JPH07208272A - Egr control device of engine - Google Patents

Egr control device of engine

Info

Publication number
JPH07208272A
JPH07208272A JP6006577A JP657794A JPH07208272A JP H07208272 A JPH07208272 A JP H07208272A JP 6006577 A JP6006577 A JP 6006577A JP 657794 A JP657794 A JP 657794A JP H07208272 A JPH07208272 A JP H07208272A
Authority
JP
Japan
Prior art keywords
rate
ratio
egr
combustion fluctuation
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6006577A
Other languages
Japanese (ja)
Inventor
Koji Morikawa
弘二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP6006577A priority Critical patent/JPH07208272A/en
Priority to US08/355,190 priority patent/US5592919A/en
Priority to GB9425113A priority patent/GB2285701B/en
Priority to DE4447858A priority patent/DE4447858C2/en
Priority to DE4444972A priority patent/DE4444972C2/en
Publication of JPH07208272A publication Critical patent/JPH07208272A/en
Priority to US08/605,796 priority patent/US5636614A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To realize the EGR control where the reduction of the NOX rate of discharge and the supression of the combustion fluctuation ratio are consistent. CONSTITUTION:The combustion fluctuation ratio is calculated by a combustion fluctuation ratio calculating means M4 based on the pressure in the cylinder to be detected by an in- cylinder pressure sensor, and the combustion fluctuation ratio is compared with the allowable limit value of the combustion fluctuation ratio in the present operating condition by a combustion fluctuation ratio comparing means M5. On the other hand, NOX ratio of discharge is obtained by the NOX concentration detected by a NOX concentration sensor and the sucked air volume by a NOX ratio of discharge calculating means M6, and the NOX ratio of discharge is compared with the NOX ratio of discharge allowable limit value by a NOX ratio of discharge comparing means M7. The target EGR ratio is set by a target EGR ratio setting means M9 so that the combusion fluctuation ratio may be lower than the combustion fluctuation ratio allowable limit value, and the NOX ratio of discharge may be lower than the NOX ratio of discharge allowable limit value. The driving signal corresponding to this target EGR is outputted to an EGR valve 18 through an EGR valve driving circuit 30. The EGR control is realized both from the combustion fluctuation ratio and from the NOX ratio of discharge, and the reduction of the NOX ratio of discharge can be consistent with the improvement of the traveling performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化物
排出率の低減と走行性能の向上との両立を図るエンジン
のEGR制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an EGR control device for an engine which achieves both reduction of nitrogen oxide emission rate in exhaust gas and improvement of running performance.

【0002】[0002]

【従来の技術】従来から、燃焼時の窒素酸化物(以下、
「NOX」と略称)生成抑制の有力な手段として、排ガ
スの一部を吸気に混合することで筒内ガスの熱容量を増
大させて相対的に燃焼中のガス温度を下げる排気再循環
(以下、「EGR」と略称)制御が広く採用されてい
る。しかし、EGR量が多いと燃焼変動を起因し、出力
低下、燃費悪化、走行性能の不安定化を招くので、必要
最小限にとどめなければならないことも知られている。
2. Description of the Related Art Conventionally, nitrogen oxides during combustion (hereinafter referred to as
As an effective means of suppressing the generation of “NOX”, exhaust gas recirculation (hereinafter, referred to as “NOX”) increases a heat capacity of in-cylinder gas by mixing a part of exhaust gas with intake air to relatively lower the gas temperature during combustion. Abbreviation as "EGR") control is widely adopted. However, it is also known that if the amount of EGR is large, the fluctuation in combustion causes the decrease in output, the deterioration in fuel consumption, and the instability of the running performance, and therefore the amount must be kept to the minimum necessary.

【0003】例えば、特開平2−252958号公報で
は、エンジンの運転条件によりEGR制御域をフィード
バック制御域とオープンループ制御域とに画定し、フィ
ードバック制御域では、アクセル開度とエンジン回転数
とをパラメータとしてマップ検索により当該運転状態で
の目標となるEGR率を設定して、EGR供給量を制御
する技術が開示されている。
For example, in Japanese Unexamined Patent Publication No. 2-252958, the EGR control range is defined into a feedback control range and an open loop control range according to the operating conditions of the engine. In the feedback control range, the accelerator opening and the engine speed are set. A technique is disclosed in which a target EGR rate in the operating state is set by a map search as a parameter and the EGR supply amount is controlled.

【0004】また、特開平2−298657号公報に
は、燃焼室内で発生する燃焼光の強度に応じてEGR量
制御を行うことで、燃焼速度の急激な上昇を回避してN
OXの発生を抑制する技術が開示されている。
Further, in Japanese Unexamined Patent Publication No. 2-298657, the EGR amount is controlled according to the intensity of the combustion light generated in the combustion chamber to avoid a rapid increase of the combustion speed.
A technique for suppressing the generation of OX is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記特開平2
−252958号公報に開示されたEGR制御では、目
標EGR率が運転条件により決定されるので、NOX発
生量に対応したEGR制御を行うことはできるが、NO
X排出量の低減に伴う燃焼変動を抑制することはでき
ず、EGR制御域において常に良好な走行性能を得るこ
とはできない。
However, the above-mentioned Japanese Unexamined Patent Application Publication No.
In the EGR control disclosed in Japanese Patent No. 252958, the target EGR rate is determined by the operating condition, so it is possible to perform the EGR control corresponding to the NOx generation amount, but NO
It is not possible to suppress combustion fluctuations due to the reduction of the X emission amount, and it is not possible to always obtain good running performance in the EGR control range.

【0006】この点、上記特開平2−298657号公
報では、燃焼状態を光強度で検出しているため、燃焼状
態に対応したEGR制御を行うことはできるが、NOX
排出量を検出していないため、EGR供給量の制御精度
に問題がある。
In this respect, in the above-mentioned Japanese Patent Laid-Open No. 2-298657, since the combustion state is detected by the light intensity, it is possible to perform EGR control corresponding to the combustion state, but NOX.
Since the emission amount is not detected, there is a problem in the control accuracy of the EGR supply amount.

【0007】本発明は、上記事情に鑑みてなされたもの
で、燃焼変動の抑制とNOX排出量の低減との双方を両
立して、良好な制御精度を得ることができるとともに、
運転者の要求に沿う運転性能を得ることのできるエンジ
ンのEGR制御装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and it is possible to obtain good control accuracy while achieving both suppression of combustion fluctuation and reduction of NOx emission amount.
It is an object of the present invention to provide an EGR control device for an engine that can obtain driving performance that meets the driver's requirements.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明によるエンジンのEGR制御装置は、筒内圧検出
手段で検出した筒内圧に基づいて燃焼変動率を計算する
燃焼変動率計算手段と、窒素酸化物濃度検出手段で検出
した排ガス中の窒素酸化物濃度と吸入空気量とに基づい
て窒素酸化物排出率を計算する窒素酸化物排出率計算手
段と、上記燃焼変動率と現運転条件での燃焼変動率許容
限界値とを比較する燃焼変動率比較手段と、上記窒素酸
化物排出率と現運転条件での窒素酸化物排出率許容限界
値とを比較する窒素酸化物排出率比較手段と、上記窒素
酸化物排出率が上記窒素酸化物排出率許容限界値よりも
高いときEGR率を増加し、また燃焼変動率が上記燃焼
変動率許容限界値よりも高いときEGR率を低減し、さ
らに上記燃焼変動率が上記燃焼変動率許容限界値よりも
低く且つ上記窒素酸化物排出率が上記窒素酸化物排出率
許容限界値よりも低い範囲内では上記EGR率を運転者
の要求に応じて増減して目標EGR率を設定する目標E
GR率設定手段とを備えることを特徴とする。
In order to achieve the above object, an EGR control device for an engine according to the present invention comprises a combustion fluctuation rate calculating means for calculating a combustion fluctuation rate based on the in-cylinder pressure detected by the in-cylinder pressure detecting means. With the nitrogen oxide emission rate calculation means for calculating the nitrogen oxide emission rate based on the nitrogen oxide concentration in the exhaust gas detected by the nitrogen oxide concentration detection means and the intake air amount, the combustion fluctuation rate and the current operating conditions Combustion fluctuation rate comparison means for comparing with the combustion fluctuation rate allowable limit value, and nitrogen oxide discharge rate comparison means for comparing the nitrogen oxide discharge rate with the nitrogen oxide discharge rate allowable limit value under the current operating conditions. , The EGR rate is increased when the nitrogen oxide emission rate is higher than the nitrogen oxide emission rate allowable limit value, and the EGR rate is reduced when the combustion variation rate is higher than the combustion variation rate acceptable limit value, and Above combustion fluctuation Is lower than the combustion fluctuation rate allowable limit value and the nitrogen oxide discharge rate is lower than the nitrogen oxide discharge rate allowable limit value, the EGR rate is increased / decreased in accordance with the driver's request. Target E to set the rate
And a GR rate setting means.

【0009】[0009]

【作 用】本発明では、筒内圧検出手段で検出した筒内
圧に基づいてエンジンの燃焼変動率を求め、また、窒素
酸化物濃度検出手段で検出した排ガス中の窒素酸化物と
吸入空気量とから窒素酸化物排出率を求める。
[Operation] In the present invention, the combustion fluctuation rate of the engine is obtained based on the in-cylinder pressure detected by the in-cylinder pressure detection means, and the nitrogen oxide in the exhaust gas and the intake air amount detected by the nitrogen oxide concentration detection means are calculated. Calculate the nitrogen oxide emission rate from

【0010】次いで、上記燃焼変動率と当該運転条件下
での燃焼変動率許容限界値とを比較し、また、上記窒素
酸化物排出率と当該運転条件下での窒素酸化物排出率許
容限界値とを比較する。
Next, the combustion fluctuation rate and the combustion fluctuation rate allowable limit value under the operating condition are compared, and the nitrogen oxide discharge rate and the nitrogen oxide discharge rate allowable limit value under the operating condition are compared. Compare with.

【0011】そして、上記燃焼変動率が上記燃焼変動率
許容限界値よりも高いときは、GER量を減少させ、一
方、上記窒素酸化物排出率が上記窒素酸化物排出率許容
限界値よりも高いときはEGR量を増加させて、窒素酸
化物排出量の低減を図る。
When the combustion fluctuation rate is higher than the combustion fluctuation rate allowable limit value, the GER amount is decreased, while the nitrogen oxide discharge rate is higher than the nitrogen oxide discharge rate allowable limit value. At this time, the EGR amount is increased to reduce the nitrogen oxide emission amount.

【0012】また、上記燃焼変動率及び上記窒素酸化物
排出率が上記燃焼変動率許容限界値と上記窒素酸化物排
出率許容限界値とで設定されるEGR制御領域内にある
ときは、運転者の好みに応じて上記EGR率を適宜設定
する。すなわち、運転者が走行性能を優先する場合は窒
素酸化物排出率の限界内でEGR率を低い方へ設定し、
また燃費を優先する場合は燃焼変動率の限界内でEGR
率を高い方へ設定する。
When the combustion fluctuation rate and the nitrogen oxide discharge rate are within the EGR control range set by the combustion fluctuation rate allowable limit value and the nitrogen oxide discharge rate allowable limit value, the driver The EGR rate is appropriately set according to the preference. In other words, if the driver prioritizes running performance, set the EGR rate to the lower side within the limit of the nitrogen oxide emission rate,
When priority is given to fuel efficiency, EGR should be within the limit of combustion fluctuation rate.
Set the rate higher.

【0013】[0013]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図面は本発明の実施例を示し、図1はEG
R制御装置の機能ブロック図、図2はEGR制御手順を
示すフローチャート、図3はEGR制御範囲を示す概念
図、図4はエンジンの概略図、図5は制御装置の回路図
である。
FIG. 1 shows an embodiment of the present invention, and FIG.
2 is a flowchart showing an EGR control procedure, FIG. 3 is a conceptual diagram showing an EGR control range, FIG. 4 is a schematic diagram of an engine, and FIG. 5 is a circuit diagram of the control device.

【0015】図4の符号1はエンジン本体で、このエン
ジン本体1の上流側にインテークマニホルド2が連通さ
れ、このインテークマニホルド2の各気筒の吸気ポート
に設けた吸気バルブ(図示せず)の直上流にインジェク
タ3が臨まされている。さらに、このインテークマニホ
ルド2に連通する吸気管4にスロットルバルブ5が介装
され、また、この吸気管4の吸気口にエアークリーナ6
が取付けられている。
Reference numeral 1 in FIG. 4 denotes an engine body, and an intake manifold 2 is connected to the upstream side of the engine body 1, and an intake valve (not shown) provided in an intake port of each cylinder of the intake manifold 2 is directly connected to the intake manifold. The injector 3 faces the upstream side. Further, a throttle valve 5 is provided in an intake pipe 4 communicating with the intake manifold 2, and an air cleaner 6 is provided at an intake port of the intake pipe 4.
Is installed.

【0016】また、上記エンジン本体1の下流側にエキ
ゾーストマニホルド7を介して排気管8が連通され、こ
の排気管8の下流にマフラ9が連通され、さらに、この
排気管8の中途に排ガスを浄化する触媒10が介装され
ている。なお、図の実施例に示すエンジンは理論空燃比
制御するもので、上記触媒10として三元触媒を採用し
ている。
An exhaust pipe 8 is connected to the downstream side of the engine body 1 via an exhaust manifold 7, a muffler 9 is connected to the downstream side of the exhaust pipe 8, and exhaust gas is exhausted in the middle of the exhaust pipe 8. A catalyst 10 for purification is installed. It should be noted that the engine shown in the embodiment of the figure controls the theoretical air-fuel ratio, and a three-way catalyst is used as the catalyst 10.

【0017】また、吸気系の上記吸気管4の吸気口に、
吸気の質量流量を検出するエアーフローメータ11が介
装されている。さらに、上記スロットルバルブ5に、こ
のスロットルバルブ5の開度を検出するスロットルセン
サ12が連設されている。
Further, at the intake port of the intake pipe 4 of the intake system,
An air flow meter 11 that detects the mass flow rate of intake air is provided. Further, a throttle sensor 12 for detecting the opening of the throttle valve 5 is connected to the throttle valve 5.

【0018】一方、排気系の上記エキゾーストマニホル
ド7の集合部と上記触媒10との間に、排ガス中の酸素
濃度を検出するO2センサ13と排ガス中のNO,NO2
などの窒素酸化物(NOX)濃度を検出するNOX濃度セ
ンサ14とが介装されている。
On the other hand, an O2 sensor 13 for detecting the oxygen concentration in the exhaust gas and NO, NO2 in the exhaust gas are provided between the catalyst 10 and the collecting portion of the exhaust manifold 7 of the exhaust system.
And a NOX concentration sensor 14 for detecting the concentration of nitrogen oxides (NOX).

【0019】また、エンジン本体1には、特定気筒の筒
内圧を検出する筒内圧センサ15が併設されているとと
もに、クランク角センサ16がクランク軸1aに軸着す
るクランクロータ1bに対設されている。このクランク
角センサ16は上記クランクロータ1bの外周に所定間
隔毎に形成された突起などを検出するもので、後述する
制御装置(ECU)21では、この突起などを検出した
ときの間隔時間からエンジン回転数、点火時期などを算
出する。
Further, the engine body 1 is provided with an in-cylinder pressure sensor 15 for detecting the in-cylinder pressure of a specific cylinder, and a crank angle sensor 16 is provided opposite to a crank rotor 1b axially attached to the crank shaft 1a. There is. The crank angle sensor 16 detects protrusions and the like formed on the outer circumference of the crank rotor 1b at predetermined intervals. The control unit (ECU) 21 described later determines the engine from the interval time when the protrusions and the like are detected. The number of revolutions, ignition timing, etc. are calculated.

【0020】また、上記エキゾーストマニホルド7の集
合部と上記インテークマニホルド2の集合部とがEGR
通路17を介して連通されており、このEGR通路17
の中途にEGRバルブ18が介装されている。このEG
Rバルブ18を開弁すると、その開度に応じて排ガスの
一部が上記吸気系へ戻されて再燃される。
Further, the collecting portion of the exhaust manifold 7 and the collecting portion of the intake manifold 2 are EGR.
The EGR passage 17 is communicated through the passage 17.
An EGR valve 18 is interposed midway. This EG
When the R valve 18 is opened, a part of the exhaust gas is returned to the intake system and reburned according to the opening degree.

【0021】図5に示すように、上記ECU21は、C
PU22、ROM23、RAM24、発振器25、入力
ポート26a,26b、及び出力ポート26c,26d
がバスラインを介して接続されたマイクロコンピュータ
を中心として構成されている。
As shown in FIG. 5, the ECU 21 is
PU22, ROM23, RAM24, oscillator 25, input ports 26a and 26b, and output ports 26c and 26d.
Is mainly composed of a microcomputer connected via a bus line.

【0022】一方の入力ポート26aには、エアーフロ
ーメータ11、NOX濃度センサ14、O2センサ13か
らのアナログ信号がマルチプレクサ22を介し、A/D
変換器23でデジタル信号に変換されて順次入力され
る。また、他方の入力ポート26bには、クランク角セ
ンサ16からのクランク角信号が整形回路27で所定に
波形整形されて入力され、スロットルセンサ12からの
信号が入力回路28を介して入力されて、\u例えばスロ
ットルバルブ5が開弁状態に有るか、或は全閉状態に有
るかを判断するとともに\u、筒内圧センサ15からの出
力のピーク値が波形回路29を介して波形整形されて入
力されている。
At one input port 26a, analog signals from the air flow meter 11, the NOx concentration sensor 14, and the O2 sensor 13 are sent to the A / D via the multiplexer 22.
It is converted into a digital signal by the converter 23 and sequentially input. Further, the crank angle signal from the crank angle sensor 16 is subjected to predetermined waveform shaping by the shaping circuit 27 and input to the other input port 26b, and the signal from the throttle sensor 12 is input via the input circuit 28, \ u For example, it is determined whether the throttle valve 5 is in the open state or the fully closed state, and the peak value of the output from the in-cylinder pressure sensor 15 is waveform-shaped via the waveform circuit 29. It has been entered.

【0023】\uさらに、この入力ポート26bには、モ
ード選択スイッチ19が接続されている。このモード選
択スイッチ19は運転者がEGR制御を、燃費を優先し
て行うか、走行性能を優先して行うかを選択するもの
で、このモード選択スイッチ19にて燃費優先モードを
選択すると、EGR制御範囲内でEGR率が最大となる
値でEGR制御し、一方、走行性能優先モードを選択す
るとEGR制御範囲内でEGR率が最小となる値でEG
R制御する。\uさらに、上記各出力ポート26c,26
dには駆動回路30,31を介してEGRバルブ18と
インジェクタ3とがそれぞれ接続されている。なお、上
記EGRバルブ18は上記ECU21から出力される所
定デューティ比の制御信号でその開度が制御される。
Further, the mode selection switch 19 is connected to the input port 26b. The mode selection switch 19 selects whether the driver performs EGR control with priority on fuel economy or traveling performance. When the fuel economy priority mode is selected by the mode selection switch 19, EGR control is performed. EGR control is performed with a value that maximizes the EGR rate within the control range, while if the travel performance priority mode is selected, EG is controlled with a value that minimizes the EGR rate within the EGR control range.
R control. \ u Furthermore, the above output ports 26c, 26
The EGR valve 18 and the injector 3 are connected to d via drive circuits 30 and 31, respectively. The opening of the EGR valve 18 is controlled by a control signal of a predetermined duty ratio output from the ECU 21.

【0024】次に、上記ECU21におけるEGR制御
の機能構成について説明する。
Next, the functional configuration of the EGR control in the ECU 21 will be described.

【0025】図1に示すように、EGR制御は、\u筒内
圧センサ29の出力値からサイクル毎の筒内圧ピーク
値、或は、燃焼行程時の一定クランク角における筒内圧
を検出する筒内圧検出手段M1\u、NOX濃度センサ1
4の出力値から排ガス中のNOX濃度を検出するNOX濃
度検出手段M2、エンジン回転数NE及び吸入空気量Q
などからエンジンの運転条件を検出する運転条件検出手
段M3、上記筒内圧検出手段M1で検出した\uサイクル
毎の筒内圧のピーク値の加重平均値と今回検出した筒内
圧との比、或は、燃焼サイクル毎の一定クランク角にお
ける筒内圧の加重平均と今回検出した当該クランク角に
おける筒内圧との比から燃焼変動率を計算する燃焼変動
率計算手段M4\u、この燃焼変動率計算手段M4で計算
した燃焼変動率と上記運転条件検出手段M3で検出した
エンジン回転数NEとエンジン負荷(例えば、エンジン
回転数NEと吸入空気量Qとに基づいて求めた基本燃料
噴射量をエンジン負荷とする)とをパラメータとしてマ
ップ検索により設定した燃焼変動率許容限界値とを比較
する比較手段M5、上記排ガス中のNOX濃度と吸入空
気量Qとの比からNOX排出率を計算するNOX排出率計
算手段M6、このNOX排出率計算手段M6で算出した
NOX排出率と上記運転条件検出手段M3で検出したエ
ンジン回転数NEとエンジン負荷(例えば、エンジン回
転数NEと吸入空気量Qとに基づいて求めた基本燃料噴
射量をエンジン負荷とする)とをパラメータとしてマッ
プ検索により設定したNOX排出率許容限界値とを比較
するNOX排出率比較手段M7、モード選択スイッチ1
9の出力値から燃費優先モードか走行性能優先モードの
いずれが選択されているか判断して運転モードを設定す
る運転モード設定手段M8、上記燃焼変動率比較手段M
5で燃焼変動率が上記燃焼変動率許容限界値よりも低い
と判断し、且つ上記NOX排出率比較手段M7でNOX排
出率がNOX排出率許容限界値よりも低いと判断したと
きは運転者の選択した運転モードに従って目標となるE
GR率を設定し、また燃焼変動率が上記燃焼変動率許容
限界値を越えているときには、EGR率を減少させた値
で目標EGR率を設定し、一方、NOX排出率が上記N
OX排出率許容限界値よりも大きいときにはEGR率を
増加した値で目標EGR率を設定する目標EGR率設定
手段M9、この目標EGR率に対応する駆動信号をEG
Rバルブ18に出力するEGRバルブ駆動回路30で構
成されている。
As shown in FIG. 1, the EGR control is performed by detecting the peak value of the in-cylinder pressure for each cycle from the output value of the in-cylinder pressure sensor 29, or the in-cylinder pressure for detecting the in-cylinder pressure at a constant crank angle during the combustion stroke. Detection means M1 \ u, NOx concentration sensor 1
NOx concentration detecting means M2 for detecting the NOx concentration in the exhaust gas from the output value of No. 4, engine speed NE and intake air amount Q
Or the like, the operating condition detecting means M3 for detecting the operating condition of the engine, the ratio between the weighted average value of the peak value of the in-cylinder pressure for each \ u cycle detected by the in-cylinder pressure detecting means M1 and the in-cylinder pressure detected this time, or , A combustion variation rate calculating means M4 \ u for calculating a combustion variation rate from a ratio of a weighted average of the in-cylinder pressure at a constant crank angle for each combustion cycle and a currently detected in-cylinder pressure at the crank angle, and this combustion variation rate calculating means M4 The basic fuel injection amount obtained on the basis of the combustion fluctuation rate calculated in step S1, the engine speed NE and the engine load detected by the operating condition detecting means M3 (for example, the basic fuel injection amount obtained based on the engine speed NE and the intake air amount Q is set as the engine load). ) Is used as a parameter to compare with a combustion fluctuation rate allowable limit value set by a map search, and NOX is calculated from the ratio between the NOX concentration in the exhaust gas and the intake air amount Q. The NOX emission rate calculation means M6 for calculating the output rate, the NOX emission rate calculated by the NOX emission rate calculation means M6, the engine speed NE detected by the operating condition detection means M3, and the engine load (for example, engine speed NE (NOX emission rate comparison means M7 for comparing the basic fuel injection amount obtained based on the intake air amount Q with the engine load) as a parameter and the allowable limit value of NOX emission rate set by map search, mode selection switch 1
Based on the output value of 9, the fuel consumption priority mode or the driving performance priority mode is selected to set the operation mode, the operation mode setting means M8, and the combustion variation rate comparison means M.
If it is determined in step 5 that the combustion fluctuation rate is lower than the combustion fluctuation rate allowable limit value, and if the NOx emission rate comparison means M7 determines that the NOx emission rate is lower than the NOx discharge rate allowable limit value, the driver's Target E according to the selected operation mode
When the GR rate is set and when the combustion fluctuation rate exceeds the combustion fluctuation rate allowable limit value, the target EGR rate is set with a value that reduces the EGR rate, while the NOX emission rate is N
When it is larger than the OX emission rate allowable limit value, the target EGR rate setting means M9 for setting the target EGR rate with a value that increases the EGR rate, and the drive signal corresponding to this target EGR rate is EG.
It is composed of an EGR valve drive circuit 30 for outputting to the R valve 18.

【0026】次に、上記ECU21によるEGR制御手
順について、図2のフローチャートに従って説明する。
Next, the EGR control procedure by the ECU 21 will be described with reference to the flowchart of FIG.

【0027】このフローチャートは所定クランク角毎或
は所定演算周期毎に実行されるルーチンで、まず、ステ
ップS1で現在のエンジン回転数NE、吸入空気量Qな
どエンジンの運転条件となる各種データを検出する。そ
して、ステップS2で現燃焼サイクルの筒内圧を検出
し、ステップS3で燃焼サイクル毎の筒内圧の加重平均
と現燃料サイクルの筒内圧との比から燃焼変動率を算出
する。一方、ステップS4ではNOX濃度センサ14の
出力信号に基づいて現運転時の排ガス中のNOX濃度を
検出し、ステップS5で吸入空気量Qと上記NOX濃度
との比から排ガス中のNOX排出率を計算する。
This flow chart is a routine executed every predetermined crank angle or every predetermined calculation cycle. First, at step S1, various data such as the current engine speed NE, the intake air amount Q and the like which are the operating conditions of the engine are detected. To do. Then, in step S2, the in-cylinder pressure of the current combustion cycle is detected, and in step S3, the combustion fluctuation rate is calculated from the ratio of the weighted average of the in-cylinder pressure of each combustion cycle and the in-cylinder pressure of the current fuel cycle. On the other hand, in step S4, the NOX concentration in the exhaust gas during the current operation is detected based on the output signal of the NOX concentration sensor 14, and in step S5 the NOX emission rate in the exhaust gas is calculated from the ratio of the intake air amount Q and the NOX concentration. calculate.

【0028】そして、ステップS6で上記燃焼変動率
と、予めエンジン回転数NEとエンジン負荷とをパラメ
ータとしてマップ検索により設定した燃焼変動率許容限
界値とを比較する。
Then, in step S6, the combustion fluctuation rate is compared with the combustion fluctuation rate allowable limit value set in advance by a map search using the engine speed NE and the engine load as parameters.

【0029】図3に、ある運転条件下でのEGR率と燃
焼変動率との関係を示す。図に示すように、燃焼変動率
はEGR率を大きくすると、その途中から急激に大きく
なる特性があり、点aで示す焼変動率許容限界値は各運
転条件ごとに相違し、各運転条件下での上記焼変動率許
容限界値を設定する上記マップには、運転条件ごとに燃
焼変動の許容出来る限界が予め実験などから求めて格納
されている。
FIG. 3 shows the relationship between the EGR rate and the combustion fluctuation rate under certain operating conditions. As shown in the figure, when the EGR rate is increased, the combustion fluctuation rate has a characteristic that it rapidly increases in the middle of the EGR rate. The allowable value of the firing fluctuation rate indicated by point a differs for each operating condition, and In the above map for setting the permissible limit value of the burning fluctuation rate in the above, the permissible limit of the combustion fluctuation for each operating condition is obtained in advance by experiments and stored.

【0030】上記ステップS6で、現運転条件での燃焼
変動率が上記燃焼変動率許容限界値よりも低いと判断さ
れたときは、ステップS7へ進み、一方、上記燃焼変動
率が上記燃焼変動率許容限界値(図3の点a)よりも高
いと判断されたときには、ステップS10へジャンプし
てEGR率を所定に減少させた値で目標EGR率を設定
してルーチンを抜ける。
When it is determined in step S6 that the combustion fluctuation rate under the current operating condition is lower than the combustion fluctuation rate allowable limit value, the process proceeds to step S7, while the combustion fluctuation rate is the combustion fluctuation rate. When it is determined that the value is higher than the allowable limit value (point a in FIG. 3), the process jumps to step S10, the target EGR rate is set to a value that reduces the EGR rate to a predetermined value, and the routine exits.

【0031】また、上記ステップS6で上記燃焼変動率
が燃焼変動率許容限界値よりも低いと判断したときは、
ステップS7へ進み、NOX排出率と、予めエンジン回
転数NEとエンジン負荷とをパラメータとしてマップ検
索により設定したNOX排出率許容限界値とを比較す
る。
When it is determined in step S6 that the combustion fluctuation rate is lower than the combustion fluctuation rate allowable limit value,
In step S7, the NOX emission rate is compared with the NOX emission rate allowable limit value set in advance by map search using the engine speed NE and the engine load as parameters.

【0032】図3に、ある運転条件下でのEGR率とN
OX排出率との関係を示す。図に示すように、NOX排出
率はEGR率にほぼ反比例して変動し、このEGR率を
小さくするに従って、NOX排出率は次第に増加する特
性を有し、点bで示すNOX排出率許容限界値は各運転
条件ごとに相違する。このNOX排出率許容限界値を設
定する上記マップには、運転条件ごとにNOX排出率の
許容出来る限界が予め実験などから求めて格納されてい
る。
FIG. 3 shows the EGR rate and N under certain operating conditions.
The relationship with the OX emission rate is shown. As shown in the figure, the NOX emission rate fluctuates almost in inverse proportion to the EGR rate, and the NOX emission rate gradually increases as the EGR rate is reduced. Varies according to each operating condition. The allowable limit of the NOx emission rate for each operating condition is obtained in advance from experiments or the like and stored in the map for setting the allowable limit value of the NOx emission rate.

【0033】そして、上記ステップS7でNOX排出率
が上記NOX排出率許容限界値(図3の点b)よりも大
きいと判断したときは、ステップS9へジャンプしてE
GR率を所定に増加させた値で目標EGR率を設定して
ルーチンを抜ける。
When it is determined in step S7 that the NOX emission rate is larger than the NOx emission rate allowable limit value (point b in FIG. 3), the process jumps to step S9 and E
The target EGR rate is set with a value obtained by increasing the GR rate to a predetermined value, and the routine exits.

【0034】一方、上記ステップS7でNOX排出率が
上記NOX排出率許容限界値よりも小さいと判断したと
きは、ステップS8へ進み、モード選択スイッチ19か
らの出力信号から運転者が燃費優先モードを選択したか
走行性能優先モードを選択したかを判断する。
On the other hand, if it is determined in step S7 that the NOX emission rate is lower than the NOx emission rate allowable limit value, the process proceeds to step S8, in which the driver selects the fuel consumption priority mode from the output signal from the mode selection switch 19. It is determined whether the driving performance priority mode is selected.

【0035】そして、燃費優先モードが選択されている
場合は、ステップS9へ進み、EGR率を所定に増加さ
せた値で目標EGR率を設定してルーチンを抜ける。ま
た、走行性能優先モードが選択されている場合は、ステ
ップS10へ進み、EGR率を所定に減少させた値で目
標EGR率を設定してルーチンを抜ける。
Then, if the fuel economy priority mode is selected, the routine proceeds to step S9, where the target EGR rate is set to a value obtained by increasing the EGR rate by a predetermined amount, and the routine is exited. If the driving performance priority mode is selected, the process proceeds to step S10, the target EGR rate is set to a value obtained by reducing the EGR rate to a predetermined value, and the routine exits.

【0036】そして、EGRバルブ18に駆動回路30
を介して上記目標EGR率に対応する所定デューティ比
の制御信号を出力する。
The drive circuit 30 is attached to the EGR valve 18.
A control signal having a predetermined duty ratio corresponding to the target EGR rate is output via.

【0037】ここで、EGR率を増加させる値に目標E
GR率が設定されると、EGRバルブ18の開度が大き
くなり、また、EGR率を減少させる値に目標EGR率
が設定されると、上記EGRバルブ18の開度が小さく
なる。その結果、このEGRバルブ18の開度により吸
気系へ還流するEGR率が、NOX排出率許容限界値
(図3の点b)から燃焼変動率許容限界値(図3の点
a)の範囲内に収るように制御される。
Here, the target E is set to a value for increasing the EGR rate.
When the GR rate is set, the opening degree of the EGR valve 18 becomes large, and when the target EGR rate is set to a value that reduces the EGR rate, the opening degree of the EGR valve 18 becomes small. As a result, the EGR rate that recirculates to the intake system by the opening degree of the EGR valve 18 falls within the range from the NOx emission rate allowable limit value (point b in FIG. 3) to the combustion fluctuation rate allowable limit value (point a in FIG. 3). Controlled to fit in.

【0038】そして、運転者が走行性能優先モードを選
択すれば、上記EGR制御範囲内でEGR率が減少する
方向へ制御され、また、燃費優先モードを選択すれば、
EGR制御範囲内でEGR率を増加する方向へ制御され
るため、運転者の要求に沿う運転性能を得ることができ
る。
If the driver selects the driving performance priority mode, the EGR rate is controlled to decrease within the EGR control range, and if the fuel economy priority mode is selected,
Since the EGR rate is controlled to increase within the EGR control range, it is possible to obtain driving performance that meets the driver's request.

【0039】なお、本発明を希薄空燃比制御に採用する
こともでき、この場合、触媒10としてリーンNOX触
媒を用い、O2センサは不要になる。
The present invention can also be applied to lean air-fuel ratio control. In this case, a lean NOx catalyst is used as the catalyst 10, and an O2 sensor is unnecessary.

【0040】[0040]

【発明の効果】以上、説明したように本発明によれば、
各運転条件下でのEGR制御を燃焼変動率とNOX排出
率とに基づいて行うため、燃焼変動率の抑制とNOX排
出率の低減との双方を満足させることができ、信頼性の
高い制御精度を得ることができる。
As described above, according to the present invention,
Since the EGR control under each operating condition is performed based on the combustion variation rate and the NOx emission rate, both suppression of the combustion variation rate and reduction of the NOx emission rate can be satisfied, and highly reliable control accuracy. Can be obtained.

【0041】また、EGR制御領域の範囲以内では、運
転者が燃費を優先する場合にはEGR率を大きくし、一
方、運転者が走行性能を優先する場合にはEGR率を小
さくする制御を行うことができるため、運転者の要求に
沿う運転性能を得ることができて使い勝手が良い。
Further, within the range of the EGR control range, control is performed such that the EGR rate is increased when the driver prioritizes fuel consumption, while the EGR rate is decreased when the driver prioritizes running performance. Therefore, it is possible to obtain driving performance that meets the driver's requirements and is convenient.

【図面の簡単な説明】[Brief description of drawings]

【図1】EGR制御装置の機能ブロック図FIG. 1 is a functional block diagram of an EGR control device.

【図2】EGR制御手順を示すフローチャートFIG. 2 is a flowchart showing an EGR control procedure.

【図3】EGR制御範囲を示す概念図FIG. 3 is a conceptual diagram showing an EGR control range.

【図4】エンジンの概略図FIG. 4 is a schematic diagram of an engine.

【図5】制御装置の回路図FIG. 5 is a circuit diagram of a control device.

【符号の説明】[Explanation of symbols]

M1…筒内圧検出手段 M2…窒素酸化物濃度検出手段 M4…燃焼変動率計算手段 M5…燃焼変動率比較手段 M6…窒素酸化物排出率計算手段 M7…窒素酸化物排出率比較手段 M9…目標EGR率設定手段 Q…吸入空気量 M1 ... In-cylinder pressure detection means M2 ... Nitrogen oxide concentration detection means M4 ... Combustion fluctuation rate calculation means M5 ... Combustion fluctuation rate comparison means M6 ... Nitrogen oxide emission rate calculation means M7 ... Nitrogen oxide emission rate comparison means M9 ... Target EGR Rate setting means Q ... Intake air amount

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒内圧検出手段(M1)で検出した筒内
圧に基づいて燃焼変動率を計算する燃焼変動率計算手段
(M4)と、 窒素酸化物濃度検出手段(M2)で検出した排ガス中の
窒素酸化物濃度と吸入空気量(Q)とに基づいて窒素酸
化物排出率を計算する窒素酸化物排出率計算手段(M
6)と、 上記燃焼変動率と現運転条件での燃焼変動率許容限界値
とを比較する燃焼変動率比較手段(M5)と、 上記窒素酸化物排出率と現運転条件での窒素酸化物排出
率許容限界値とを比較する窒素酸化物排出率比較手段
(M7)と、 上記窒素酸化物排出率が上記窒素酸化物排出率許容限界
値よりも高いときEGR率を増加し、また燃焼変動率が
上記燃焼変動率許容限界値よりも高いときEGR率を低
減し、さらに上記燃焼変動率が上記燃焼変動率許容限界
値よりも低く且つ上記窒素酸化物排出率が上記窒素酸化
物排出率許容限界値よりも低い範囲内では上記EGR率
を運転者の要求に応じて増減して目標EGR率を設定す
る目標EGR率設定手段(M9)とを備えることを特徴
とするエンジンのEGR制御装置。
1. A combustion variation rate calculating means (M4) for calculating a combustion variation rate based on the in-cylinder pressure detected by the in-cylinder pressure detecting means (M1) and an exhaust gas detected by a nitrogen oxide concentration detecting means (M2). Oxide discharge rate calculation means (M for calculating the nitrogen oxide discharge rate based on the nitrogen oxide concentration of the air and the intake air amount (Q)
6), a combustion fluctuation rate comparison means (M5) for comparing the combustion fluctuation rate with a combustion fluctuation rate allowable limit value under the current operating conditions, and the nitrogen oxide discharge rate and the nitrogen oxide discharge under the current operating conditions. Oxide discharge rate comparison means (M7) for comparing the rate with an allowable limit value, and increasing the EGR rate when the nitrogen oxide discharge rate is higher than the allowable limit for the nitrogen oxide discharge rate, and the combustion fluctuation rate Is lower than the combustion fluctuation rate allowable limit value, the EGR rate is reduced, the combustion fluctuation rate is lower than the combustion fluctuation rate allowable limit value, and the nitrogen oxide discharge rate is the nitrogen oxide discharge rate allowable limit. An EGR control device for an engine, comprising: a target EGR rate setting means (M9) for setting a target EGR rate by increasing or decreasing the EGR rate in a range lower than a value according to a driver's request.
JP6006577A 1993-12-17 1994-01-25 Egr control device of engine Pending JPH07208272A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6006577A JPH07208272A (en) 1994-01-25 1994-01-25 Egr control device of engine
US08/355,190 US5592919A (en) 1993-12-17 1994-12-08 Electronic control system for an engine and the method thereof
GB9425113A GB2285701B (en) 1993-12-17 1994-12-13 An electronic control system for an engine and the method thereof
DE4447858A DE4447858C2 (en) 1993-12-17 1994-12-16 Electronic control system for high economy ic. engine
DE4444972A DE4444972C2 (en) 1993-12-17 1994-12-16 Electronic control method and control system for an engine
US08/605,796 US5636614A (en) 1993-12-17 1996-02-22 Electronic control system for an engine and the method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6006577A JPH07208272A (en) 1994-01-25 1994-01-25 Egr control device of engine

Publications (1)

Publication Number Publication Date
JPH07208272A true JPH07208272A (en) 1995-08-08

Family

ID=11642190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6006577A Pending JPH07208272A (en) 1993-12-17 1994-01-25 Egr control device of engine

Country Status (1)

Country Link
JP (1) JPH07208272A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180594A3 (en) * 2000-08-16 2003-01-02 Siemens Aktiengesellschaft Method for testing an exhaust gas recirculation system
CN103133100A (en) * 2011-11-22 2013-06-05 现代自动车株式会社 System and method for controlling NOx
WO2013161097A1 (en) * 2012-04-25 2013-10-31 株式会社小松製作所 Diesel engine and method for controlling diesel engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180594A3 (en) * 2000-08-16 2003-01-02 Siemens Aktiengesellschaft Method for testing an exhaust gas recirculation system
US6598470B2 (en) 2000-08-16 2003-07-29 Siemens Aktiengesellschaft Method for the testing of an exhaust gas recirculation system
CN103133100A (en) * 2011-11-22 2013-06-05 现代自动车株式会社 System and method for controlling NOx
JP2013108489A (en) * 2011-11-22 2013-06-06 Hyundai Motor Co Ltd NOx CONTROL SYSTEM AND METHOD
WO2013161097A1 (en) * 2012-04-25 2013-10-31 株式会社小松製作所 Diesel engine and method for controlling diesel engine
JPWO2013161097A1 (en) * 2012-04-25 2015-12-21 株式会社小松製作所 Diesel engine and control method of diesel engine
US9702308B2 (en) 2012-04-25 2017-07-11 Komatsu Ltd. Diesel engine and method for controlling diesel engine

Similar Documents

Publication Publication Date Title
US5592919A (en) Electronic control system for an engine and the method thereof
EP0926327B1 (en) Combustion controller and method for lean burn engines
JP4130800B2 (en) Engine control device
JP2003106184A (en) Control system for compression ignition engine
JPWO2002081888A1 (en) Control device for internal combustion engine
JP4610404B2 (en) Diesel engine control device
JP3350187B2 (en) Air-fuel ratio control device for lean burn engine
JPH07208272A (en) Egr control device of engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JPH07269416A (en) Egr control device for fuel injection type engine
US6609510B2 (en) Device and method for controlling air-fuel ratio of internal combustion engine
JP2004346917A (en) Internal combustion engine control device
JPH1193647A (en) Device for diagnosing deterioration of catalyst for internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JP3916416B2 (en) Control device for internal combustion engine
JP2683418B2 (en) Air-fuel ratio control device
JP2002030922A (en) Diagnostic apparatus for deteriorated condition of exhaust purifying catalyst
US20110231079A1 (en) Method and device for operating an internal combustion engine
JPH08291739A (en) Air-fuel ratio control device
JP2022133865A (en) Control device for internal combustion engine
JPH1182098A (en) Air-fuel ratio control system of internal combustion engine
US20020062640A1 (en) Device and method for controlling air-fuel ratio of internal combustion engine
JP3972925B2 (en) Catalyst deterioration detection device for internal combustion engine
JPS63230937A (en) Air-fuel ratio control method for internal combustion engine
JP2020153333A (en) Exhaust emission control device of internal combustion engine