JPH07166938A - Air-fuel ratio controller of lean burn engine - Google Patents

Air-fuel ratio controller of lean burn engine

Info

Publication number
JPH07166938A
JPH07166938A JP5317685A JP31768593A JPH07166938A JP H07166938 A JPH07166938 A JP H07166938A JP 5317685 A JP5317685 A JP 5317685A JP 31768593 A JP31768593 A JP 31768593A JP H07166938 A JPH07166938 A JP H07166938A
Authority
JP
Japan
Prior art keywords
nox
air
lean
fuel ratio
standard value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5317685A
Other languages
Japanese (ja)
Other versions
JP3350187B2 (en
Inventor
Koji Morikawa
弘二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP31768593A priority Critical patent/JP3350187B2/en
Priority to US08/355,190 priority patent/US5592919A/en
Priority to GB9425113A priority patent/GB2285701B/en
Priority to DE4444972A priority patent/DE4444972C2/en
Priority to DE4447858A priority patent/DE4447858C2/en
Publication of JPH07166938A publication Critical patent/JPH07166938A/en
Priority to US08/605,796 priority patent/US5636614A/en
Application granted granted Critical
Publication of JP3350187B2 publication Critical patent/JP3350187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02T10/44

Abstract

PURPOSE:To improve operability and surely decrease a discharge quantity of NOx by detecting concentration of the NOx in exhaust gas, and controlling an air-fuel ratio within a range between lean limitation of burn variation and allowable limitation of the discharge quantity of the NOx. CONSTITUTION:A burn variation condition is calculated by a burn variation rate calculation means 24 from the detected result of inter-cylinder pressure in an engine main body, and a discharge quantity of NOx in an engine is calculation by a NOx discharge quantity calculation 29 from the detected result of the NOx concentration in the exhaust gas. A burn variation condition is judged (27) by a calculated burn variation rate and a standard rate of the burn variation rate subjected to map-retrieving, and the NOx discharged condition is judged (32) by the calculated NOx discharge quantity and the standard value of the NOx discharge quantity subjected to map-retrieving. An air-fuel ratio is subjected to rich correction when the burn variation rate becomes larger than the standard value of the lean limitation, and then the air-fuel ratio is subjected to lean correction when the NOx discharged quantity becomes larger than the standard value of the allowable limitation of the NOx discharge quantity under respective operation conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用の希薄燃焼エン
ジンの混合気の希薄空燃比を制御する空燃比制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for controlling a lean air-fuel ratio of an air-fuel mixture of a lean burn engine for a vehicle.

【0002】[0002]

【従来の技術】近年、新世代の車両用の省燃費エンジン
として、例えば吸気の際に燃焼室内にスワール等の渦流
や乱流を生成するように改善し、理論空燃比より希薄空
燃比の混合気により燃焼することが可能な希薄燃焼エン
ジンの研究開発が盛んに行われている。この希薄燃焼エ
ンジンでは、混合気が希薄なためにHC,COの排出量
が元々少なくなり、これに反して完全燃焼化が進んでN
Oxの排出量が増加するが、或る空燃比以降では空燃比
の増大に応じNOxの排出量も減少して、排気ガスの点
でも有利になる。ところで希薄空燃比がリーン限界を越
えると、失火による燃焼変動が増し、トルク変動が大き
くなって運転性が悪化する。
2. Description of the Related Art In recent years, as a fuel-efficient engine for a new generation vehicle, it has been improved to generate swirl or turbulent flow such as swirl in a combustion chamber at the time of intake, and a lean air-fuel ratio is mixed rather than a theoretical air-fuel ratio. Research and development of lean-burn engines that can be burned by air are being actively conducted. In this lean burn engine, since the air-fuel mixture is lean, the amount of HC and CO emissions is originally small. On the contrary, complete combustion progresses and N
Although the Ox emission amount increases, after a certain air-fuel ratio, the NOx emission amount also decreases with an increase in the air-fuel ratio, which is also advantageous in terms of exhaust gas. When the lean air-fuel ratio exceeds the lean limit, combustion fluctuation due to misfire increases, torque fluctuation increases, and drivability deteriorates.

【0003】そこで希薄燃焼エンジンの空燃比制御で
は、混合気の空燃比をリーン制御して燃費を有効に向上
するが、このとき燃焼変動の状態をチェックしてリーン
限界を越えないように制御することで運転性を良好に保
つ。また実際のNOx排出状態をチェックして、空燃比
をNOx排出許容限界以下に制御することで、排気ガス
を確実に低減することが望まれる。
Therefore, in the air-fuel ratio control of the lean burn engine, the air-fuel ratio of the air-fuel mixture is lean-controlled to effectively improve the fuel consumption. At this time, the state of combustion fluctuation is checked so that the lean limit is not exceeded. That keeps the drivability good. Further, it is desired to reliably reduce the exhaust gas by checking the actual NOx emission state and controlling the air-fuel ratio to be equal to or lower than the NOx emission allowable limit.

【0004】従来、上記空燃比制御に関しては、例えば
特開昭60−27748号公報、特開昭58−3835
4号公報の先行技術があり、エンジン回転速度の変動、
トルクセンサによるトルク変動、及び筒内圧センサによ
る筒内圧変動を計測することにより、エンジンの燃焼変
動を検出する。そして空燃比を失火直前の燃費最良点に
リーン限界制御して、排気ガスの浄化と燃費の向上を同
時に達成することが示されている。また特開昭58−1
3137号公報の先行技術では、筒内圧によりNOx濃
度を間接的に推定し、このNOx濃度に基づいてEGR
等を制御して、NOxを低減することが示されている。
Conventionally, regarding the air-fuel ratio control, for example, JP-A-60-27748 and JP-A-58-3835.
There is a prior art of Japanese Patent No. 4 publication, and there is a fluctuation in engine rotation speed
The combustion fluctuation of the engine is detected by measuring the torque fluctuation by the torque sensor and the cylinder pressure fluctuation by the cylinder pressure sensor. It has been shown that lean limit control of the air-fuel ratio to the fuel efficiency best point immediately before a misfire is achieved to simultaneously achieve exhaust gas purification and fuel efficiency improvement. In addition, JP-A-58-1
In the prior art of Japanese Patent No. 3137, the NOx concentration is indirectly estimated by the in-cylinder pressure, and EGR is performed based on this NOx concentration.
Have been shown to be controlled to reduce NOx.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記先行技
術の前者にあっては、エンジン運転状態においてNOx
が実際に低減しているか否かをチェックしないため、空
燃比はNOx排出量の特性に基づいてリーン側に制御す
ることが余儀なくされ、運転性の悪化を生じ易い。後者
にあっては、NOx濃度に基づいてEGR等を制御する
ものであり、本発明の希薄空燃比制御には適応できない
等の問題がある。
By the way, in the former case of the above prior art, NOx is generated in the engine operating state.
Since it is not checked whether or not is actually reduced, the air-fuel ratio is forced to be controlled to the lean side based on the characteristics of the NOx emission amount, and the drivability is likely to deteriorate. In the latter case, the EGR and the like are controlled based on the NOx concentration, and there is a problem that it cannot be applied to the lean air-fuel ratio control of the present invention.

【0006】本発明は、このような点に鑑み、燃焼変動
とNOx排出状態をチェックして、希薄空燃比を両者の
間の適正な領域に制御し、燃費、排気ガス及び運転性を
確実に向上することを目的とする。
In view of such a point, the present invention checks the combustion fluctuation and the NOx emission state and controls the lean air-fuel ratio in an appropriate region between them to ensure fuel economy, exhaust gas and drivability. The purpose is to improve.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明は、希薄燃焼するエンジン本体の筒内圧を検出し
て、エンジンの燃焼変動状態を演算する燃焼変動率計算
手段と、排気ガス中のNOx濃度を検出して、エンジン
のNOx排出量を演算するNOx排出量計算手段とを備
えた希薄燃焼エンジンにおいて、前記燃焼変動率計算手
段と、予め定められた燃焼変動率標準値マップから検索
される標準値検索手段とから燃焼変動の状態を判断する
運転状態判定部と、前記NOx排出量計算手段と、予め
定められたNOx排出量標準値マップから検索される標
準値検索手段とからNOx排出状態を判断する排気ガス
判定手段とにより、実際の燃焼変動率が各運転条件での
燃焼変動率のリーン限界の標準値より大きくなると、空
燃比をリッチ補正し、実際のNOx排出量が各運転条件
でのNOx排出量の許容限界の標準値より大きくなる
と、空燃比をリーン補正することを特徴とする。
In order to achieve this object, the present invention is directed to a combustion fluctuation rate calculating means for detecting the cylinder internal pressure of a lean burning engine body and calculating the combustion fluctuation state of the engine, and an exhaust gas In a lean-burn engine equipped with a NOx emission amount calculation means for calculating the NOx concentration of the engine and calculating the NOx emission amount of the engine, a search is made from the combustion variation rate calculation means and a predetermined combustion variation rate standard value map. NOx from the operating state determination unit that determines the state of combustion fluctuations from the standard value search unit, the NOx emission amount calculation unit, and the standard value search unit that is searched from a predetermined NOx emission amount standard value map. When the actual combustion fluctuation rate becomes larger than the standard value of the lean limit of the combustion fluctuation rate under each operating condition, the air-fuel ratio is richly corrected by the exhaust gas judging means that judges the emission state. , The actual NOx emission amount is larger than the standard value of the allowable limits of NOx emissions in the operating condition, characterized by leaning the air-fuel ratio.

【0008】[0008]

【作用】上記構成により本発明では、希薄燃焼エンジン
の空燃比がNOxの少ない希薄空燃比に制御され、この
場合に筒内圧により実際の燃焼変動の状態を判断して、
空燃比がリーン限界よりリッチ側に制御されて運転性が
良好に確保される。また実際のNOx濃度によりNOx
排出状態を判断して、空燃比がNOx排出量の許容限界
よりリーン側に制御され、このため排気ガスも確実に低
減する。
With the above structure, in the present invention, the air-fuel ratio of the lean-burn engine is controlled to a lean air-fuel ratio with a small amount of NOx. In this case, the state of actual combustion fluctuation is judged by the cylinder pressure,
The air-fuel ratio is controlled to be richer than the lean limit, and good drivability is ensured. Also, depending on the actual NOx concentration, NOx
By determining the exhaust state, the air-fuel ratio is controlled to the lean side from the allowable limit of the NOx emission amount, so that the exhaust gas is also reliably reduced.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1において希薄燃焼エンジンの全体の構成につ
いて説明する。符号1は希薄燃焼するエンジン本体であ
り、エンジン本体1の吸気系では、エアクリーナ2がダ
クト3、スロットル弁4を備えたスロットルボデー5、
吸気マニホールド6を介して連通され、吸気マニホール
ド6の各気筒毎に燃料噴射するインジェクタ7が装着さ
れている。エンジン本体1の吸気マニホールド6には、
図示しないスワールやタンブルの発生手段が設けられ、
吸気の際に燃焼室内に渦流や乱流を発生して、理論空燃
比より希薄空燃比の混合気により燃焼することが可能に
構成される。
Embodiments of the present invention will be described below with reference to the drawings. The overall structure of the lean burn engine will be described with reference to FIG. Reference numeral 1 denotes a lean burn engine body, and in the intake system of the engine body 1, an air cleaner 2 has a duct 3, a throttle body 5 having a throttle valve 4,
An injector 7 that is communicated with the intake manifold 6 and injects fuel into each cylinder of the intake manifold 6 is mounted. In the intake manifold 6 of the engine body 1,
A means for generating swirls and tumbles (not shown) is provided,
A vortex or a turbulent flow is generated in the combustion chamber at the time of intake, and combustion can be performed by a mixture having a lean air-fuel ratio rather than the stoichiometric air-fuel ratio.

【0010】また希薄燃焼エンジンでは、燃料が薄くて
排気ガス中の有害成分のHC,COが少なくなるので、
特にNOxの低減が必要になる。このためエンジン本体
1の排気マニホールド8には排気ガス浄化装置として、
リーンNOx触媒コンバータ10が装着され、排気ガス
の主としてNOxを、リーンNOx触媒により高温で還
元反応させて浄化処理するように構成される。そしてリ
ーンNOx触媒コンバータ10が更に排気管11を介し
てマフラー9に連通される。
In a lean burn engine, the fuel is thin and the harmful components HC and CO in the exhaust gas are small, so
In particular, it is necessary to reduce NOx. Therefore, the exhaust manifold 8 of the engine body 1 has an exhaust gas purifying device,
The lean NOx catalytic converter 10 is mounted, and is configured to reduce NOx in exhaust gas mainly by a lean NOx catalyst at a high temperature for purification treatment. The lean NOx catalytic converter 10 is further communicated with the muffler 9 via the exhaust pipe 11.

【0011】続いて、制御系について説明する。先ず、
制御原理について説明すると、特に燃焼後の膨張行程に
おける筒内圧を検出することで、燃焼変動の状態を判断
でき、排気系のNOx濃度を検出することで、実際のN
Ox排出量を算出できる。空燃比(A/F)に対するN
Ox排出量と燃焼変動率の特性を示すと、図2のように
なる。
Next, the control system will be described. First,
The control principle will be explained. Particularly, by detecting the in-cylinder pressure in the expansion stroke after combustion, the state of combustion fluctuation can be determined, and by detecting the NOx concentration in the exhaust system, the actual N
Ox emissions can be calculated. N for air-fuel ratio (A / F)
FIG. 2 shows the characteristics of the Ox emission amount and the combustion fluctuation rate.

【0012】即ち、NOx排出量は、空燃比が理論空燃
比の14.7より大きくなってリーン制御されると、空
燃比が16付近で最大になり、それ以降は空燃比の増大
に応じて徐々に少なくなる。そこでこの特性において、
空燃比が例えば19の点aが、排気ガス中のNOx排出
量の許容限界になる。また燃焼変動率は、空燃比のリー
ン側で小さい状態が続くが、空燃比が例えば23付近か
ら急激に大きくなり始める。そこで空燃比が24の点b
が、燃焼変動に対するリーン限界となる。従って、希薄
空燃比はこれら点a〜b、即ち空燃比が19〜24の領
域に制御するば良いことが理解される。
That is, when the air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio of 14.7 and the lean control is performed, the NOx emission amount becomes maximum near 16 and thereafter the NOx emission amount increases in accordance with the increase of the air-fuel ratio. Gradually less. So in this characteristic,
A point a where the air-fuel ratio is 19, for example, is the allowable limit of the NOx emission amount in the exhaust gas. Further, the combustion fluctuation rate continues to be small on the lean side of the air-fuel ratio, but the air-fuel ratio starts to rapidly increase from around 23, for example. Therefore, the point b where the air-fuel ratio is 24
Is the lean limit for combustion fluctuations. Therefore, it is understood that the lean air-fuel ratio should be controlled to these points a to b, that is, the region where the air-fuel ratio is 19 to 24.

【0013】そこで吸入空気量Qを検出するエアフロー
メータ12、エンジン回転数Nを検出するクランク角セ
ンサ13の信号が制御ユニット20に入力する。またエ
ンジン本体1の各気筒毎に筒内圧Pを検出する筒内圧セ
ンサ14が取付けられ、排気管8にNOx濃度NOxc
oncを検出するNOx濃度センサ15が取付けられ、
これらセンサ信号も制御ユニット20に入力する。
Then, signals from the air flow meter 12 for detecting the intake air amount Q and the crank angle sensor 13 for detecting the engine speed N are input to the control unit 20. Further, an in-cylinder pressure sensor 14 that detects an in-cylinder pressure P is attached to each cylinder of the engine body 1, and the exhaust pipe 8 has a NOx concentration NOxc.
NOx concentration sensor 15 for detecting onc is attached,
These sensor signals are also input to the control unit 20.

【0014】制御ユニット20は、エンジン回転数Nと
吸入空気量Qとが入力する運転条件判定手段21を有
し、両方のパラメータによりエンジン運転条件を判定す
る。運転条件の信号は燃料噴射量演算手段22に入力
し、希薄燃焼エンジンの各運転条件に応じて燃料噴射量
Tiを、NOxの少ない希薄空燃比になるように演算
し、この噴射信号を所定のタイミングでインジェクタ7
に出力する。
The control unit 20 has an operating condition judging means 21 for inputting the engine speed N and the intake air amount Q, and judges the engine operating condition by both parameters. The signal of the operating condition is input to the fuel injection amount calculation means 22, and the fuel injection amount Ti is calculated according to each operating condition of the lean burn engine so that the lean air fuel ratio with less NOx is obtained, and this injection signal is given. Injector 7 at the timing
Output to.

【0015】筒内圧Pと運転条件の信号は筒内圧検出手
段23に入力して、各運転条件での筒内圧Pを検出し、
この筒内圧Pは燃焼変動率計算手段24に入力して筒内
圧Pの変化に基づいて実際の燃焼変動率Bを求める。ま
た運転条件の信号は燃焼変動率標準値検索手段25に入
力し、燃焼変動率標準マップ26を参照して各運転条件
でのリーン限界の標準値Bmaxを検索する。そして実
際の燃焼変動率Bとリーン限界の標準値Bmaxは運転
状態判定手段27に入力して両者を比較し、B>Bma
xの場合は燃料噴射量演算手段22に空燃比のリッチ化
を指示する。
The in-cylinder pressure P and the operating condition signal are input to the in-cylinder pressure detecting means 23 to detect the in-cylinder pressure P under each operating condition.
This in-cylinder pressure P is input to the combustion variation rate calculating means 24 to obtain the actual combustion variation rate B based on the change in the in-cylinder pressure P. The operating condition signal is input to the combustion fluctuation rate standard value search means 25, and the combustion fluctuation rate standard map 26 is referenced to search for the lean limit standard value Bmax under each operating condition. Then, the actual combustion fluctuation rate B and the lean limit standard value Bmax are input to the operating state determination means 27 to compare the two, and B> Bma.
In the case of x, the fuel injection amount calculation means 22 is instructed to enrich the air-fuel ratio.

【0016】NOx濃度NOxconcと運転条件の信
号は、NOx濃度検出手段28に入力して、各運転条件
でのNOx濃度NOxconcを検出する。このNOx
濃度NOxconcは、NOx排出量計算手段29に入
力し、吸入空気量Q,NOx濃度NOxconc及びN
Oxの比重γを乗算して実際のNOx排出量Aを算出す
る。また運転条件の信号は、NOx排出量標準値検索手
段30に入力し、NOx排出量標準マップ31を参照し
て、各運転条件での許容限界の標準値Amaxを検索す
る。そして実際のNOx排出量Aと許容限界の標準値A
maxは、排気ガス判定手段32に入力して両者を比較
し、A>Amaxの場合は燃料噴射量演算手段22に空
燃比のリーン化を指示する。
The NOx concentration NOxconc and operating condition signals are input to the NOx concentration detecting means 28 to detect the NOx concentration NOxconc under each operating condition. This NOx
The concentration NOxconc is input to the NOx emission amount calculation means 29, and the intake air amount Q, the NOx concentration NOxconc and N are input.
The actual NOx emission amount A is calculated by multiplying the specific gravity γ of Ox. Further, the signal of the operating condition is input to the NOx emission standard value search means 30, and the standard value Amax of the allowable limit under each operating condition is searched by referring to the NOx emission standard map 31. And the actual NOx emission amount A and the standard value A of the allowable limit
max is input to the exhaust gas determination means 32 to compare the two, and when A> Amax, the fuel injection amount calculation means 22 is instructed to make the air-fuel ratio lean.

【0017】燃料噴射量演算手段22は、上述のように
燃料噴射量Tiを希薄空燃比に演算し、更に燃焼変動率
Bによるリッチ化指示またはNOx排出量Aによるリー
ン化指示で増量または減量補正する。また燃費重視や走
行性重視のモードにより全体的に減量または増量し、こ
れにより空燃比を常に図2の点a〜bの領域に保つよう
に空燃比制御する。尚、制御ユニット20は、種々の入
力情報により運転状態に応じた適切な点火時期を決定し
て、この点火信号をイグナイタに出力するように構成さ
れる。
The fuel injection amount calculation means 22 calculates the fuel injection amount Ti as a lean air-fuel ratio as described above, and further increases or decreases the amount by the enrichment instruction by the combustion variation rate B or the lean instruction by the NOx emission amount A. To do. Further, the fuel amount is emphasized or the traveling property is emphasized, so that the overall amount is decreased or increased, whereby the air-fuel ratio is controlled so that the air-fuel ratio is always maintained in the region of points a to b in FIG. It should be noted that the control unit 20 is configured to determine an appropriate ignition timing according to the operating state based on various input information and output this ignition signal to the igniter.

【0018】次に、この実施例の作用について説明す
る。先ず、エンジン運転時にはスロットル弁4の開度に
応じて空気がエンジン本体1に吸入され、このとき吸気
マニホールド6のスワール発生手段により燃焼室内に渦
流等を発生する。また吸入空気量Qとエンジン回転数N
による各運転条件に応じて燃料噴射量Tiが、実質的に
NOxの少ない希薄空燃比になるように算出され、この
燃料がインジェクタ7により所定の噴射タイミングで噴
射される。そこで燃焼室内の空気と燃料の混合気は渦流
の発生と共に、点火プラグ付近が濃くてその周囲が薄く
なるように成層化した混合気に点火プラグにより着火す
ることで、希薄空燃比の混合気が良好に燃焼し、良好な
燃費と運転性が得られる。
Next, the operation of this embodiment will be described. First, during engine operation, air is drawn into the engine body 1 in accordance with the opening of the throttle valve 4, and at this time swirl flow is generated in the combustion chamber by the swirl generating means of the intake manifold 6. Also, intake air amount Q and engine speed N
The fuel injection amount Ti is calculated in accordance with each operating condition according to the above so as to have a lean air-fuel ratio with substantially less NOx, and this fuel is injected by the injector 7 at a predetermined injection timing. Therefore, the air-fuel mixture in the combustion chamber generates a vortex, and the ignition plug ignites the stratified mixture so that the vicinity of the spark plug is thicker and the periphery thereof is thinner. Good combustion, good fuel economy and drivability are obtained.

【0019】一方、希薄燃焼による排気ガスはエンジン
本体1から排気マニホールド8に排出されるが、この場
合に希薄空燃比のために排気ガス中では、HC,COの
未燃焼分が少なくなるので、特にNOxの低減が必要に
なる。このNOxを含む排気ガスはリーンNOx触媒コ
ンバータ10に導入し、そのNOxが高温でリーンNO
x触媒により還元反応して浄化処理される。そしてリー
ンNOx触媒コンバータ10で浄化された排気ガスが、
更に下流のマフラー9を通過して排出される。
On the other hand, the exhaust gas resulting from lean combustion is discharged from the engine body 1 to the exhaust manifold 8. In this case, however, the unburned amount of HC and CO is reduced in the exhaust gas due to the lean air-fuel ratio. In particular, it is necessary to reduce NOx. The exhaust gas containing this NOx is introduced into the lean NOx catalytic converter 10, and the NOx is lean at high temperature.
The x-catalyst undergoes a reduction reaction for purification treatment. The exhaust gas purified by the lean NOx catalytic converter 10 is
Further, it passes through the muffler 9 located downstream and is discharged.

【0020】続いて、上記希薄燃焼エンジン運転時の空
燃比制御を、図3のフローチャートを用いて説明する。
先ず、ステップS1でエンジン回転数Nと吸入空気量Q
により運転条件を判断し、ステップS2で筒内圧Pを検
出し、ステップS3で燃焼変動率Bを計算し、ステップ
S4でマップにより燃焼変動率のリーン限界の標準値B
maxを検索する。そしてステップS5で実際の燃焼変
動率Bとそのリーン限界の標準値Bmaxとを比較し、
空燃比がリーン限界を越えて失火により燃焼変動が増
し、B>Bmaxになると、ステップS6へ進み燃料を
増量して希薄空燃比がリッチに補正される。そこで失火
と共に燃焼変動が抑制されて、運転性の悪化が防止され
る。
Next, the air-fuel ratio control during the operation of the lean burn engine will be described with reference to the flowchart of FIG.
First, in step S1, engine speed N and intake air amount Q
The operating condition is determined by the following, the in-cylinder pressure P is detected in step S2, the combustion variation rate B is calculated in step S3, and the lean variation standard value B of the combustion variation rate is calculated by the map in step S4.
Search for max. Then, in step S5, the actual combustion fluctuation rate B is compared with the lean limit standard value Bmax,
When the air-fuel ratio exceeds the lean limit and combustion fluctuations increase due to misfire, and B> Bmax, the process proceeds to step S6, the amount of fuel is increased, and the lean air-fuel ratio is corrected to rich. Therefore, combustion fluctuations are suppressed along with misfires, and deterioration of drivability is prevented.

【0021】またB≦Bmaxにより燃焼変動の少ない
リッチ側に制御されている場合は、ステップS5からス
テップS7へ進み実際のNOx濃度NOxconcを検
出し、ステップS8でNOx排出量Aを算出する。また
ステップS9で運転条件に応じたNOx排出量の許容限
界の標準値Amaxを検索し、ステップS10で両者を
比較する。そこでNOx排出量Aが許容限界を越えて排
気ガスが悪化し、A>Amaxになると、ステップS1
1へ進み上述と逆に燃料を減量して空燃比がリーンに補
正される。このため空燃比のリーン化でNOxの排出量
が少なくなって、排気ガスが良くなる。
When the combustion is controlled to the rich side where the combustion fluctuation is small by B ≦ Bmax, the routine proceeds from step S5 to step S7, the actual NOx concentration NOxconc is detected, and the NOx emission amount A is calculated in step S8. Further, in step S9, the standard value Amax of the allowable limit of the NOx emission amount according to the operating condition is searched, and in step S10, both are compared. Therefore, when the NOx emission amount A exceeds the allowable limit and the exhaust gas deteriorates and A> Amax, step S1
Continuing to step 1, the amount of fuel is reduced and the air-fuel ratio is corrected to lean. Therefore, the lean air-fuel ratio reduces the amount of NOx emissions and improves the exhaust gas.

【0022】そしてA≦Amaxでは、排気ガスも良好
な状態になって、図2の点a〜bの適正な空燃比にある
ことが判断される。この場合はステップS10からステ
ップS12へ進み、燃費重視や走行性重視のモードをチ
ェックし、燃費重視ではステップS11へ進み空燃比が
リーン側に制御されて最大限燃費が向上する。また走行
性重視ではステップS6へ進み空燃比がリッチ側に制御
され、これにより空燃比が濃い目になって振動等が良く
なる。
When A≤Amax, it is determined that the exhaust gas is in a good state and the air-fuel ratio at points a and b in FIG. 2 is appropriate. In this case, the process proceeds from step S10 to step S12 to check the mode of emphasizing the fuel efficiency or the traveling property. If the fuel economy is important, the process proceeds to step S11, the air-fuel ratio is controlled to the lean side, and the maximum fuel economy is improved. Further, when the traveling property is emphasized, the routine proceeds to step S6, where the air-fuel ratio is controlled to the rich side, so that the air-fuel ratio becomes dark and the vibration and the like are improved.

【0023】こうして希薄燃焼エンジンの希薄空燃比
は、常に燃焼変動のリーン限界bとNOx排出量の許容
限界aとの間の領域に制御され、これにより運転性と排
気ガスとが同時に良好に確保される。そして排気ガス中
のNOxが許容限界以下に制御されることで、排気系の
リーンNOx触媒コンバータ10ではNOxが常に安定
して浄化される。
In this way, the lean air-fuel ratio of the lean burn engine is always controlled in the region between the lean limit b of the combustion fluctuation and the allowable limit a of the NOx emission amount, thereby ensuring good drivability and exhaust gas at the same time. To be done. The NOx in the exhaust gas is controlled to be equal to or lower than the allowable limit, so that the lean NOx catalytic converter 10 in the exhaust system always purifies NOx stably.

【0024】以上、本発明の実施例について説明した
が、これのみに限定されない。
Although the embodiment of the present invention has been described above, the present invention is not limited to this.

【0025】[0025]

【発明の効果】以上に説明したように本発明によると、
希薄燃焼エンジンにおいて排気ガス中の実際のNOx濃
度を検出して、そのNOx排出状態を判断し、空燃比を
燃焼変動のリーン限界とNOx排出量の許容限界との間
の領域に制御するので、運転性と共に排気ガス中のNO
xも確実に低減できる。また空燃比制御の領域がリッチ
側に拡大して、走行性重視の場合には振動低減も可能で
ある。各運転条件毎に燃焼変動とその標準値を比較して
運転状態を判断し、且つNOx排出量とその標準値を比
較して排気ガス状態を判断して、空燃比をリッチまたは
リーンに制御するので、制御の精度が高い。
As described above, according to the present invention,
In a lean burn engine, the actual NOx concentration in the exhaust gas is detected, the NOx emission state is determined, and the air-fuel ratio is controlled in the region between the lean limit of combustion fluctuation and the allowable limit of NOx emission. Operability and NO in exhaust gas
x can also be reliably reduced. Further, the air-fuel ratio control region is expanded to the rich side, and vibration can be reduced when the traveling performance is emphasized. For each operating condition, the combustion fluctuation is compared with its standard value to determine the operating state, and the NOx emission amount is compared with its standard value to determine the exhaust gas state, and the air-fuel ratio is controlled to rich or lean. Therefore, the control accuracy is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る希薄燃焼エンジンの空燃比制御装
置に適した実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment suitable for an air-fuel ratio control device for a lean burn engine according to the present invention.

【図2】空燃比に対するNOx排出量と燃焼変動率の関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a NOx emission amount and a combustion fluctuation rate with respect to an air-fuel ratio.

【図3】空燃比制御のフローチャートである。FIG. 3 is a flowchart of air-fuel ratio control.

【符号の説明】[Explanation of symbols]

1 エンジン本体 14 筒内圧センサ 15 NOx濃度センサ 20 制御ユニット 1 Engine Body 14 Cylinder Pressure Sensor 15 NOx Concentration Sensor 20 Control Unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希薄燃焼するエンジン本体の筒内圧を検
出して、エンジンの燃焼変動状態を演算する燃焼変動率
計算手段と、排気ガス中のNOx濃度を検出して、エン
ジンのNOx排出量を演算するNOx排出量計算手段と
を備えた希薄燃焼エンジンにおいて、 前記燃焼変動率計算手段と、予め定められた燃焼変動率
標準値マップから検索される標準値検索手段とから燃焼
変動の状態を判断する運転状態判定部と、前記NOx排
出量計算手段と、予め定められたNOx排出量標準値マ
ップから検索される標準値検索手段とからNOx排出状
態を判断する排気ガス判定手段とにより、実際の燃焼変
動率が各運転条件での燃焼変動率のリーン限界の標準値
より大きくなると、空燃比をリッチ補正し、実際のNO
x排出量が各運転条件でのNOx排出量の許容限界の標
準値より大きくなると、空燃比をリーン補正することを
特徴とする希薄燃焼エンジンの空燃比制御装置。
1. A NOx emission amount of an engine is detected by detecting a combustion variation rate calculating means for calculating a combustion variation state of the engine by detecting an in-cylinder pressure of a lean burning engine body and a NOx concentration in exhaust gas. In a lean-burn engine provided with a NOx emission amount calculating means for calculating, a state of combustion fluctuation is judged from the combustion fluctuation rate calculating means and a standard value searching means searched from a predetermined combustion fluctuation rate standard value map. The operating state determination unit, the NOx emission amount calculation unit, and the exhaust gas determination unit that determines the NOx emission state from the standard value search unit searched from the predetermined NOx emission amount standard value map. When the combustion fluctuation rate becomes larger than the standard value of the lean limit of the combustion fluctuation rate under each operating condition, the air-fuel ratio is rich-corrected and the actual NO
An air-fuel ratio control device for a lean-burn engine, wherein the air-fuel ratio is lean-corrected when the x emission amount exceeds a standard value of an allowable limit of the NOx emission amount under each operating condition.
JP31768593A 1993-12-17 1993-12-17 Air-fuel ratio control device for lean burn engine Expired - Fee Related JP3350187B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP31768593A JP3350187B2 (en) 1993-12-17 1993-12-17 Air-fuel ratio control device for lean burn engine
US08/355,190 US5592919A (en) 1993-12-17 1994-12-08 Electronic control system for an engine and the method thereof
GB9425113A GB2285701B (en) 1993-12-17 1994-12-13 An electronic control system for an engine and the method thereof
DE4444972A DE4444972C2 (en) 1993-12-17 1994-12-16 Electronic control method and control system for an engine
DE4447858A DE4447858C2 (en) 1993-12-17 1994-12-16 Electronic control system for high economy ic. engine
US08/605,796 US5636614A (en) 1993-12-17 1996-02-22 Electronic control system for an engine and the method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31768593A JP3350187B2 (en) 1993-12-17 1993-12-17 Air-fuel ratio control device for lean burn engine

Publications (2)

Publication Number Publication Date
JPH07166938A true JPH07166938A (en) 1995-06-27
JP3350187B2 JP3350187B2 (en) 2002-11-25

Family

ID=18090885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31768593A Expired - Fee Related JP3350187B2 (en) 1993-12-17 1993-12-17 Air-fuel ratio control device for lean burn engine

Country Status (1)

Country Link
JP (1) JP3350187B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515894A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Improved control method and apparatus for an oxygen pump cell of a sensor in an internal combustion engine or an exhaust gas aftertreatment system of the engine
JP2020070769A (en) * 2018-11-01 2020-05-07 マツダ株式会社 Control device for engine
JP2020070770A (en) * 2018-11-01 2020-05-07 マツダ株式会社 Control device for engine
US10767581B2 (en) 2015-10-02 2020-09-08 Vitesco Technologies GmbH Method for operating an internal combustion engine for a motor vehicle, and a system for an internal combustion engine
JP2020169595A (en) * 2019-04-02 2020-10-15 マツダ株式会社 Control device and control method for internal combustion engine
CN111936731A (en) * 2018-04-09 2020-11-13 株式会社电装 Air-fuel ratio control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515894A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Improved control method and apparatus for an oxygen pump cell of a sensor in an internal combustion engine or an exhaust gas aftertreatment system of the engine
US9341593B2 (en) 2009-12-23 2016-05-17 Fpt Motorenforschung Ag Control method and device for oxygen pump cells of sensors in internal combustion engines or exhaust gas after treatment systems of such engines
US10767581B2 (en) 2015-10-02 2020-09-08 Vitesco Technologies GmbH Method for operating an internal combustion engine for a motor vehicle, and a system for an internal combustion engine
CN111936731A (en) * 2018-04-09 2020-11-13 株式会社电装 Air-fuel ratio control device
CN111936731B (en) * 2018-04-09 2022-12-09 株式会社电装 Air-fuel ratio control device
JP2020070769A (en) * 2018-11-01 2020-05-07 マツダ株式会社 Control device for engine
JP2020070770A (en) * 2018-11-01 2020-05-07 マツダ株式会社 Control device for engine
JP2020169595A (en) * 2019-04-02 2020-10-15 マツダ株式会社 Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
JP3350187B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
US5592919A (en) Electronic control system for an engine and the method thereof
US6354264B1 (en) Control system for self-ignition type gasoline engine
JP2592342B2 (en) Control device for internal combustion engine
EP0926327B1 (en) Combustion controller and method for lean burn engines
JP2011027059A (en) Engine cotrol apparatus
JPH0571397A (en) Air-fuel ratio control device of internal combustion engine
JP2013204511A (en) Control apparatus for internal combustion engine
JPWO2012077164A1 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP4054547B2 (en) Control device for internal combustion engine
JP2000282920A (en) Control device of internal combustion engine
JP3350187B2 (en) Air-fuel ratio control device for lean burn engine
US9032942B2 (en) Control apparatus and control method for internal combustion engine
JP3775942B2 (en) Fuel injection control device for internal combustion engine
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP3627417B2 (en) Fuel property detection device for internal combustion engine
JP4126942B2 (en) Internal combustion engine control device
JP3834951B2 (en) Air-fuel ratio control device for internal combustion engine
JP3323223B2 (en) Engine exhaust gas purification device
JPH07208272A (en) Egr control device of engine
JP2000257476A (en) Control unit for in-cylinder injection engine
JP3633283B2 (en) Evaporative fuel processing device for internal combustion engine
JP4443835B2 (en) Control device for internal combustion engine
JP2022083541A (en) Control device of internal combustion engine
JPS62189350A (en) Engine control device
JP2003097313A (en) Exhaust emission control device for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees