor for detecting an air-fuel ratio on the upstream side and the downstream side of the catalyst, an air-fuel ratio sensor disposed on the upstream side of the catalyst A fuel property detection device for an internal combustion engine, wherein the fuel property is detected based on a ratio between an output frequency and an output frequency of an air-fuel ratio sensor disposed downstream of the catalyst .
JP34607996A 1996-12-25 1996-12-25 Fuel property detection device for internal combustion engine Expired - Fee Related JP3627417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34607996A JP3627417B2 (en) 1996-12-25 1996-12-25 Fuel property detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34607996A JP3627417B2 (en) 1996-12-25 1996-12-25 Fuel property detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10184436A JPH10184436A (en) 1998-07-14
JP3627417B2 true JP3627417B2 (en) 2005-03-09

Family

ID=18381003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34607996A Expired - Fee Related JP3627417B2 (en) 1996-12-25 1996-12-25 Fuel property detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3627417B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7997063B2 (en) 2007-10-29 2011-08-16 Ford Global Technologies, Llc Controlled air-fuel ratio modulation air fuel sensor input
JP4906887B2 (en) * 2009-05-21 2012-03-28 三菱電機株式会社 Control device for internal combustion engine
JP5477031B2 (en) * 2010-02-12 2014-04-23 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JPH10184436A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP2592342B2 (en) Control device for internal combustion engine
US6594987B2 (en) Apparatus for detecting fault in exhaust system of internal combustion engine
US6314724B1 (en) Air-fuel ratio controller and method of controlling air-fuel ratio
US20040211168A1 (en) Deterioration detecting device for oxygen concentration sensor
US5092123A (en) Air-fuel ratio feedback control system having air-fuel ratio sensors upstream and downstream of three-way catalyst converter
JP3627417B2 (en) Fuel property detection device for internal combustion engine
JP2004108183A (en) Air-fuel ratio control device for internal combustion engine
JP3959781B2 (en) Misfire detection device and control device for direct injection spark ignition engine
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JPH07166938A (en) Air-fuel ratio controller of lean burn engine
JP2775676B2 (en) Fuel supply control device for internal combustion engine
KR100187783B1 (en) Engine control apparatus
JP3323223B2 (en) Engine exhaust gas purification device
JP4258733B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009024496A (en) Air-fuel ratio control system of internal combustion engine
JPS61135950A (en) Air-fuel ratio feedback control method for electronically controlled engine
JP2002030922A (en) Diagnostic apparatus for deteriorated condition of exhaust purifying catalyst
JPH08291739A (en) Air-fuel ratio control device
JP4268449B2 (en) Engine air-fuel ratio control device
JP3608443B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11229854A (en) Catalytic activity starting temperature detection device and catalyst deterioration detection device of internal combustion engine
JPH06323185A (en) Air-fuel ratio control device
JP2019157704A (en) Control device of internal combustion engine
JP2005337080A (en) Air-fuel ratio control device and air-fuel ratio control method in internal combustion engine
JPS61101639A (en) Air-fuel ratio controlling method for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees