JP3350187B2 - Air-fuel ratio control device for lean burn engine - Google Patents

Air-fuel ratio control device for lean burn engine

Info

Publication number
JP3350187B2
JP3350187B2 JP31768593A JP31768593A JP3350187B2 JP 3350187 B2 JP3350187 B2 JP 3350187B2 JP 31768593 A JP31768593 A JP 31768593A JP 31768593 A JP31768593 A JP 31768593A JP 3350187 B2 JP3350187 B2 JP 3350187B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
lean
nox
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31768593A
Other languages
Japanese (ja)
Other versions
JPH07166938A (en
Inventor
弘二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP31768593A priority Critical patent/JP3350187B2/en
Priority to US08/355,190 priority patent/US5592919A/en
Priority to GB9425113A priority patent/GB2285701B/en
Priority to DE4444972A priority patent/DE4444972C2/en
Priority to DE4447858A priority patent/DE4447858C2/en
Publication of JPH07166938A publication Critical patent/JPH07166938A/en
Priority to US08/605,796 priority patent/US5636614A/en
Application granted granted Critical
Publication of JP3350187B2 publication Critical patent/JP3350187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02T10/44

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、車両用の希薄燃焼エン
ジンの混合気の希薄空燃比を制御する空燃比制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for controlling a lean air-fuel ratio of a mixture in a lean-burn engine for a vehicle.

【0002】[0002]

【従来の技術】近年、新世代の車両用の省燃費エンジン
として、例えば吸気の際に燃焼室内にスワール等の渦流
や乱流を生成するように改善し、理論空燃比より希薄空
燃比の混合気により燃焼することが可能な希薄燃焼エン
ジンの研究開発が盛んに行われている。この希薄燃焼エ
ンジンでは、混合気が希薄なためにHC,COの排出量
が元々少なくなり、これに反して完全燃焼化が進んでN
Oxの排出量が増加するが、或る空燃比以降では空燃比
の増大に応じNOxの排出量も減少して、排気ガスの点
でも有利になる。ところで希薄空燃比がリーン限界を越
えると、失火による燃焼変動が増し、トルク変動が大き
くなって運転性が悪化する。
2. Description of the Related Art In recent years, as a fuel-saving engine for a new generation of vehicles, for example, a swirl or turbulent flow such as swirl has been improved in a combustion chamber upon intake, and a mixture of a leaner air-fuel ratio than a stoichiometric air-fuel ratio has been improved. Research and development of lean-burn engines capable of burning with air have been actively conducted. In this lean-burn engine, the amount of HC and CO emissions is originally reduced due to the lean mixture, and on the contrary, complete combustion proceeds and N
Although the emission amount of Ox increases, the emission amount of NOx also decreases in accordance with the increase in the air-fuel ratio after a certain air-fuel ratio, which is advantageous in terms of exhaust gas. When the lean air-fuel ratio exceeds the lean limit, combustion fluctuations due to misfire increase, torque fluctuations increase, and drivability deteriorates.

【0003】そこで希薄燃焼エンジンの空燃比制御で
は、混合気の空燃比をリーン制御して燃費を有効に向上
するが、このとき燃焼変動の状態をチェックしてリーン
限界を越えないように制御することで運転性を良好に保
つ。また実際のNOx排出状態をチェックして、空燃比
をNOx排出許容限界以下に制御することで、排気ガス
を確実に低減することが望まれる。
Therefore, in the air-fuel ratio control of the lean burn engine, the air-fuel ratio of the air-fuel mixture is lean-controlled to improve the fuel efficiency effectively. At this time, the state of the combustion fluctuation is checked so as not to exceed the lean limit. In this way, good operability is maintained. It is also desirable to check the actual NOx emission state and control the air-fuel ratio to be equal to or lower than the allowable NOx emission limit to reliably reduce the exhaust gas.

【0004】従来、上記空燃比制御に関しては、例えば
特開昭60−27748号公報、特開昭58−3835
4号公報の先行技術があり、エンジン回転速度の変動、
トルクセンサによるトルク変動、及び筒内圧センサによ
る筒内圧変動を計測することにより、エンジンの燃焼変
動を検出する。そして空燃比を失火直前の燃費最良点に
リーン限界制御して、排気ガスの浄化と燃費の向上を同
時に達成することが示されている。また特開昭58−1
3137号公報の先行技術では、筒内圧によりNOx濃
度を間接的に推定し、このNOx濃度に基づいてEGR
等を制御して、NOxを低減することが示されている。
Conventionally, the above-mentioned air-fuel ratio control has been disclosed, for example, in Japanese Patent Application Laid-Open No. 60-27748 and Japanese Patent Application Laid-Open No. 58-3835.
There is a prior art disclosed in Japanese Patent Publication No.
By measuring the torque fluctuation by the torque sensor and the cylinder pressure fluctuation by the cylinder pressure sensor, the combustion fluctuation of the engine is detected. It is shown that the air-fuel ratio is controlled by a lean limit to the best fuel efficiency just before the misfire, thereby simultaneously purifying the exhaust gas and improving the fuel efficiency. Japanese Patent Application Laid-Open No. 58-1
In the prior art disclosed in Japanese Patent No. 3137, the NOx concentration is indirectly estimated from the in-cylinder pressure, and EGR is performed based on the NOx concentration.
And the like to reduce NOx.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記先行技
術の前者にあっては、エンジン運転状態においてNOx
が実際に低減しているか否かをチェックしないため、空
燃比はNOx排出量の特性に基づいてリーン側に制御す
ることが余儀なくされ、運転性の悪化を生じ易い。後者
にあっては、NOx濃度に基づいてEGR等を制御する
ものであり、本発明の希薄空燃比制御には適応できない
等の問題がある。
However, in the former case of the above prior art, NOx in the engine operating state is not considered.
Since it is not checked whether or not the air-fuel ratio is actually reduced, the air-fuel ratio must be controlled to the lean side based on the characteristics of the NOx emission amount, and the drivability tends to deteriorate. The latter controls EGR and the like based on the NOx concentration, and has a problem that it cannot be applied to the lean air-fuel ratio control of the present invention.

【0006】本発明は、このような点に鑑み、燃焼変動
とNOx排出状態をチェックして、希薄空燃比を両者の
間の適正な領域に制御し、燃費、排気ガス及び運転性を
確実に向上することを目的とする。
In view of the above, the present invention checks the combustion fluctuation and the NOx emission state, controls the lean air-fuel ratio to an appropriate range between the two, and ensures the fuel efficiency, exhaust gas and drivability. The purpose is to improve.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明は、混合気の希薄空燃比を制御する希薄燃焼エン
ジンの空燃比制御装置において、希薄燃焼するエンジン
の燃焼変動状態を演算し、該燃焼変動状態がエンジンの
リーン限界を示す燃焼変動状態標準値より大きくなった
ときに空燃比をリッチ化するとともに、エンジンのNO
x排出量を排気ガス中のNOx濃度検出値から演算し、
該NOx排出量が、エンジンの許容限界を示すNOx排
出量標準値より大きくなったときに空燃比をリーン化す
る制御ユニットを備えたことを特徴とする。
To achieve this object, the present invention provides an air-fuel ratio control device for a lean-burn engine for controlling a lean air-fuel ratio of an air-fuel mixture, which calculates a combustion fluctuation state of the lean-burn engine. When the combustion fluctuation state becomes larger than the standard value of the combustion fluctuation state indicating the lean limit of the engine, the air-fuel ratio is made rich and the NO.
x is calculated from the detected value of NOx concentration in exhaust gas ,
A control unit is provided for leaning the air-fuel ratio when the NOx emission becomes larger than a standard value of the NOx emission indicating an allowable limit of the engine.

【0008】[0008]

【作用】上記構成により本発明では、希薄燃焼エンジン
の空燃比がNOxの少ない希薄空燃比に制御され、この
場合に筒内圧により実際の燃焼変動の状態を判断して、
空燃比がリーン限界よりリッチ側に制御されて運転性が
良好に確保される。また実際のNOx濃度によりNOx
排出状態を判断して、空燃比がNOx排出量の許容限界
よりリーン側に制御され、このため排気ガスも確実に低
減する。
According to the present invention, the air-fuel ratio of the lean-burn engine is controlled to a lean air-fuel ratio with a small amount of NOx. In this case, the state of the actual combustion fluctuation is determined by the in-cylinder pressure.
The air-fuel ratio is controlled to be richer than the lean limit, and good operability is ensured. Also, depending on the actual NOx concentration, NOx
By judging the emission state, the air-fuel ratio is controlled to be leaner than the permissible limit of the NOx emission amount, so that the exhaust gas is surely reduced.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1において希薄燃焼エンジンの全体の構成につ
いて説明する。符号1は希薄燃焼するエンジン本体であ
り、エンジン本体1の吸気系では、エアクリーナ2がダ
クト3、スロットル弁4を備えたスロットルボデー5、
吸気マニホールド6を介して連通され、吸気マニホール
ド6の各気筒毎に燃料噴射するインジェクタ7が装着さ
れている。エンジン本体1の吸気マニホールド6には、
図示しないスワールやタンブルの発生手段が設けられ、
吸気の際に燃焼室内に渦流や乱流を発生して、理論空燃
比より希薄空燃比の混合気により燃焼することが可能に
構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 illustrates the overall configuration of the lean burn engine. Reference numeral 1 denotes a lean-burn engine body. In an intake system of the engine body 1, an air cleaner 2 has a duct 3, a throttle body 5 having a throttle valve 4,
An injector 7 which is communicated through the intake manifold 6 and injects fuel into each cylinder of the intake manifold 6 is mounted. In the intake manifold 6 of the engine body 1,
A swirl and tumble generating means (not shown) is provided,
A vortex or a turbulent flow is generated in the combustion chamber at the time of intake, and it is configured to be able to burn with a mixture having a leaner air-fuel ratio than the stoichiometric air-fuel ratio.

【0010】また希薄燃焼エンジンでは、燃料が薄くて
排気ガス中の有害成分のHC,COが少なくなるので、
特にNOxの低減が必要になる。このためエンジン本体
1の排気マニホールド8には排気ガス浄化装置として、
リーンNOx触媒コンバータ10が装着され、排気ガス
の主としてNOxを、リーンNOx触媒により高温で還
元反応させて浄化処理するように構成される。そしてリ
ーンNOx触媒コンバータ10が更に排気管11を介し
てマフラー9に連通される。
In a lean burn engine, the fuel is thin and the harmful components HC and CO in the exhaust gas are reduced.
In particular, it is necessary to reduce NOx. For this reason, the exhaust manifold 8 of the engine body 1 is provided with an exhaust gas purifying device.
The lean NOx catalytic converter 10 is mounted, and is configured to purify mainly the NOx of exhaust gas by causing a reduction reaction at a high temperature by the lean NOx catalyst. Then, the lean NOx catalytic converter 10 is further connected to the muffler 9 via the exhaust pipe 11.

【0011】続いて、制御系について説明する。先ず、
制御原理について説明すると、特に燃焼後の膨張行程に
おける筒内圧を検出することで、燃焼変動の状態を判断
でき、排気系のNOx濃度を検出することで、実際のN
Ox排出量を算出できる。空燃比(A/F)に対するN
Ox排出量と燃焼変動率の特性を示すと、図2のように
なる。
Next, the control system will be described. First,
The control principle will be described. In particular, by detecting the in-cylinder pressure during the expansion stroke after combustion, the state of combustion fluctuation can be determined, and by detecting the NOx concentration in the exhaust system, the actual N
Ox emission can be calculated. N to air-fuel ratio (A / F)
FIG. 2 shows the characteristics of the Ox emission amount and the combustion fluctuation rate.

【0012】即ち、NOx排出量は、空燃比が理論空燃
比の14.7より大きくなってリーン制御されると、空
燃比が16付近で最大になり、それ以降は空燃比の増大
に応じて徐々に少なくなる。そこでこの特性において、
空燃比が例えば19の点aが、排気ガス中のNOx排出
量の許容限界になる。また燃焼変動率は、空燃比のリー
ン側で小さい状態が続くが、空燃比が例えば23付近か
ら急激に大きくなり始める。そこで空燃比が24の点b
が、燃焼変動に対するリーン限界となる。従って、希薄
空燃比はこれら点a〜b、即ち空燃比が19〜24の領
域に制御するば良いことが理解される。
That is, when the air-fuel ratio becomes larger than the stoichiometric air-fuel ratio of 14.7 and the lean control is performed, the NOx emission amount becomes maximum near the air-fuel ratio of 16 and thereafter increases according to the increase of the air-fuel ratio. It gradually decreases. So in this characteristic,
The point a where the air-fuel ratio is 19 is, for example, the allowable limit of the amount of NOx emitted from the exhaust gas. Further, the combustion fluctuation rate continues to be small on the lean side of the air-fuel ratio, but the air-fuel ratio starts to increase rapidly from, for example, around 23. Therefore, the point b where the air-fuel ratio is 24
Is the lean limit for combustion fluctuations. Therefore, it is understood that the lean air-fuel ratio should be controlled in these points a and b, that is, the air-fuel ratio is in the range of 19 to 24.

【0013】そこで吸入空気量Qを検出するエアフロー
メータ12、エンジン回転数Nを検出するクランク角セ
ンサ13の信号が制御ユニット20に入力する。またエ
ンジン本体1の各気筒毎に筒内圧Pを検出する筒内圧セ
ンサ14が取付けられ、排気管8にNOx濃度NOxc
oncを検出するNOx濃度センサ15が取付けられ、
これらセンサ信号も制御ユニット20に入力する。
Therefore, signals from an air flow meter 12 for detecting an intake air amount Q and a crank angle sensor 13 for detecting an engine speed N are input to a control unit 20. An in-cylinder pressure sensor 14 for detecting an in-cylinder pressure P is attached to each cylinder of the engine body 1, and a NOx concentration NOxc
Onx NOx concentration sensor 15 for detecting
These sensor signals are also input to the control unit 20.

【0014】制御ユニット20は、エンジン回転数Nと
吸入空気量Qとが入力する運転条件判定手段21を有
し、両方のパラメータによりエンジン運転条件を判定す
る。運転条件の信号は燃料噴射量演算手段22に入力
し、希薄燃焼エンジンの各運転条件に応じて燃料噴射量
Tiを、NOxの少ない希薄空燃比になるように演算
し、この噴射信号を所定のタイミングでインジェクタ7
に出力する。
The control unit 20 has an operating condition determining means 21 to which the engine speed N and the intake air amount Q are inputted, and determines the engine operating condition based on both parameters. The signal of the operating condition is input to the fuel injection amount calculating means 22, and the fuel injection amount Ti is calculated according to each operating condition of the lean burn engine so that the lean air-fuel ratio with a small amount of NOx is obtained. Injector 7 at timing
Output to

【0015】筒内圧Pと運転条件の信号は筒内圧検出手
段23に入力して、各運転条件での筒内圧Pを検出し、
この筒内圧Pは燃焼変動率計算手段24に入力して筒内
圧Pの変化に基づいて実際の燃焼変動率Bを求める。ま
た運転条件の信号は燃焼変動率標準値検索手段25に入
力し、燃焼変動率標準マップ26を参照して各運転条件
でのリーン限界の標準値Bmaxを検索する。そして実
際の燃焼変動率Bとリーン限界の標準値Bmaxは運転
状態判定手段27に入力して両者を比較し、B>Bma
xの場合は燃料噴射量演算手段22に空燃比のリッチ化
を指示する。
The signals of the in-cylinder pressure P and the operating conditions are input to the in-cylinder pressure detecting means 23 to detect the in-cylinder pressure P under each operating condition.
The in-cylinder pressure P is input to the combustion fluctuation rate calculation means 24, and the actual combustion fluctuation rate B is obtained based on the change in the in-cylinder pressure P. The operating condition signal is input to the combustion variation standard value searching means 25, and the standard value Bmax of the lean limit under each operating condition is searched with reference to the combustion variation standard map 26. Then, the actual combustion fluctuation rate B and the standard value Bmax of the lean limit are input to the operating state determination means 27 and compared with each other, and B> Bma
In the case of x, the fuel injection amount calculation means 22 is instructed to enrich the air-fuel ratio.

【0016】NOx濃度NOxconcと運転条件の信
号は、NOx濃度検出手段28に入力して、各運転条件
でのNOx濃度NOxconcを検出する。このNOx
濃度NOxconcは、NOx排出量計算手段29に入
力し、吸入空気量Q,NOx濃度NOxconc及びN
Oxの比重γを乗算して実際のNOx排出量Aを算出す
る。また運転条件の信号は、NOx排出量標準値検索手
段30に入力し、NOx排出量標準マップ31を参照し
て、各運転条件での許容限界の標準値Amaxを検索す
る。そして実際のNOx排出量Aと許容限界の標準値A
maxは、排気ガス判定手段32に入力して両者を比較
し、A>Amaxの場合は燃料噴射量演算手段22に空
燃比のリーン化を指示する。
The signals of the NOx concentration NOxconc and the operating conditions are input to NOx concentration detecting means 28 to detect the NOx concentration NOxconc under each operating condition. This NOx
The concentration NOxconc is input to the NOx emission amount calculating means 29, and the intake air amount Q, the NOx concentration NOxconc, and the N
The actual NOx emission amount A is calculated by multiplying the specific gravity γ of Ox. The operating condition signal is input to the NOx emission standard value searching means 30, and the standard value Amax of the allowable limit under each operating condition is searched with reference to the NOx emission standard map 31. And the actual NOx emission amount A and the standard value A of the allowable limit
max is input to the exhaust gas determination means 32 and compared between them. If A> Amax, the fuel injection amount calculation means 22 is instructed to make the air-fuel ratio lean.

【0017】燃料噴射量演算手段22は、上述のように
燃料噴射量Tiを希薄空燃比に演算し、更に燃焼変動率
Bによるリッチ化指示またはNOx排出量Aによるリー
ン化指示で増量または減量補正する。また燃費重視や走
行性重視のモードにより全体的に減量または増量し、こ
れにより空燃比を常に図2の点a〜bの領域に保つよう
に空燃比制御する。尚、制御ユニット20は、種々の入
力情報により運転状態に応じた適切な点火時期を決定し
て、この点火信号をイグナイタに出力するように構成さ
れる。
The fuel injection amount calculating means 22 calculates the fuel injection amount Ti into the lean air-fuel ratio as described above, and further increases or decreases the fuel injection amount Ti by the combustion variation rate B or the leaning instruction by the NOx emission amount A. I do. In addition, the amount of fuel is reduced or increased as a whole in a mode in which importance is placed on fuel efficiency or driving performance, whereby the air-fuel ratio is controlled so that the air-fuel ratio is always maintained in the region between points a and b in FIG. The control unit 20 is configured to determine an appropriate ignition timing according to the operating state based on various input information, and output this ignition signal to the igniter.

【0018】次に、この実施例の作用について説明す
る。先ず、エンジン運転時にはスロットル弁4の開度に
応じて空気がエンジン本体1に吸入され、このとき吸気
マニホールド6のスワール発生手段により燃焼室内に渦
流等を発生する。また吸入空気量Qとエンジン回転数N
による各運転条件に応じて燃料噴射量Tiが、実質的に
NOxの少ない希薄空燃比になるように算出され、この
燃料がインジェクタ7により所定の噴射タイミングで噴
射される。そこで燃焼室内の空気と燃料の混合気は渦流
の発生と共に、点火プラグ付近が濃くてその周囲が薄く
なるように成層化した混合気に点火プラグにより着火す
ることで、希薄空燃比の混合気が良好に燃焼し、良好な
燃費と運転性が得られる。
Next, the operation of this embodiment will be described. First, during operation of the engine, air is drawn into the engine body 1 in accordance with the opening of the throttle valve 4, and at this time, swirl or the like is generated in the combustion chamber by the swirl generating means of the intake manifold 6. The intake air amount Q and the engine speed N
The fuel injection amount Ti is calculated so as to be substantially a lean air-fuel ratio with little NOx, and this fuel is injected by the injector 7 at a predetermined injection timing. Therefore, the mixture of air and fuel in the combustion chamber generates a vortex, and the mixture is ignited by the ignition plug in a stratified mixture so that the area around the spark plug is dense and the surrounding area is thin, so that the mixture with a lean air-fuel ratio is formed. Good combustion results in good fuel economy and driving performance.

【0019】一方、希薄燃焼による排気ガスはエンジン
本体1から排気マニホールド8に排出されるが、この場
合に希薄空燃比のために排気ガス中では、HC,COの
未燃焼分が少なくなるので、特にNOxの低減が必要に
なる。このNOxを含む排気ガスはリーンNOx触媒コ
ンバータ10に導入し、そのNOxが高温でリーンNO
x触媒により還元反応して浄化処理される。そしてリー
ンNOx触媒コンバータ10で浄化された排気ガスが、
更に下流のマフラー9を通過して排出される。
On the other hand, the exhaust gas from the lean combustion is discharged from the engine body 1 to the exhaust manifold 8. In this case, the unburned portion of HC and CO is reduced in the exhaust gas due to the lean air-fuel ratio. In particular, it is necessary to reduce NOx. The exhaust gas containing this NOx is introduced into the lean NOx catalytic converter 10, and when the NOx becomes
Purification treatment is performed by a reduction reaction with the x catalyst. The exhaust gas purified by the lean NOx catalytic converter 10 is
The exhaust gas passes through the muffler 9 further downstream and is discharged.

【0020】続いて、上記希薄燃焼エンジン運転時の空
燃比制御を、図3のフローチャートを用いて説明する。
先ず、ステップS1でエンジン回転数Nと吸入空気量Q
により運転条件を判断し、ステップS2で筒内圧Pを検
出し、ステップS3で燃焼変動率Bを計算し、ステップ
S4でマップにより燃焼変動率のリーン限界の標準値B
maxを検索する。そしてステップS5で実際の燃焼変
動率Bとそのリーン限界の標準値Bmaxとを比較し、
空燃比がリーン限界を越えて失火により燃焼変動が増
し、B>Bmaxになると、ステップS6へ進み燃料を
増量して希薄空燃比がリッチに補正される。そこで失火
と共に燃焼変動が抑制されて、運転性の悪化が防止され
る。
Next, the air-fuel ratio control during the operation of the lean burn engine will be described with reference to the flowchart of FIG.
First, in step S1, the engine speed N and the intake air amount Q
The in-cylinder pressure P is detected in step S2, the combustion fluctuation rate B is calculated in step S3, and the standard value B of the lean limit of the combustion fluctuation rate is calculated by a map in step S4.
Search for max. Then, in step S5, the actual combustion fluctuation rate B is compared with the standard value Bmax of the lean limit,
When the air-fuel ratio exceeds the lean limit and the combustion fluctuation increases due to misfire and B> Bmax, the routine proceeds to step S6, in which the amount of fuel is increased and the lean air-fuel ratio is corrected to be rich. Therefore, the combustion fluctuation is suppressed together with the misfire, and the deterioration of drivability is prevented.

【0021】またB≦Bmaxにより燃焼変動の少ない
リッチ側に制御されている場合は、ステップS5からス
テップS7へ進み実際のNOx濃度NOxconcを検
出し、ステップS8でNOx排出量Aを算出する。また
ステップS9で運転条件に応じたNOx排出量の許容限
界の標準値Amaxを検索し、ステップS10で両者を
比較する。そこでNOx排出量Aが許容限界を越えて排
気ガスが悪化し、A>Amaxになると、ステップS1
1へ進み上述と逆に燃料を減量して空燃比がリーンに補
正される。このため空燃比のリーン化でNOxの排出量
が少なくなって、排気ガスが良くなる。
If the control is performed on the rich side where the combustion fluctuation is small due to B ≦ Bmax, the process proceeds from step S5 to step S7, where the actual NOx concentration NOxconc is detected, and the NOx emission amount A is calculated in step S8. In step S9, the standard value Amax of the allowable limit of the NOx emission amount according to the operating condition is searched, and the two values are compared in step S10. Then, when the NOx emission amount A exceeds the allowable limit and the exhaust gas deteriorates and A> Amax, step S1
Proceeding to 1, the air-fuel ratio is corrected lean by reducing the amount of fuel in the opposite manner as described above. Therefore, the leaner air-fuel ratio reduces the emission amount of NOx and improves the exhaust gas.

【0022】そしてA≦Amaxでは、排気ガスも良好
な状態になって、図2の点a〜bの適正な空燃比にある
ことが判断される。この場合はステップS10からステ
ップS12へ進み、燃費重視や走行性重視のモードをチ
ェックし、燃費重視ではステップS11へ進み空燃比が
リーン側に制御されて最大限燃費が向上する。また走行
性重視ではステップS6へ進み空燃比がリッチ側に制御
され、これにより空燃比が濃い目になって振動等が良く
なる。
When A ≦ Amax, the exhaust gas is also in a good state, and it is determined that the air-fuel ratio is appropriate at points a and b in FIG. In this case, the process proceeds from step S10 to step S12 to check the mode for emphasizing fuel efficiency and driving performance. If emphasis is placed on fuel efficiency, the process proceeds to step S11, where the air-fuel ratio is controlled to the lean side to maximize the fuel efficiency. If the driving performance is emphasized, the process proceeds to step S6, where the air-fuel ratio is controlled to the rich side, whereby the air-fuel ratio becomes rich and the vibration and the like are improved.

【0023】こうして希薄燃焼エンジンの希薄空燃比
は、常に燃焼変動のリーン限界bとNOx排出量の許容
限界aとの間の領域に制御され、これにより運転性と排
気ガスとが同時に良好に確保される。そして排気ガス中
のNOxが許容限界以下に制御されることで、排気系の
リーンNOx触媒コンバータ10ではNOxが常に安定
して浄化される。
In this way, the lean air-fuel ratio of the lean burn engine is always controlled in a range between the lean limit b of the combustion fluctuation and the allowable limit a of the NOx emission, thereby ensuring good operability and exhaust gas simultaneously. Is done. The NOx in the exhaust gas is controlled to be equal to or less than the allowable limit, so that the lean NOx catalytic converter 10 in the exhaust system always purifies NOx stably.

【0024】以上、本発明の実施例について説明した
が、これのみに限定されない。
Although the embodiment of the present invention has been described above, the present invention is not limited to this.

【0025】[0025]

【発明の効果】以上に説明したように本発明によると、
希薄燃焼エンジンにおいて排気ガス中の実際のNOx濃
度を検出して、そのNOx排出状態を判断し、空燃比を
燃焼変動のリーン限界とNOx排出量の許容限界との間
の領域に制御するので、運転性と共に排気ガス中のNO
xも確実に低減できる。また空燃比制御の領域がリッチ
側に拡大して、走行性重視の場合には振動低減も可能で
ある。各運転条件毎に燃焼変動とその標準値を比較して
運転状態を判断し、且つNOx排出量とその標準値を比
較して排気ガス状態を判断して、空燃比をリッチまたは
リーンに制御するので、制御の精度が高い。
As described above, according to the present invention,
Since the actual NOx concentration in the exhaust gas is detected in the lean burn engine, the NOx emission state is determined, and the air-fuel ratio is controlled to a range between the lean limit of the combustion fluctuation and the allowable limit of the NOx emission amount. NO in exhaust gas with drivability
x can be surely reduced. In addition, the air-fuel ratio control region is expanded to the rich side, and vibration can be reduced in a case where traveling performance is emphasized. The air-fuel ratio is controlled to be rich or lean by comparing the combustion fluctuation and its standard value for each operating condition to determine the operating state, and comparing the NOx emission with the standard value to determine the exhaust gas state. Therefore, the control accuracy is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る希薄燃焼エンジンの空燃比制御装
置に適した実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment suitable for an air-fuel ratio control device for a lean burn engine according to the present invention.

【図2】空燃比に対するNOx排出量と燃焼変動率の関
係を示す図である。
FIG. 2 is a diagram showing a relationship between an NOx emission amount and a combustion variation rate with respect to an air-fuel ratio.

【図3】空燃比制御のフローチャートである。FIG. 3 is a flowchart of air-fuel ratio control.

【符号の説明】[Explanation of symbols]

1 エンジン本体 14 筒内圧センサ 15 NOx濃度センサ 20 制御ユニット DESCRIPTION OF SYMBOLS 1 Engine main body 14 In-cylinder pressure sensor 15 NOx concentration sensor 20 Control unit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02D 41/14 310 F02D 45/00 301 F02D 45/00 368 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) F02D 41/14 310 F02D 45/00 301 F02D 45/00 368

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 混合気の希薄空燃比を制御する希薄燃焼
エンジンの空燃比制御装置において、 希薄燃焼するエンジンの燃焼変動状態を演算し、該燃焼
変動状態がエンジンのリーン限界を示す燃焼変動状態標
準値より大きくなったときに空燃比をリッチ化するとと
もに、エンジンのNOx排出量を排気ガス中のNOx濃
度検出値から演算し、該NOx排出量が、エンジンの許
容限界を示すNOx排出量標準値より大きくなったとき
に空燃比をリーン化する制御ユニットを備えたことを特
徴とする希薄燃焼エンジンの空燃比制御装置。
An air-fuel ratio control device for a lean-burn engine for controlling a lean air-fuel ratio of an air-fuel mixture, wherein a combustion fluctuation state of a lean-burn engine is calculated, and the combustion fluctuation state indicates a lean limit of the engine. with enriching the air-fuel ratio when it becomes larger than the standard value, the NOx emissions of the engine concentrated NOx in the exhaust gas
Calculated from degrees detected values, the NOx emissions, the lean burn engine, characterized by comprising a control unit for lean air-fuel ratio when it becomes greater than the NOx emission standard value indicating the tolerance limits of the engine Air-fuel ratio control device.
JP31768593A 1993-12-17 1993-12-17 Air-fuel ratio control device for lean burn engine Expired - Fee Related JP3350187B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP31768593A JP3350187B2 (en) 1993-12-17 1993-12-17 Air-fuel ratio control device for lean burn engine
US08/355,190 US5592919A (en) 1993-12-17 1994-12-08 Electronic control system for an engine and the method thereof
GB9425113A GB2285701B (en) 1993-12-17 1994-12-13 An electronic control system for an engine and the method thereof
DE4444972A DE4444972C2 (en) 1993-12-17 1994-12-16 Electronic control method and control system for an engine
DE4447858A DE4447858C2 (en) 1993-12-17 1994-12-16 Electronic control system for high economy ic. engine
US08/605,796 US5636614A (en) 1993-12-17 1996-02-22 Electronic control system for an engine and the method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31768593A JP3350187B2 (en) 1993-12-17 1993-12-17 Air-fuel ratio control device for lean burn engine

Publications (2)

Publication Number Publication Date
JPH07166938A JPH07166938A (en) 1995-06-27
JP3350187B2 true JP3350187B2 (en) 2002-11-25

Family

ID=18090885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31768593A Expired - Fee Related JP3350187B2 (en) 1993-12-17 1993-12-17 Air-fuel ratio control device for lean burn engine

Country Status (1)

Country Link
JP (1) JP3350187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180048984A (en) * 2015-10-02 2018-05-10 콘티넨탈 오토모티브 게엠베하 Method for operating internal combustion engine for automobile and system for internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2394057T3 (en) 2009-12-23 2013-01-16 Iveco Motorenforschung Ag Improved control method and device for sensor oxygen pump cells in internal combustion engines or exhaust gas after treatment systems of such engines
JP6844576B2 (en) * 2018-04-09 2021-03-17 株式会社デンソー Air-fuel ratio controller
JP2020070769A (en) * 2018-11-01 2020-05-07 マツダ株式会社 Control device for engine
JP2020070770A (en) * 2018-11-01 2020-05-07 マツダ株式会社 Control device for engine
JP7287070B2 (en) * 2019-04-02 2023-06-06 マツダ株式会社 CONTROL DEVICE AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180048984A (en) * 2015-10-02 2018-05-10 콘티넨탈 오토모티브 게엠베하 Method for operating internal combustion engine for automobile and system for internal combustion engine
KR102027079B1 (en) 2015-10-02 2019-09-30 콘티넨탈 오토모티브 게엠베하 Method of operating an internal combustion engine for automobiles and system for internal combustion engines

Also Published As

Publication number Publication date
JPH07166938A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
US5592919A (en) Electronic control system for an engine and the method thereof
US6354264B1 (en) Control system for self-ignition type gasoline engine
JP2592342B2 (en) Control device for internal combustion engine
US6779337B2 (en) Hydrogen fueled spark ignition engine
JPH0571397A (en) Air-fuel ratio control device of internal combustion engine
JP2013204511A (en) Control apparatus for internal combustion engine
US6173570B1 (en) Exhaust gas purification device for internal combustion engine
JP2005023850A (en) Air-fuel ratio proportional control system of internal combustion engine
JP3350187B2 (en) Air-fuel ratio control device for lean burn engine
JP2000282920A (en) Control device of internal combustion engine
JP3775942B2 (en) Fuel injection control device for internal combustion engine
JPH11107827A (en) Catalyst temperature controller for internal combustion engine
JP3834951B2 (en) Air-fuel ratio control device for internal combustion engine
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
JP3758014B2 (en) In-cylinder internal combustion engine
JPS62247176A (en) Ignition timing controller for multicylinder internal combustion engine
JPH07208272A (en) Egr control device of engine
JP2621066B2 (en) Air-fuel ratio control method for a vehicle internal combustion engine
JP2778392B2 (en) Engine control device
JP3477762B2 (en) Exhaust gas purification device for internal combustion engine
JPH077568Y2 (en) Engine controller
JP3508301B2 (en) Engine air-fuel ratio control device
JPH0323373A (en) Ignition timing controller of spark ignition type internal combustion engine
JPS631749A (en) Method of operating engine without causing knocking
JPH05222984A (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees