JP4604361B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4604361B2
JP4604361B2 JP2001021336A JP2001021336A JP4604361B2 JP 4604361 B2 JP4604361 B2 JP 4604361B2 JP 2001021336 A JP2001021336 A JP 2001021336A JP 2001021336 A JP2001021336 A JP 2001021336A JP 4604361 B2 JP4604361 B2 JP 4604361B2
Authority
JP
Japan
Prior art keywords
secondary air
internal combustion
combustion engine
control valve
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001021336A
Other languages
Japanese (ja)
Other versions
JP2002227639A (en
Inventor
辰則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001021336A priority Critical patent/JP4604361B2/en
Publication of JP2002227639A publication Critical patent/JP2002227639A/en
Application granted granted Critical
Publication of JP4604361B2 publication Critical patent/JP4604361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路に2次空気を導入し排気ガスを浄化する内燃機関用制御装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関において、エアクリーナと排気通路とを2次空気通路にて接続し、この2次空気通路途中に内燃機関の運転状態に応じて生じる吸入負圧によって開閉される負圧制御弁を配設し、2次空気通路から2次空気を排気通路の上流側に導入し排気ガスを浄化するものが知られている。
【0003】
【発明が解決しようとする課題】
ところで、前述のものでは、負圧制御弁が減速時のみ吸入負圧によって閉弁状態とされ2次空気の導入を禁止される。つまり、通常運転時には、2次空気が導入されっぱなしであり、排気通路の下流側に三元触媒を設置しても排気ガスを効率良く浄化することができないという不具合があった。また、2次空気の導入によって内燃機関の機関回転数が大きく変動するという不具合もあった。
【0004】
そこで、この発明はかかる不具合を解決するためになされたもので、内燃機関の排気通路に2次空気を導入し排気ガスを効率良く浄化すると共に、この際における機関回転数の変動を抑制可能な内燃機関用制御装置の提供を課題としている。
【0005】
【課題を解決するための手段】
請求項1の内燃機関用制御装置によれば、2次空気導入手段で減速状態検出手段による車両の減速状態、負荷状態検出手段による内燃機関の負荷状態、空燃比検出手段による排気ガスの空燃比のうち少なくとも何れか1つに応じて2次空気制御弁が駆動され、内燃機関の排気通路の上流側に2次空気が導入される。例えば、車両が減速状態または内燃機関が高負荷域にあるときには、2次空気導入が禁止され、また、車両が減速状態でなく内燃機関が軽負荷域にあるときには、オープン制御で2次空気制御弁が駆動され2次空気が導入され、そして、車両が減速状態でなく内燃機関が中負荷域にあるときには、排気ガスの空燃比に応じたフィードバック制御で2次空気制御弁が駆動され2次空気が導入される。これにより、内燃機関の排気通路に2次空気が適切に導入され、排気ガスが効率良く浄化される。
【0006】
更に、機関回転数検出手段による内燃機関の機関回転数と負荷状態とに基づき、または内燃機関の冷却水温に基づき点火時期設定手段で設定される基本点火時期が、各種センサ情報及び内燃機関の排気通路に導入される2次空気制御弁からの2次空気量、または2次空気制御弁の駆動信号に基づき補正値演算手段で算出される補正値によって補正され、点火時期演算手段で最終的な制御のための点火時期が算出される。このように、各種センサ情報に応じた補正値に加え、導入される2次空気量に応じた補正値が考慮された点火時期制御によれば、排気ガスを効率良く浄化する際における内燃機関の機関回転数の変動が抑制され極めて安定化される。
【0007】
そして、2次空気導入手段では、内燃機関が軽負荷域にあるときにはオープン制御、また、内燃機関が中負荷域にあるときには排気ガスの空燃比に応じたフィードバック制御で前記2次空気制御弁が駆動され2次空気が導入される。これにより、内燃機関の排気通路に2次空気が適切に導入され、排気ガスが効率良く浄化される。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0009】
図1は本発明の実施の形態の一実施例にかかる内燃機関用制御装置が適用された2輪車における内燃機関とその周辺機器を示す概略構成図である。
【0010】
図1において、内燃機関1は4気筒4サイクルの火花点火式として構成され、その吸入空気は上流側からエアクリーナ2、吸気通路3、スロットルバルブ4を通過して吸気通路3内でインジェクタ(燃料噴射弁)5から噴射された燃料と混合され、所定空燃比の混合気として吸気ポート6から各気筒内に分配供給される。また、内燃機関1のシリンダヘッドには気筒毎に点火プラグ7が配設され、点火タイミング毎に点火コイル/イグナイタ8から高電圧が各気筒の点火プラグ7に印加され、各気筒内の混合気に点火される。そして、内燃機関1の各気筒で燃焼された排気ガスは排気ポート11から排気通路12の下流側に配設された三元触媒13を通過して大気中に排出される。
【0011】
エアクリーナ2内には吸気温センサ21が配設され、吸気温センサ21によってエアクリーナ2内に流入される吸気温THAが検出される。また、吸気通路3には吸気圧センサ22が配設され、吸気圧センサ22によってスロットルバルブ4の下流側の吸気圧PMが検出される。そして、スロットルバルブ4にはスロットル開度センサ23が配設され、スロットル開度センサ23によってスロットルバルブ4のスロットル開度TAが検出される。また、内燃機関1のシリンダブロックには水温センサ24が配設され、水温センサ24によって内燃機関1内の冷却水温THWが検出される。そして、内燃機関1のクランクシャフト(図示略)にはクランク角センサ25が配設され、クランク角センサ25によって内燃機関1の機関回転数NEが検出される。更に、内燃機関1のカムシャフト(図示略)にはカム角センサ26が配設され、カム角センサ26によって内燃機関1のカムシャフト回転角θ2 が検出される。
【0012】
また、排気通路12内の三元触媒13の上流側には酸素(O2 )センサ27が配設され、酸素センサ27によって内燃機関1から排出される排気ガスに基づく空燃比λが検出される。なお、酸素センサ27に替えて空燃比(A/F)センサを配設し、内燃機関1から排出される排気ガスに基づく空燃比λをリニアに検出してもよい。この他、変速機(図示略)のギヤ位置GPを検出するギヤ位置センサ28、バッテリ(図示略)の電源電圧VB を検出する電源電圧センサ29がそれぞれ配設されている。
【0013】
一方、燃料タンク31内から燃料ポンプ32で汲上げられた燃料は、燃料配管33、燃料フィルタ34、燃料配管35、デリバリパイプ36の順に圧送され、各気筒のインジェクタ5に分配供給される。デリバリパイプ36内の余剰燃料は、プレッシャレギュレータ37、リターン配管38の経路にて燃料タンク31内に戻される。このプレッシャレギュレータ37によってデリバリパイプ36内の燃圧(燃料圧力)と吸気圧との差圧が一定になるようにデリバリパイプ36内の燃圧が調整される。
【0014】
更に、エアクリーナ2と内燃機関1の排気ポート11直後の排気通路12とが2次空気通路41にて接続され、その2次空気通路41途中にはエアクリーナ2からの空気を2次空気として、排気通路12内に適宜、導入するための2次空気制御弁42が配設されている。
【0015】
内燃機関1の運転状態を制御するECU(Electronic Control Unit:電子制御ユニット)50は、周知の各種演算処理を実行する中央処理装置としてのCPU51、制御プログラムを格納したROM52、各種データを格納するRAM53、B/U(バックアップ)RAM54等を中心に論理演算回路として構成され、上述の各種センサからの検出信号を入力する入力ポート55及びインジェクタ5、燃料ポンプ32、2次空気制御弁42等の各種アクチュエータや点火コイル/イグナイタ8に各制御信号を出力する出力ポート56等に対しバス57を介して接続されている。
【0016】
次に、本発明の実施の形態の一実施例にかかる内燃機関用制御装置で使用されているECU50内のCPU51における2次空気量制御の処理手順を示す図2のフローチャートに基づいて説明する。なお、この2次空気量制御ルーチンは所定時間毎にCPU51にて繰返し実行される。
【0017】
図2において、ステップS101では、車両が減速状態にあるかが判定される。この車両が減速状態にあるか否かは、クランク角センサ25にて検出された信号間隔に基づく機関回転数NEまたはスロットル開度センサ23にて検出されたスロットル開度TAまたは吸気圧センサ12にて検出された吸気圧PM等により判定される。ステップS101の判定条件が成立せず、即ち、車両が減速状態以外にあるときにはステップS102に移行して、内燃機関1の運転状態が高負荷域にあるかが判定される。この内燃機関1の運転状態が高負荷域にあるか否かは、機関回転数NEまたはスロットル開度TAまたは吸気圧PM等により判定される。この高負荷域は、この他、ギヤ位置センサ28からの変速機のギヤ位置GPまたはクラッチ(図示略)からのクラッチ信号、更には、車速センサ(図示略)にて検出された車速信号から判定してもよい。
【0018】
ステップS102の判定条件が成立せず、即ち、内燃機関1の運転状態が高負荷域以外にあるときにはステップS103に移行し、内燃機関1の運転状態が軽負荷域にあるかが判定される。この内燃機関1の運転状態が軽負荷域にあるか否かは、機関回転数NEまたはスロットル開度TAまたは吸気圧PM等により判定される。この軽負荷域は、この他、高負荷域と同様、変速機のギヤ位置GPまたはクラッチ信号、更には、車速信号から判定してもよい。ステップS103の判定条件が成立せず、即ち、内燃機関1の運転状態が軽負荷域以外の中負荷域にあるときにはステップS104に移行し、フィードバック制御によって2次空気が導入され、本ルーチンを終了する。
【0019】
一方、ステップS103の判定条件が成立、即ち、内燃機関1の運転状態が軽負荷域にあるときにはステップS105に移行し、オープン制御によって2次空気が導入され、本ルーチンを終了する。なお、内燃機関1の運転状態が軽負荷域にあるときには、排気ガス中における窒素酸化物(NOx )の排出割合は少なく、炭化水素(HC)や一酸化炭素(CO)の排出割合が多いためオープン制御による2次空気の導入によって、空燃比をストイキ(理論空燃比)近傍またはストイキ以上のリーン側とすれば、排気ガスを精度良く浄化することができるのである。一方、ステップS101の判定条件が成立、即ち、車両が減速状態にあるとき、またはステップS102の判定条件が成立、即ち、内燃機関1の運転状態が高負荷域にあるときにはステップS106に移行し、2次空気導入が禁止され、本ルーチンを終了する。
【0020】
次に、上述の処理による内燃機関1の運転状態の負荷域に応じた2次空気量の導入状態について、図3及び図4に示すタイムチャートを参照して説明する。ここで、図3は2次空気制御弁42のリニア制御による2次空気量の導入状態、図4は2次空気制御弁42のオン/オフ制御による2次空気量の導入状態をそれぞれ示すタイムチャートである。
【0021】
図3に示すように、内燃機関1の運転状態の中負荷域に応じたフィードバック制御では、2次空気制御弁42のリニア制御によって2次空気通路41を通って2次空気量が排気通路12内に導入され、内燃機関1の運転状態の軽負荷域に応じたオープン制御では、2次空気制御弁42の全開制御によって2次空気通路41を通って内燃機関1の運転状態に応じた2次空気量が排気通路12内に導入されている。これにより、内燃機関1の排気通路12に2次空気が適切に導入されることとなり、排気ガスを効率良く浄化することができる。
【0022】
また、図4に示すように、内燃機関1の運転状態の中負荷域に応じたフィードバック制御では、2次空気制御弁42のオン/オフ制御によって2次空気通路41を通って2次空気量が導入され、内燃機関1の運転状態の軽負荷域に応じたオープン制御では、2次空気制御弁42の全開制御によって2次空気通路41を通って内燃機関1の運転状態に応じた2次空気量が導入されている。これにより、内燃機関の排気通路12に2次空気が適切に導入されることとなり、排気ガスを効率良く浄化することができる。
【0023】
次に、本発明の実施の形態の一実施例にかかる内燃機関用制御装置で使用されているECU50内のCPU51における点火時期演算の処理手順を示す図5のフローチャートに基づき、図6を参照して説明する。ここで、図6は図5で2次空気量をパラメータとして2次空気補正進角を算出するマップである。なお、この点火時期演算ルーチンは上述の図2による2次空気量制御ルーチンが実施された際の機関回転数NEの変動を抑制するものであり、各気筒の燃焼タイミング毎にCPU51にて繰返し実行される。
【0024】
図5において、まず、ステップS201でクランク角センサ25にて検出された信号間隔に基づく機関回転数NEが読込まれる。次にステップS202に移行して、このときの負荷として例えば、スロットル開度センサ23にて検出されたスロットル開度TAが読込まれる。次にステップS203に移行して、その他の各種センサ情報として例えば、冷却水温THW、吸気温THA、大気圧等が読込まれる。
【0025】
次にステップS204に移行して、周知のように機関回転数NE及びスロットル開度TAをパラメータとするマップ(図示略)に基づき基本点火時期が算出される。そして、ステップS205に移行し、このときの各種センサ信号として、冷却水温THW、吸気温THA、スロットル開度TA変化に基づき点火時期の各種補正値が算出される。また、冷却水温THWが低いときには、基本点火時期を冷却水温THWに基づき算出してもよい。
【0026】
次にステップS206に移行して、内燃機関1の運転状態が軽負荷域にあるかが判定される。この内燃機関1の運転状態が軽負荷域にあるか否かは、機関回転数NEまたはスロットル開度TAまたは吸気圧センサ12にて検出された吸気圧PM等により判定される。この他、ギヤ位置センサ28からの変速機のギヤ位置GPがニュートラル、かつクラッチ(図示略)からのクラッチ信号がオン(接続)のとき軽負荷域にあるとしてもよい。ステップS206の判定条件が成立、即ち、内燃機関1の運転状態が軽負荷域にあればステップS207に移行し、図6のマップに基づき、このとき導入される2次空気量に応じた点火時期補正値としての2次空気補正進角が算出される。なお、このとき導入される2次空気量は、2次空気制御弁42の開弁状態、機関回転数NE及び吸気圧PM等をパラメータとするマップ(図示略)に基づき算出される。また、簡易的に、2次空気制御弁42のオン/オフ状態、または開度に基づき点火時期補正値を算出してもよい。
【0027】
一方、ステップS206の判定条件が成立せず、即ち、内燃機関1の運転状態が軽負荷域以外の高負荷域または中負荷域にあるときにはステップS207がスキップされる。次にステップS208に移行して、ステップS204で算出された基本点火時期に対してステップS205で算出された各種補正値、更に、内燃機関1の運転状態が軽負荷域にあるときにはステップS207で算出された2次空気補正進角がそれぞれ反映されることで最適な点火時期が算出され、本ルーチンを終了する。
【0028】
次に、上述の処理による2次空気量の導入に伴う点火時期及び機関回転数の遷移状態について、図7及び図8に示すタイムチャートを参照して説明する。ここで、図7は2次空気制御弁42により2次空気量が徐変するとき、図8は2次空気制御弁42により2次空気量が導入/停止を繰返すときの点火時期及び機関回転数の遷移状態をそれぞれ示すタイムチャートである。
【0029】
図7において、2次空気制御弁42によって導入される2次空気量の徐変に伴って点火時期の補正がないときには、従来例として破線にて示すように、機関回転数NEに上下変動が生じている。これに対して、2次空気制御弁42によって導入される2次空気量の徐変に伴って点火時期が進角側から遅角側または遅角側から進角側へと補正され徐変されているときには、図7に本実施例として実線にて示すように、機関回転数NEに変動が見られず極めて安定化されている。
【0030】
また、図8において、2次空気制御弁42の駆動信号による2次空気量の導入/停止の繰返しに伴って点火時期の補正がないときには、従来例として破線にて示すように、機関回転数NEに上下変動が生じている。これに対して、2次空気制御弁42によって導入される2次空気量に応じて点火時期が進角側または遅角側に変動されているときには、図8に本実施例として実線にて示すように、機関回転数NEに変動が見られず極めて安定化されている。
【0031】
このように、本実施例の内燃機関用制御装置は、内燃機関1の排気通路12の上流側に新たな空気としての2次空気を導入自在な2次空気制御弁42と、車両(図示略)の減速状態を機関回転数NEまたはスロットル開度TAまたは吸気圧PM等により検出する減速状態検出手段としてのクランク角センサ25またはスロットル開度センサ23または吸気圧センサ12と、内燃機関1の負荷状態を機関回転数NEまたはスロットル開度TAまたは吸気圧PM等により検出する負荷状態検出手段としてのクランク角センサ25またはスロットル開度センサ23または吸気圧センサ12と、内燃機関1の排気通路12内における排気ガスの空燃比λを検出する空燃比検出手段としての酸素(O2 )センサ27と、車両の減速状態、内燃機関1の負荷状態、排気ガスの空燃比λのうち少なくとも何れか1つに応じて2次空気制御弁42を駆動し、2次空気を導入するECU50のCPU51にて達成される2次空気導入手段とを具備するものである。
【0032】
つまり、車両が減速状態または内燃機関1が高負荷域にあるときには、2次空気制御弁42による2次空気導入が禁止され、また、車両が減速状態でなく内燃機関1が軽負荷域にあるときには、オープン制御で2次空気制御弁42が全開制御され2次空気が導入され、そして、車両が減速状態でなく内燃機関1が中負荷域にあるときには、排気ガスの空燃比λに応じたフィードバック制御で2次空気制御弁42がリニア制御またはオン/オフ制御され2次空気が導入される。これにより、内燃機関1の排気通路12に2次空気が適切に導入されることとなり、排気ガスを効率良く浄化することができる。
【0033】
また、本実施例の内燃機関用制御装置は、更に、内燃機関1の機関回転数NEを検出する機関回転数検出手段としてのクランク角センサ25と、内燃機関1の機関回転数NEと内燃機関1の機関回転数NEまたはスロットル開度TAまたは吸気圧PM等により検出される負荷状態とに基づき、または内燃機関1の冷却水温THWに基づき基本点火時期を設定するECU50のCPU51にて達成される点火時期設定手段と、各種センサ情報及び2次空気制御弁42からの2次空気量、または2次空気制御弁42の駆動信号に基づき基本点火時期に対する補正値を算出するECU50のCPU51にて達成される補正値演算手段と、前記補正値演算手段による補正値に基づき基本点火時期を補正し、最終的な点火時期を算出するECU50のCPU51にて達成される点火時期演算手段とを具備するものである。
【0034】
つまり、内燃機関1の機関回転数NEと負荷状態とに基づき、または内燃機関1の冷却水温THWに基づき設定される基本点火時期が、各種センサ情報及び内燃機関1の排気通路12に導入される2次空気制御弁42からの2次空気量、または2次空気制御弁42の駆動信号に基づく補正値によって補正され、最終的な制御のための点火時期が算出される。このように、各種センサ情報に応じた補正値に加え、導入される2次空気量に応じた補正値が考慮された点火時期制御によれば、排気ガスを効率良く浄化する際における内燃機関1の機関回転数NEの変動が抑制され極めて安定化されたものとなる。
【0035】
そして、本実施例の内燃機関用制御装置のECU50のCPU51にて達成される2次空気導入手段は、内燃機関1が軽負荷域にあるときには、オープン制御で2次空気制御弁42を駆動し、また、内燃機関1が中負荷域にあるときには、排気ガスの空燃比λに応じたフィードバック制御で2次空気制御弁42を駆動するものである。したがって、内燃機関1が軽負荷域にあるときにはオープン制御、また、内燃機関1が中負荷域にあるときには排気ガスの空燃比λに応じたフィードバック制御で2次空気制御弁42が駆動され2次空気が導入される。これにより、内燃機関1の排気通路12に2次空気が適切に導入され、排気ガスが効率良く浄化される。
【0036】
ところで、上記実施例では、2輪車への適用について述べたが、本発明を実施する場合には、これに限定されるものではなく、内燃機関の排気通路に2次空気を導入し排気ガスを浄化するシステムであれば同様の作用・効果が期待できる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の一実施例にかかる内燃機関用制御装置が適用された2輪車における内燃機関とその周辺機器を示す概略構成図である。
【図2】 図2は本発明の実施の形態の一実施例にかかる内燃機関用制御装置で使用されているECU内のCPUにおける2次空気量制御の処理手順を示すフローチャートである。
【図3】 図3は図2の処理で2次空気制御弁のリニア制御による2次空気量の導入状態を示すタイムチャートである。
【図4】 図4は図2の処理で2次空気制御弁のオン/オフ制御による2次空気量の導入状態を示すタイムチャートである。
【図5】 図5は本発明の実施の形態の一実施例にかかる内燃機関用制御装置で使用されているECU内のCPUにおける点火時期演算の処理手順を示すフローチャートである。
【図6】 図6は図5で2次空気量をパラメータとして2次空気補正進角を求めるマップである。
【図7】 図7は図5の処理で2次空気制御弁により2次空気量が徐変するときの点火時期及び機関回転数の遷移状態を示すタイムチャートである。
【図8】 図8は図5の処理で2次空気制御弁により2次空気量が導入/停止を繰返すときの点火時期及び機関回転数の遷移状態を示すタイムチャートである。
【符号の説明】
1 内燃機関
12 排気通路
27 酸素(O2 )センサ
42 2次空気制御弁
50 ECU(電子制御ユニット)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine control device that purifies exhaust gas by introducing secondary air into an exhaust passage of the internal combustion engine.
[0002]
[Prior art]
Conventionally, in an internal combustion engine, an air cleaner and an exhaust passage are connected by a secondary air passage, and a negative pressure control valve that is opened and closed by a suction negative pressure generated according to the operating state of the internal combustion engine is arranged in the middle of the secondary air passage. It is known to purify exhaust gas by introducing secondary air from the secondary air passage to the upstream side of the exhaust passage.
[0003]
[Problems to be solved by the invention]
By the way, in the above-mentioned, the negative pressure control valve is closed by the suction negative pressure only during deceleration, and the introduction of secondary air is prohibited. In other words, during normal operation, secondary air is continuously introduced, and even if a three-way catalyst is installed on the downstream side of the exhaust passage, exhaust gas cannot be purified efficiently. There is also a problem that the engine speed of the internal combustion engine greatly fluctuates due to the introduction of secondary air.
[0004]
Accordingly, the present invention has been made to solve such a problem, and it is possible to efficiently purify exhaust gas by introducing secondary air into the exhaust passage of the internal combustion engine and to suppress fluctuations in the engine speed at this time. An object is to provide a control device for an internal combustion engine.
[0005]
[Means for Solving the Problems]
According to the control device for an internal combustion engine of claim 1, the secondary air introduction means is the vehicle deceleration state by the deceleration state detection means, the load state of the internal combustion engine by the load state detection means, the air-fuel ratio of the exhaust gas by the air-fuel ratio detection means The secondary air control valve is driven according to at least one of them, and the secondary air is introduced upstream of the exhaust passage of the internal combustion engine. For example, when the vehicle is decelerating or when the internal combustion engine is in a high load range, the introduction of secondary air is prohibited, and when the vehicle is not in a decelerating state and the internal combustion engine is in a light load range, secondary air control is performed by open control. When the valve is driven and the secondary air is introduced, and the vehicle is not in a decelerating state and the internal combustion engine is in the middle load range, the secondary air control valve is driven by feedback control according to the air-fuel ratio of the exhaust gas. Air is introduced. Thereby, secondary air is appropriately introduced into the exhaust passage of the internal combustion engine, and the exhaust gas is efficiently purified.
[0006]
Further, the basic ignition timing set by the ignition timing setting means based on the engine speed and load state of the internal combustion engine by the engine speed detection means or based on the cooling water temperature of the internal combustion engine is the various sensor information and the exhaust gas of the internal combustion engine. It is corrected by the correction value calculated by the correction value calculation means based on the secondary air amount from the secondary air control valve introduced into the passage or the drive signal of the secondary air control valve, and finally the ignition timing calculation means The ignition timing for control is calculated. As described above, according to the ignition timing control in which the correction value according to the introduced secondary air amount is considered in addition to the correction value according to various sensor information, the internal combustion engine at the time of efficiently purifying the exhaust gas. The fluctuation of the engine speed is suppressed and extremely stable.
[0007]
In the secondary air introducing means, the secondary air control valve is controlled by open control when the internal combustion engine is in the light load region, and by feedback control according to the air-fuel ratio of the exhaust gas when the internal combustion engine is in the medium load region. Driven and secondary air is introduced. Thereby, secondary air is appropriately introduced into the exhaust passage of the internal combustion engine, and the exhaust gas is efficiently purified.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0009]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine and its peripheral devices in a two-wheeled vehicle to which an internal combustion engine control device according to an embodiment of the present invention is applied.
[0010]
In FIG. 1, an internal combustion engine 1 is configured as a four-cylinder four-cycle spark ignition type, and its intake air passes from an upstream side through an air cleaner 2, an intake passage 3, a throttle valve 4, and an injector (fuel injection) in the intake passage 3. Valve) is mixed with the fuel injected from 5 and is distributed and supplied from the intake port 6 into each cylinder as an air-fuel mixture having a predetermined air-fuel ratio. The cylinder head of the internal combustion engine 1 is provided with an ignition plug 7 for each cylinder, and a high voltage is applied from the ignition coil / igniter 8 to the ignition plug 7 of each cylinder at each ignition timing. Is ignited. The exhaust gas burned in each cylinder of the internal combustion engine 1 passes through the three-way catalyst 13 disposed on the downstream side of the exhaust passage 12 from the exhaust port 11 and is discharged into the atmosphere.
[0011]
An intake air temperature sensor 21 is disposed in the air cleaner 2, and the intake air temperature THA flowing into the air cleaner 2 is detected by the intake air temperature sensor 21. An intake pressure sensor 22 is disposed in the intake passage 3, and the intake pressure sensor 22 detects the intake pressure PM on the downstream side of the throttle valve 4. The throttle valve 4 is provided with a throttle opening sensor 23, and the throttle opening sensor 23 detects the throttle opening TA of the throttle valve 4. Further, a water temperature sensor 24 is disposed in the cylinder block of the internal combustion engine 1, and the coolant temperature THW in the internal combustion engine 1 is detected by the water temperature sensor 24. A crank angle sensor 25 is disposed on the crankshaft (not shown) of the internal combustion engine 1, and the engine speed NE of the internal combustion engine 1 is detected by the crank angle sensor 25. Further, a cam angle sensor 26 is provided on the cam shaft (not shown) of the internal combustion engine 1, and the cam shaft rotation angle θ 2 of the internal combustion engine 1 is detected by the cam angle sensor 26.
[0012]
Further, an oxygen (O 2 ) sensor 27 is disposed upstream of the three-way catalyst 13 in the exhaust passage 12, and an air-fuel ratio λ based on the exhaust gas discharged from the internal combustion engine 1 is detected by the oxygen sensor 27. . Note that an air-fuel ratio (A / F) sensor may be provided in place of the oxygen sensor 27 and the air-fuel ratio λ based on the exhaust gas discharged from the internal combustion engine 1 may be detected linearly. In addition, a gear position sensor 28 for detecting a gear position GP of a transmission (not shown) and a power supply voltage sensor 29 for detecting a power supply voltage VB of a battery (not shown) are provided.
[0013]
On the other hand, the fuel pumped up from the fuel tank 31 by the fuel pump 32 is pumped in the order of the fuel pipe 33, the fuel filter 34, the fuel pipe 35, and the delivery pipe 36, and is distributed and supplied to the injectors 5 of each cylinder. Excess fuel in the delivery pipe 36 is returned into the fuel tank 31 through a path of a pressure regulator 37 and a return pipe 38. The pressure regulator 37 adjusts the fuel pressure in the delivery pipe 36 so that the differential pressure between the fuel pressure (fuel pressure) in the delivery pipe 36 and the intake pressure becomes constant.
[0014]
Further, the air cleaner 2 and the exhaust passage 12 immediately after the exhaust port 11 of the internal combustion engine 1 are connected by a secondary air passage 41, and the air from the air cleaner 2 is taken as secondary air in the middle of the secondary air passage 41. A secondary air control valve 42 is provided for introduction into the passage 12 as appropriate.
[0015]
An ECU (Electronic Control Unit) 50 that controls the operating state of the internal combustion engine 1 includes a CPU 51 as a central processing unit that executes various known arithmetic processes, a ROM 52 that stores control programs, and a RAM 53 that stores various data. , B / U (backup) RAM 54 and the like as a logical operation circuit. Input port 55 for inputting detection signals from the various sensors described above, injector 5, fuel pump 32 , secondary air control valve 42, and the like. A bus 57 is connected to an output port 56 for outputting each control signal to the actuator and the ignition coil / igniter 8.
[0016]
Next, a description will be given based on a flowchart of FIG. 2 showing a processing procedure of secondary air amount control in the CPU 51 in the ECU 50 used in the control device for an internal combustion engine according to an example of the embodiment of the present invention. This secondary air amount control routine is repeatedly executed by the CPU 51 at predetermined time intervals.
[0017]
In FIG. 2, in step S101, it is determined whether the vehicle is in a deceleration state. Whether the vehicle is in a decelerating state depends on the engine speed NE based on the signal interval detected by the crank angle sensor 25 or the throttle opening TA or the intake pressure sensor 12 detected by the throttle opening sensor 23. It is determined by the detected intake pressure PM or the like. When the determination condition of step S101 is not satisfied, that is, when the vehicle is in a state other than the deceleration state, the process proceeds to step S102, and it is determined whether the operation state of the internal combustion engine 1 is in a high load range. Whether or not the operating state of the internal combustion engine 1 is in a high load range is determined by the engine speed NE, the throttle opening degree TA, the intake pressure PM, or the like. In addition to this, the high load range is determined from the gear position GP of the transmission from the gear position sensor 28 or the clutch signal from the clutch (not shown), and further from the vehicle speed signal detected by the vehicle speed sensor (not shown). May be.
[0018]
When the determination condition of step S102 is not satisfied, that is, when the operation state of the internal combustion engine 1 is outside the high load region, the process proceeds to step S103, and it is determined whether the operation state of the internal combustion engine 1 is in the light load region. Whether or not the operating state of the internal combustion engine 1 is in the light load range is determined by the engine speed NE, the throttle opening degree TA, the intake pressure PM, or the like. In addition to this, the light load region may be determined from the gear position GP of the transmission or the clutch signal, and further from the vehicle speed signal, similarly to the high load region. When the determination condition of step S103 is not satisfied, that is, when the operating state of the internal combustion engine 1 is in a medium load region other than the light load region, the process proceeds to step S104, secondary air is introduced by feedback control, and this routine is terminated. To do.
[0019]
On the other hand, when the determination condition of step S103 is satisfied, that is, when the operating state of the internal combustion engine 1 is in the light load range, the routine proceeds to step S105, secondary air is introduced by open control, and this routine is terminated. When the operating state of the internal combustion engine 1 is in a light load range, the emission ratio of nitrogen oxide (NOx) in the exhaust gas is small, and the emission ratio of hydrocarbon (HC) and carbon monoxide (CO) is large. By introducing the secondary air by open control, the exhaust gas can be purified with high accuracy if the air-fuel ratio is set near the stoichiometric (stoichiometric air-fuel ratio) or leaner than the stoichiometric. On the other hand, when the determination condition of step S101 is satisfied, that is, when the vehicle is in a decelerating state, or when the determination condition of step S102 is satisfied, that is, when the operating state of the internal combustion engine 1 is in the high load range, the process proceeds to step S106. Secondary air introduction is prohibited, and this routine ends.
[0020]
Next, the introduction state of the secondary air amount according to the load range of the operation state of the internal combustion engine 1 by the above-described processing will be described with reference to the time charts shown in FIGS. Here, FIG. 3 shows the introduction state of the secondary air amount by linear control of the secondary air control valve 42, and FIG. 4 shows the time of introduction of the secondary air amount by on / off control of the secondary air control valve 42, respectively. It is a chart.
[0021]
As shown in FIG. 3, in the feedback control according to the middle load range of the operating state of the internal combustion engine 1, the secondary air amount passes through the secondary air passage 41 by the linear control of the secondary air control valve 42 and the exhaust passage 12. In the open control according to the light load range of the operating state of the internal combustion engine 1 introduced into the engine, the secondary air control valve 42 is fully opened to pass through the secondary air passage 41 and 2 according to the operating state of the internal combustion engine 1. A secondary air amount is introduced into the exhaust passage 12. As a result, secondary air is appropriately introduced into the exhaust passage 12 of the internal combustion engine 1, and the exhaust gas can be purified efficiently.
[0022]
Further, as shown in FIG. 4, in the feedback control according to the middle load range of the operating state of the internal combustion engine 1, the secondary air amount passes through the secondary air passage 41 by the on / off control of the secondary air control valve 42. In the open control according to the light load range of the operating state of the internal combustion engine 1, the secondary air control valve 42 is fully opened to pass the secondary air passage 41 and the secondary according to the operating state of the internal combustion engine 1. Air volume is introduced. Thereby, secondary air is appropriately introduced into the exhaust passage 12 of the internal combustion engine, and the exhaust gas can be efficiently purified.
[0023]
Next, referring to FIG. 6 based on the flowchart of FIG. 5 showing the procedure of the ignition timing calculation in the CPU 51 in the ECU 50 used in the control apparatus for an internal combustion engine according to an example of the embodiment of the present invention. I will explain. Here, FIG. 6 is a map for calculating the secondary air correction advance angle using the secondary air amount as a parameter in FIG. This ignition timing calculation routine suppresses fluctuations in the engine speed NE when the secondary air amount control routine shown in FIG. 2 is executed, and is repeatedly executed by the CPU 51 at each combustion timing of each cylinder. Is done.
[0024]
In FIG. 5, first, the engine speed NE based on the signal interval detected by the crank angle sensor 25 in step S201 is read. Next, the process proceeds to step S202, and for example, the throttle opening degree TA detected by the throttle opening degree sensor 23 is read as a load at this time. Next, the process proceeds to step S203, and as various other sensor information, for example, the coolant temperature THW, the intake air temperature THA, the atmospheric pressure, and the like are read.
[0025]
Next, the routine proceeds to step S204, where the basic ignition timing is calculated based on a map (not shown) using the engine speed NE and the throttle opening TA as parameters as is well known. Then, the process proceeds to step S205, and various correction values for the ignition timing are calculated based on changes in the coolant temperature THW, the intake air temperature THA, and the throttle opening TA as various sensor signals at this time. Further, when the coolant temperature THW is low, the basic ignition timing may be calculated based on the coolant temperature THW.
[0026]
Next, the routine proceeds to step S206, where it is determined whether the operating state of the internal combustion engine 1 is in a light load range. Whether or not the operating state of the internal combustion engine 1 is in the light load range is determined by the engine speed NE, the throttle opening TA, the intake pressure PM detected by the intake pressure sensor 12, or the like. In addition, it may be in the light load region when the gear position GP of the transmission from the gear position sensor 28 is neutral and the clutch signal from the clutch (not shown) is on (connected). If the determination condition of step S206 is satisfied, that is, if the operating state of the internal combustion engine 1 is in the light load region, the routine proceeds to step S207, and based on the map of FIG. 6, the ignition timing corresponding to the amount of secondary air introduced at this time A secondary air correction advance angle as a correction value is calculated. Note that the amount of secondary air introduced at this time is calculated based on a map (not shown) whose parameters are the open state of the secondary air control valve 42, the engine speed NE, the intake pressure PM, and the like. Further, the ignition timing correction value may be calculated simply based on the on / off state of the secondary air control valve 42 or the opening degree.
[0027]
On the other hand, when the determination condition of step S206 is not satisfied, that is, when the operating state of the internal combustion engine 1 is in a high load region or a medium load region other than the light load region, step S207 is skipped. Next, the process proceeds to step S208, and various correction values calculated in step S205 with respect to the basic ignition timing calculated in step S204, and further, calculated in step S207 when the operating state of the internal combustion engine 1 is in the light load range. The optimal ignition timing is calculated by reflecting each of the secondary air correction advance angles, and this routine is terminated.
[0028]
Next, the transition state of the ignition timing and the engine speed accompanying the introduction of the secondary air amount by the above-described processing will be described with reference to the time charts shown in FIGS. 7 shows the ignition timing and engine rotation when the secondary air amount is gradually changed by the secondary air control valve 42, and FIG. 8 shows the ignition timing and engine rotation when the secondary air amount is repeatedly introduced / stopped by the secondary air control valve 42. It is a time chart which shows each number transition state.
[0029]
In FIG. 7, when there is no correction of the ignition timing with the gradual change of the secondary air amount introduced by the secondary air control valve 42, the engine speed NE fluctuates up and down as shown by a broken line as a conventional example. Has occurred. On the other hand, with the gradual change of the secondary air amount introduced by the secondary air control valve 42, the ignition timing is corrected and gradually changed from the advance side to the retard side or from the retard side to the advance side. When this is the case, as shown by the solid line in FIG. 7, the engine speed NE is not changed and is extremely stabilized.
[0030]
Further, in FIG. 8, when there is no correction of the ignition timing due to the repeated introduction / stop of the secondary air amount by the drive signal of the secondary air control valve 42, as shown in the broken line as a conventional example, the engine speed There is vertical fluctuation in NE. On the other hand, when the ignition timing is changed to the advance side or the retard side in accordance with the amount of secondary air introduced by the secondary air control valve 42, a solid line is shown in FIG. 8 as this embodiment. Thus, the engine speed NE is not stabilized and is extremely stabilized.
[0031]
As described above, the control apparatus for an internal combustion engine of the present embodiment includes a secondary air control valve 42 that can introduce secondary air as new air upstream of the exhaust passage 12 of the internal combustion engine 1, a vehicle (not shown). ), The crank angle sensor 25 or the throttle opening sensor 23 or the intake pressure sensor 12 as a deceleration state detecting means for detecting the engine speed NE or the throttle opening TA or the intake pressure PM, and the load of the internal combustion engine 1 A crank angle sensor 25 or a throttle opening sensor 23 or an intake pressure sensor 12 as load state detecting means for detecting the state based on the engine speed NE, the throttle opening degree TA, or the intake pressure PM, and the exhaust passage 12 of the internal combustion engine 1 oxygen (O 2) sensor 27 serving as an air-fuel ratio detecting means for detecting an air-fuel ratio λ of the exhaust gas in the deceleration state of the vehicle, the negative internal combustion engine 1 Secondary air introduction means that is achieved by the CPU 51 of the ECU 50 that drives the secondary air control valve 42 in accordance with at least one of the state and the air-fuel ratio λ of the exhaust gas and introduces secondary air. To do.
[0032]
That is, when the vehicle is decelerating or the internal combustion engine 1 is in the high load range, the introduction of secondary air by the secondary air control valve 42 is prohibited, and the internal combustion engine 1 is in the light load range rather than the deceleration state. In some cases, the secondary air control valve 42 is fully opened by open control and the secondary air is introduced, and when the vehicle is not in a decelerating state and the internal combustion engine 1 is in the middle load range, it corresponds to the air-fuel ratio λ of the exhaust gas. The secondary air control valve 42 is linearly controlled or on / off controlled by feedback control, and secondary air is introduced. As a result, secondary air is appropriately introduced into the exhaust passage 12 of the internal combustion engine 1, and the exhaust gas can be purified efficiently.
[0033]
The internal combustion engine control apparatus according to the present embodiment further includes a crank angle sensor 25 serving as an engine speed detecting means for detecting the engine speed NE of the internal combustion engine 1, and the engine speed NE of the internal combustion engine 1 and the internal combustion engine. This is accomplished by the CPU 51 of the ECU 50 that sets the basic ignition timing based on the engine speed NE, the throttle opening degree TA, the load state detected by the intake pressure PM, or the like, or based on the coolant temperature THW of the internal combustion engine 1. Achieved by the CPU 51 of the ECU 50 that calculates the correction value for the basic ignition timing based on the ignition timing setting means, various sensor information, the amount of secondary air from the secondary air control valve 42, or the drive signal of the secondary air control valve 42 Correction value calculation means, and the ECU 50 for correcting the basic ignition timing based on the correction value by the correction value calculation means and calculating the final ignition timing. Those comprising an ignition timing calculation means which is achieved by U51.
[0034]
That is, the basic ignition timing set based on the engine speed NE and the load state of the internal combustion engine 1 or based on the coolant temperature THW of the internal combustion engine 1 is introduced into the various sensor information and the exhaust passage 12 of the internal combustion engine 1. It is corrected by a correction value based on the amount of secondary air from the secondary air control valve 42 or the drive signal of the secondary air control valve 42, and the ignition timing for final control is calculated. As described above, according to the ignition timing control in which the correction value according to the introduced secondary air amount is considered in addition to the correction value according to the various sensor information, the internal combustion engine 1 when efficiently purifying the exhaust gas. The fluctuation of the engine speed NE is suppressed and is extremely stabilized.
[0035]
The secondary air introduction means achieved by the CPU 51 of the ECU 50 of the control device for the internal combustion engine of the present embodiment drives the secondary air control valve 42 by open control when the internal combustion engine 1 is in the light load range. Further, when the internal combustion engine 1 is in the middle load range, the secondary air control valve 42 is driven by feedback control according to the air-fuel ratio λ of the exhaust gas. Therefore, the secondary air control valve 42 is driven by the open control when the internal combustion engine 1 is in the light load region, and by the feedback control according to the air-fuel ratio λ of the exhaust gas when the internal combustion engine 1 is in the medium load region. Air is introduced. Thereby, secondary air is appropriately introduced into the exhaust passage 12 of the internal combustion engine 1, and the exhaust gas is efficiently purified.
[0036]
In the above embodiment, the application to a two-wheeled vehicle has been described. However, the present invention is not limited to this, and secondary air is introduced into the exhaust passage of the internal combustion engine to exhaust gas. The same action and effect can be expected with a system that purifies water.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine and peripheral devices in a two-wheeled vehicle to which a control device for an internal combustion engine according to an example of an embodiment of the invention is applied.
FIG. 2 is a flowchart showing a processing procedure of secondary air amount control in a CPU in the ECU used in the control device for an internal combustion engine according to an example of the embodiment of the present invention.
FIG. 3 is a time chart showing a state of introducing a secondary air amount by linear control of a secondary air control valve in the process of FIG. 2;
4 is a time chart showing a state of introducing a secondary air amount by on / off control of a secondary air control valve in the process of FIG. 2. FIG.
FIG. 5 is a flowchart showing a processing procedure of ignition timing calculation in a CPU in the ECU used in the control apparatus for an internal combustion engine according to an example of the embodiment of the present invention.
FIG. 6 is a map for obtaining a secondary air correction advance angle in FIG. 5 using the secondary air amount as a parameter.
FIG. 7 is a time chart showing transition states of ignition timing and engine speed when the secondary air amount is gradually changed by the secondary air control valve in the process of FIG.
8 is a time chart showing transition states of ignition timing and engine speed when the secondary air amount is repeatedly introduced / stopped by the secondary air control valve in the process of FIG.
[Explanation of symbols]
1 Internal combustion engine 12 Exhaust passage 27 Oxygen (O 2 ) sensor 42 Secondary air control valve 50 ECU (electronic control unit)

Claims (1)

内燃機関の排気通路の上流側に新たな空気としての2次空気を導入自在な2次空気制御弁と、
車両の減速状態を検出する減速状態検出手段と、
前記内燃機関の負荷状態を検出する負荷状態検出手段と、
前記内燃機関の排気通路内における排気ガスの空燃比を検出する空燃比検出手段と、
前記車両の減速状態、前記内燃機関の負荷状態、前記排気ガスの空燃比のうち少なくとも何れか1つに応じて前記2次空気制御弁を駆動し、2次空気を導入する2次空気導入手段と、
前記内燃機関の機関回転数を検出する機関回転数検出手段と、
前記内燃機関の機関回転数と前記内燃機関の負荷状態とに基づき、または前記内燃機関の冷却水温に基づき基本点火時期を設定する点火時期設定手段と、
各種センサ情報及び前記2次空気制御弁からの2次空気量、または前記2次空気制御弁の駆動信号に基づき前記基本点火時期に対する補正値を算出する補正値演算手段と、
前記補正値演算手段による前記補正値に基づき前記基本点火時期を補正し、最終的な点火時期を算出する点火時期演算手段とを具備し、
2次空気量の増加に応じて遅角制御し、2次空気量の減少に応じて遅角制御を解除すると共に、前記2次空気導入手段により、前記内燃機関が軽負荷域にあるときには、オープン制御で前記2次空気制御弁を駆動し、また、前記内燃機関が中負荷域にあるときには、排気ガスの空燃比に応じたフィードバック制御で前記2次空気制御弁を駆動することを特徴とする内燃機関用制御装置。
A secondary air control valve capable of introducing secondary air as new air upstream of the exhaust passage of the internal combustion engine;
Deceleration state detecting means for detecting a deceleration state of the vehicle;
Load state detecting means for detecting a load state of the internal combustion engine;
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas in the exhaust passage of the internal combustion engine;
Secondary air introduction means for introducing the secondary air by driving the secondary air control valve in accordance with at least one of the deceleration state of the vehicle, the load state of the internal combustion engine, and the air-fuel ratio of the exhaust gas When,
Engine speed detecting means for detecting the engine speed of the internal combustion engine;
Ignition timing setting means for setting a basic ignition timing based on the engine speed of the internal combustion engine and the load state of the internal combustion engine or based on the coolant temperature of the internal combustion engine;
Correction value calculation means for calculating a correction value for the basic ignition timing based on various sensor information and a secondary air amount from the secondary air control valve, or a drive signal of the secondary air control valve;
An ignition timing calculating means for correcting the basic ignition timing based on the correction value by the correction value calculating means and calculating a final ignition timing;
The retard control is performed according to the increase in the secondary air amount, the retard control is canceled according to the decrease in the secondary air amount, and when the internal combustion engine is in the light load range by the secondary air introduction means, The secondary air control valve is driven by open control, and the secondary air control valve is driven by feedback control according to an air-fuel ratio of exhaust gas when the internal combustion engine is in a medium load range. A control device for an internal combustion engine.
JP2001021336A 2001-01-30 2001-01-30 Control device for internal combustion engine Expired - Fee Related JP4604361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001021336A JP4604361B2 (en) 2001-01-30 2001-01-30 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001021336A JP4604361B2 (en) 2001-01-30 2001-01-30 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002227639A JP2002227639A (en) 2002-08-14
JP4604361B2 true JP4604361B2 (en) 2011-01-05

Family

ID=18886910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001021336A Expired - Fee Related JP4604361B2 (en) 2001-01-30 2001-01-30 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4604361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284369B2 (en) 2003-12-26 2007-10-23 Denso Corporation Secondary air supply system and fuel injection amount control apparatus using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075712A (en) * 1983-09-30 1985-04-30 Nissan Motor Co Ltd Secondary air supply system for internal-combustion engine
JPH02188616A (en) * 1989-01-17 1990-07-24 Toyota Motor Corp Exhaust smell repression device for internal combustion engine
JPH04166608A (en) * 1990-10-31 1992-06-12 Suzuki Motor Corp Secondary air supply device for engine
JPH0598955A (en) * 1991-10-12 1993-04-20 Mazda Motor Corp Secondary air controller of engine
JPH05321653A (en) * 1992-05-26 1993-12-07 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JPH0932537A (en) * 1995-07-12 1997-02-04 Nissan Motor Co Ltd Control device of internal combustion engine
JPH0988563A (en) * 1995-09-29 1997-03-31 Nissan Motor Co Ltd Exhaust device for internal combustion engine
JP2000345827A (en) * 1999-06-02 2000-12-12 Denso Corp Air-fuel ratio control device of internal combustion engine
JP2000352345A (en) * 1999-06-10 2000-12-19 Denso Corp Air-fuel ratio control system for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075712A (en) * 1983-09-30 1985-04-30 Nissan Motor Co Ltd Secondary air supply system for internal-combustion engine
JPH02188616A (en) * 1989-01-17 1990-07-24 Toyota Motor Corp Exhaust smell repression device for internal combustion engine
JPH04166608A (en) * 1990-10-31 1992-06-12 Suzuki Motor Corp Secondary air supply device for engine
JPH0598955A (en) * 1991-10-12 1993-04-20 Mazda Motor Corp Secondary air controller of engine
JPH05321653A (en) * 1992-05-26 1993-12-07 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JPH0932537A (en) * 1995-07-12 1997-02-04 Nissan Motor Co Ltd Control device of internal combustion engine
JPH0988563A (en) * 1995-09-29 1997-03-31 Nissan Motor Co Ltd Exhaust device for internal combustion engine
JP2000345827A (en) * 1999-06-02 2000-12-12 Denso Corp Air-fuel ratio control device of internal combustion engine
JP2000352345A (en) * 1999-06-10 2000-12-19 Denso Corp Air-fuel ratio control system for internal combustion engine

Also Published As

Publication number Publication date
JP2002227639A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
WO2018193833A1 (en) Exhaust treatment device for internal combustion engine
JP2004108183A (en) Air-fuel ratio control device for internal combustion engine
JPH11159356A (en) Valve timing control device for internal combustion engine
JP4604361B2 (en) Control device for internal combustion engine
JP2000097088A (en) Fuel injection amount control device of internal- combustion engine
JP2007239531A (en) Fuel supply device for internal combustion engine
JP3959832B2 (en) Air-fuel ratio control device for internal combustion engine
JP2005337139A (en) Air fuel ratio control device for internal combustion engine
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JP4285086B2 (en) Secondary air supply control device for internal combustion engine
US11174808B2 (en) Air-fuel ratio control system and air-fuel ratio control method
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP2004204716A (en) Air-fuel ratio subfeedback control abnormality detector
JP2004360640A (en) Air fuel ratio control system of internal combustion engine
JP2006112286A (en) Catalyst temperature estimation device for internal combustion engine
JP2004116400A (en) Control device for internal combustion engine
KR19990025462A (en) How to reduce exhaust gas of a car
JP2890908B2 (en) Secondary air control device for internal combustion engine
JP4839267B2 (en) Fuel injection control device for diesel engine
JP4320555B2 (en) Secondary air supply control device for internal combustion engine
JP2005325762A (en) Air fuel ratio control device for internal combustion engine
JP2005264895A (en) Secondary air supply control device for internal combustion engine
JP2004116393A (en) Control device for internal combustion engine
JP2007100556A (en) Catalyst deterioration detecting device of internal combustion engine
JP2004183504A (en) Controller for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees