JPH10178202A - Manufacture of gan-based substrate - Google Patents

Manufacture of gan-based substrate

Info

Publication number
JPH10178202A
JPH10178202A JP33844496A JP33844496A JPH10178202A JP H10178202 A JPH10178202 A JP H10178202A JP 33844496 A JP33844496 A JP 33844496A JP 33844496 A JP33844496 A JP 33844496A JP H10178202 A JPH10178202 A JP H10178202A
Authority
JP
Japan
Prior art keywords
gan
layer
substrate
thick
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33844496A
Other languages
Japanese (ja)
Inventor
Hiroaki Okagawa
広明 岡川
Keiji Miyashita
啓二 宮下
Yoichiro Ouchi
洋一郎 大内
Kazuyuki Tadatomo
一行 只友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP33844496A priority Critical patent/JPH10178202A/en
Publication of JPH10178202A publication Critical patent/JPH10178202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a GaN-based substrate whose quality is high and whose large area can be achieved easily by a method wherein a buffer layer composed of a group II oxide is formed and a cap layer and a thick-film layer whose composition is indicated by a formula are laminated on it in this order. SOLUTION: As a seed substrate, a substrate which is composed of various materials such as sapphire, Si, MnO and the like can be used. As a group II oxide as a constituent material for a buffer layer, ZnO, MgO or the like can be enumerated, and its layer thickness is set at about 0.005 to 5μm, a cap layer and a thick-film layer are constituted of various materials expressed by a formula of InXGaYAZN (wherein 0<=X<=1, 0<=Y<=1, 0<=Z<=1, and X+Y+Z=1), e.g. at least one kind out of GaN, AlN, In0.1 Ga0.9 N and the like. The cap layer and the thick-film layer may be formed of a mutually identical material or of different materials. The cap layer is formed at less than the thermal decomposition temperature of the group II oxide used to form the buffer layer, and its layer thickness is set at about 0.005 to 5μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaN系基板の製
造方法に関する。
[0001] The present invention relates to a method for manufacturing a GaN-based substrate.

【0002】[0002]

【従来の技術】発光ディスプレイ等における多色化の要
求や、通信・記録等におけるデータ密度の向上の要求か
ら、近時、高輝度の青色発光が可能な半導体素子を容易
に製造することが強く要求されている。青色発光する半
導体素子の製造に用いられる材料として、GaN系の結
晶が注目されている。GaN系結晶は、直接遷移型バン
ド構造を有するため高効率の発光が可能であり、かつ室
温でのバンドギャップが大きいため、上記の要求に応え
得る青色発光素子用に好適な材料である。しかしGaN
系結晶は融点が高く、また融点付近での窒素の蒸気圧が
高いため、融液からバルク結晶を成長させることは極め
て困難である。このため、GaN系結晶の製造は、サフ
ァイア基板上に、または該サファイア基板上にAlN、
ZnOのようなGaN系物質との格子整合性の良好な物
質からなるバッファー層を形成し、その上にGaN系物
質の結晶薄膜を成長させているのが現状である。
2. Description of the Related Art In recent years, there has been a strong demand for easy manufacture of semiconductor devices capable of emitting high-luminance blue light due to the demand for multicolor display in light-emitting displays and the like and the demand for improvement in data density in communication and recording. Has been requested. As a material used for manufacturing a semiconductor element that emits blue light, GaN-based crystals have attracted attention. The GaN-based crystal is a material suitable for a blue light-emitting element that can meet the above requirements because it has a direct transition-type band structure and can emit light with high efficiency and has a large band gap at room temperature. But GaN
Since the system crystal has a high melting point and a high nitrogen vapor pressure near the melting point, it is extremely difficult to grow a bulk crystal from the melt. For this reason, GaN-based crystals are manufactured on a sapphire substrate or on the sapphire substrate by AlN,
At present, a buffer layer made of a material having good lattice matching with a GaN-based material such as ZnO is formed, and a crystal thin film of the GaN-based material is grown thereon.

【0003】ところが、サファイア基板は絶縁体である
ために、電極の設置が特定の位置に限定され、つぎに説
明するように発光素子の構造設計上の自由度が制限され
るという問題がある。図1は、GaN結晶を用いた従来
のLEDの断面構造図例である。同図において、1はp
側電極、2はn側電極、4はn型GaN系半導体、6は
p型GaN系半導体である。p側電極1とn側電極2と
は、サファイア基板Sが絶縁体であるために導電性の基
板を用いたLEDのように、基板を挟んで互いに対向設
置することができない。このため図示するように、両電
極は、共にサファイア基板Sの同一面側に設けざるを得
なくなっている。この両電極の形成構造は、発光素子の
製造面や実装面において種々の問題があり、また発光面
積の点で不利でもある。またGaN系のLDを製造する
場合においても、電極形成位置において上記LEDと同
様の問題があり、またサファイアは劈開性がないために
劈開による共振器面が作製できない不利もある。
However, since the sapphire substrate is an insulator, the placement of the electrodes is limited to a specific position, and there is a problem that the degree of freedom in the structural design of the light emitting element is limited as described below. FIG. 1 is an example of a sectional structural view of a conventional LED using a GaN crystal. In the figure, 1 is p
Side electrodes, 2 is an n-side electrode, 4 is an n-type GaN-based semiconductor, and 6 is a p-type GaN-based semiconductor. Since the sapphire substrate S is an insulator, the p-side electrode 1 and the n-side electrode 2 cannot be opposed to each other with the substrate interposed therebetween, as in an LED using a conductive substrate. For this reason, both electrodes have to be provided on the same surface side of the sapphire substrate S, as shown in the figure. The structure for forming these electrodes has various problems in terms of manufacturing and mounting of the light emitting element, and is disadvantageous in terms of the light emitting area. Also, in the case of manufacturing a GaN-based LD, there is a problem similar to that of the LED at the electrode formation position, and there is a disadvantage that sapphire has no cleavage property, so that a resonator surface cannot be formed by cleavage.

【0004】上記に鑑み、本発明者らはGaN系結晶が
導電性であることに着目して、発光素子の製造のために
サファイア基板に代ってGaN系結晶を基板として用い
ること、並びにGaN系結晶基板の製造方法についての
提案を先に行った。GaN系結晶を基板として用いるこ
とによって、該GaN系結晶基板とその上に形成される
GaN系半導体エピタキシャル層からなる積層体に対し
て、p側電極とn側電極を該積層体の上下から挟むよう
に設けることができ、しかしてサファイア基板を使用し
た際にみられる上記した種々の問題が解決される。その
上、良好な格子整合性の故に該GaN系結晶基板の上に
は高品質のGaN系半導体層をエピタキシャルにて形成
することができ、さらにGaN系結晶基板は劈開性にも
優れているので、高性能のLDの製作にも有利である。
In view of the above, the present inventors have paid attention to the fact that GaN-based crystals are conductive and used GaN-based crystals instead of sapphire substrates for the manufacture of light-emitting devices, and A proposal for a method of manufacturing a system crystal substrate was made first. By using a GaN-based crystal as a substrate, a p-side electrode and an n-side electrode are sandwiched from above and below a stacked body composed of the GaN-based crystal substrate and a GaN-based semiconductor epitaxial layer formed thereon. Thus, the various problems described above when using a sapphire substrate can be solved. In addition, a high-quality GaN-based semiconductor layer can be epitaxially formed on the GaN-based crystal substrate because of good lattice matching. Further, the GaN-based crystal substrate has excellent cleavage properties. It is also advantageous for the production of high-performance LDs.

【0005】GaN系結晶基板の製造方法については、
サファイアなどを種基板として用いい、その上に厚膜の
GaN系結晶層を形成することとし、その際、種基板と
GaN系結晶層との間の格子不整合を緩和するためにサ
ファイア種基板上に予めZnOなどの二族酸化物からな
るバッファー層をスパッタリングによって成膜し、その
上にHVPE法などによりGaN系結晶層を成長させ、
最後に該バッファー層をエッチング除去して基板となる
GaN系結晶を得る。
[0005] Regarding a method of manufacturing a GaN-based crystal substrate,
Sapphire or the like is used as a seed substrate, and a thick GaN-based crystal layer is formed thereon. At this time, a sapphire seed substrate is used to reduce lattice mismatch between the seed substrate and the GaN-based crystal layer. A buffer layer made of a Group 2 oxide such as ZnO is formed on the substrate by sputtering, and a GaN-based crystal layer is grown thereon by HVPE or the like.
Finally, the buffer layer is removed by etching to obtain a GaN-based crystal serving as a substrate.

【0006】バッファー層上への厚膜のGaN結晶層の
形成は、HVPE法などによる高温度下での形成が効率
的である。しかしながら、ZnOなどの二族酸化物から
なるバッファー層は、高温度で熱分解する傾向があり、
場合によってはGaN結晶層の形成の途上でバッファー
層が殆ど消失することもある。バッファー層が消失する
と、GaN系結晶層の成長後の該結晶層とサファイア基
板との分離において、バッファー層のエッチング除去な
る上記の分離方法が採用できず、このためにGaN系結
晶基板の製造歩留りが低下する。
The formation of a thick GaN crystal layer on the buffer layer is efficiently performed at a high temperature by HVPE or the like. However, a buffer layer made of a Group 2 oxide such as ZnO tends to thermally decompose at a high temperature,
In some cases, the buffer layer almost disappears during the formation of the GaN crystal layer. When the buffer layer disappears, the above-described separation method of removing the buffer layer by etching cannot be employed in separating the GaN-based crystal layer from the sapphire substrate after the growth of the GaN-based crystal layer. Decrease.

【0007】[0007]

【発明が解決しようとする課題】本発明は、厚膜のGa
N系結晶層を形成した後においても二族酸化物からなる
バッファー層の消失がなく、あるいは少なくとも該バッ
ファー層の消失の程度が少なく、しかしてGaN系結晶
層の形成後にバッファー層のエッチングによるGaN系
結晶層とサファイア基板との分離が容易であって高歩留
りにてGaN系結晶基板を製造し得る方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention is directed to a thick Ga film.
Even after the formation of the N-based crystal layer, the buffer layer made of Group II oxide does not disappear, or at least the buffer layer does not disappear to a small extent. It is an object of the present invention to provide a method for easily separating a GaN-based crystal substrate from a sapphire substrate and producing a GaN-based crystal substrate at a high yield.

【0008】[0008]

【課題を解決するための手段】本発明は、つぎの特徴を
有する。 (1) 種基板の上に二族酸化物からなるバッファー層を形
成し、その上に低温下でInX GaY AlZ N(ここに
0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=
1)からなるキャップ層を形成し、さらにその上に厚膜
のInX GaY Al Z N(ここに0≦X≦1、0≦Y≦
1、0≦Z≦1、X+Y+Z=1)層を形成することを
特徴とするGaN系基板の製造方法。 (2) 厚膜のInX GaY AlZ N層を形成した後に、該
バッファー層を除去して種基板から厚膜のInX GaY
AlZ N層を分離する上記(1) 記載のGaN系基板の製
造方法。 (3) 該キャップ層の形成をバッファー層を形成する二族
酸化物の熱分解温度未満の低温で行う上記(1) または
(2) 記載のGaN基板の製造方法。 (4) キャップ層の形成を非還元性雰囲気下で行う上記
(1)〜(3)のいずれかに記載のGaN系基板の製造方法。 (5) 厚膜のInX GaY AlZ N層をHVPE法で形成
する上記(1) 〜(4)のいずれかに記載のGaN系基板の
製造方法。
The present invention has the following features.
Have. (1) Form a buffer layer made of Group 2 oxide on the seed substrate.
Formed on top of In at a low temperature.XGaYAlZN (here
0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z =
1) forming a cap layer, and further forming a thick film thereon
InXGaYAl ZN (where 0 ≦ X ≦ 1, 0 ≦ Y ≦
1, 0 ≦ Z ≦ 1, X + Y + Z = 1) forming a layer
A method for producing a GaN-based substrate, which is characterized by the following. (2) Thick InXGaYAlZAfter forming the N layer,
After removing the buffer layer, the thick substrate InXGaY
AlZThe method of manufacturing a GaN-based substrate according to the above (1), wherein the N layer is separated.
Construction method. (3) The cap layer is formed by using a group II forming a buffer layer.
(1) above or performed at a low temperature below the thermal decomposition temperature of the oxide
(2) The method for manufacturing a GaN substrate according to (2). (4) The cap layer is formed under a non-reducing atmosphere.
The method for producing a GaN-based substrate according to any one of (1) to (3). (5) Thick InXGaYAlZForm N layer by HVPE method
The GaN-based substrate according to any one of (1) to (4) above,
Production method.

【0009】[0009]

【作用】二族酸化物からなるバッファー層上に厚膜のI
X GaY AlZ N層(以下、厚膜GaN系層と言う)
を形成するに先立って、バッファー層上にInX GaY
AlZ Nからなるキャップ層(以下、キャップGaN系
層と言う)を予め形成しておく。該キャップGaN系層
は、低温下で形成されるので、従来のように高温下でG
aN系層を形成する場合と異なって、該キャップGaN
系層の形成工程においてバッファー層の熱分解は実質的
には生じない。また該キャップGaN系層の形成後に行
われる厚膜GaN系層の形成工程においては、該キャッ
プGaN系層がバッファー層の保護層として機能し、そ
の熱分解を防止乃至軽減する作用をなす。
A thick film I is formed on a buffer layer made of a group II oxide.
n X Ga Y Al Z N layer (hereinafter referred to as thick GaN-based layer)
Prior to forming the, In X Ga Y on the buffer layer
Cap layer made of al Z N (hereinafter, referred to as a cap GaN-based layer) formed in advance a. Since the cap GaN-based layer is formed at a low temperature, it is possible to form the cap
Unlike the case of forming an aN-based layer, the cap GaN
Thermal decomposition of the buffer layer does not substantially occur in the step of forming the system layer. In the step of forming the thick GaN-based layer performed after the formation of the cap GaN-based layer, the cap GaN-based layer functions as a protective layer of the buffer layer, and functions to prevent or reduce thermal decomposition.

【0010】[0010]

【発明の実施の形態】種基板としては、サファイア、S
iC、GaAs、Si、MgAl2 4 、LiGa
3 、LiAlO3 、MnOなど、種々の材料からなる
基板を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Sapphire, S
iC, GaAs, Si, MgAl 2 O 4 , LiGa
Substrates made of various materials such as O 3 , LiAlO 3 , and MnO can be used.

【0011】バッファー層の構成材料たる二族酸化物と
しては、ZnO、MgO、CaOなどが例示でき、また
その層厚は、0.005〜5μm程度、特に0.01〜
0.5μm程度が適当である。
Examples of the Group 2 oxide as a constituent material of the buffer layer include ZnO, MgO, CaO and the like, and the layer thickness is about 0.005 to 5 μm, particularly 0.01 to 5 μm.
About 0.5 μm is appropriate.

【0012】本発明において、キャップGaN系層およ
び厚膜GaN系層は、下記の一般式(1)、 InX GaY AlZ N (1) (ここに、0≦X≦1、0≦Y≦1、0≦Z≦1、X+
Y+Z=1)を有する各種の材料、例えば、GaN、A
lN、In0.1 Ga0.9 N、Al0.2 Ga0.8 Nなど、
の少なくとも1種にて構成される。キャップGaN系層
と厚膜GaN系層とは、互いに同じ材料であってもよ
く、異なっていてもよい。
In the present invention, the cap GaN-based layer and the thick GaN-based layer are represented by the following general formula (1): In X Ga Y Al Z N (1) (where 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X +
Y + Z = 1), for example, GaN, A
1N, In 0.1 Ga 0.9 N, Al 0.2 Ga 0.8 N, etc.
And at least one of them. The cap GaN-based layer and the thick-film GaN-based layer may be made of the same material or different from each other.

【0013】本発明においてキャップGaN系層は、前
記した通り、低温下で形成される。ここで言う低温と
は、バッファー層の形成に使用する二族酸化物の熱分解
温度(T℃)未満、好ましくは(T−10)℃以下、更
には(T−50)℃以下の低温度を意味する。またその
層厚は、0.005〜5μm程度、特に0.01〜0.
5μm程度が適当である。キャップGaN系層の形成
は、種々の雰囲気下で行ってよいが、還元性雰囲気下で
は、バッファー層の二族酸化物が還元により分解するこ
とがある。したがって空気、酸素、窒素、アルゴン、そ
の他の非還元性雰囲気のもとで行うことが好ましい。
In the present invention, the cap GaN-based layer is formed at a low temperature as described above. Here, the low temperature refers to a low temperature of less than the thermal decomposition temperature (T ° C) of the Group II oxide used for forming the buffer layer, preferably (T-10) ° C or less, and more preferably (T-50) ° C or less. Means The layer thickness is about 0.005 to 5 μm, particularly 0.01 to 0.
About 5 μm is appropriate. The formation of the cap GaN-based layer may be performed in various atmospheres, but in a reducing atmosphere, the Group 2 oxide of the buffer layer may be decomposed by reduction. Therefore, it is preferable to carry out under air, oxygen, nitrogen, argon or other non-reducing atmosphere.

【0014】かく形成されたキャップGaN系層の上に
厚膜GaN系層が形成される。該厚膜GaN系層は、自
体基板として使用されるものであるから、その厚膜度は
基板として使用されるに相応しい厚さ、例えば10〜1
000μm程度、特に50〜500μm程度が適当であ
る。
A thick GaN-based layer is formed on the cap GaN-based layer thus formed. Since the thick GaN-based layer itself is used as a substrate, its thickness is set to a thickness suitable for use as a substrate, for example, 10 to 1.
About 000 μm, particularly about 50 to 500 μm is suitable.

【0015】厚膜GaN系層の形成後、バッファー層を
除去して該GaN系層を種基板から分離する。その際の
バッファー層の除去は、例えば塩酸、硝酸、硫酸、など
の酸によるウェットエッチングなどの方法で行うことが
できる。かくしてGaN系基板を得ることができる。該
GaN系基板の片面にはキャップGaN系層が付着して
いるが、それを除去する必要は特になく、GaN系基板
の一部として利用してよい。
After the formation of the thick GaN-based layer, the buffer layer is removed to separate the GaN-based layer from the seed substrate. The removal of the buffer layer at that time can be performed by a method such as wet etching using an acid such as hydrochloric acid, nitric acid, sulfuric acid, or the like. Thus, a GaN-based substrate can be obtained. Although a cap GaN-based layer is attached to one surface of the GaN-based substrate, it is not necessary to remove the cap GaN-based layer, and the GaN-based substrate may be used as a part of the GaN-based substrate.

【0016】本発明において、バッファー層の形成方法
に関しては特に制限はなく、従来知られている方法、例
えばスパッタ法、MOCVD法(有機金属気相成長
法)、HVPE法(ハイドライド気相成長法)、MBE
法(分子エピタキシャル法)、P−CVD法(プラズマ
−化学気相堆積法)などが挙げられる。またキャップG
aN系層および厚膜GaN系層の形成方法に関しては、
例えばHVPE法、MOCVD法、MBE法などが挙げ
られ、就中HVPE法が好ましい。
In the present invention, the method for forming the buffer layer is not particularly limited, and conventionally known methods, for example, sputtering, MOCVD (metal organic chemical vapor deposition), and HVPE (hydride vapor deposition). , MBE
Method (molecular epitaxial method), P-CVD method (plasma-chemical vapor deposition method) and the like. Also cap G
Regarding the method of forming the aN-based layer and the thick GaN-based layer,
For example, the HVPE method, the MOCVD method, the MBE method and the like can be mentioned, and the HVPE method is particularly preferable.

【0017】以下、本発明を実施例により一層詳細に説
明し、また比較例を挙げて本発明の顕著な効果をも示
す。
Hereinafter, the present invention will be described in more detail with reference to examples, and the remarkable effects of the present invention will also be shown with reference to comparative examples.

【0018】[0018]

【実施例】【Example】

実施例1 2インチφのサファイアC面上に、スパッタ法によりバ
ッファー層としてのMgO膜を約0.05μm成長させ
た。この際、MgOの酸素欠損を少なくするために、通
常のアルゴンガス導入に加えて酸素ガスの導入も併せて
行った。MgO膜を有するサファイア種基板を通常のM
OVPE装置内に設置し、窒素を20SLMで流しなが
ら500℃まで昇温した。つぎにアンモニア10SL
M、水素10SLM、窒素10SLM、およびトリメチ
ルガリウム50μモル/分を流しながらGaNからなる
厚さ0.1μmのキャップ層を成長させた。このキャッ
プ層付きのサファイア種基板を通常のHVPE装置内に
設置し、窒素を10SLM流しながら800℃まで昇温
し、塩化水素1SLMおよびアンモニア3SLMを流し
ながらGaと反応させ、厚さ100μmの厚膜GaN結
晶を成長させた。かくして得た厚膜GaN結晶を有する
サファイア種基板を塩酸中に20分間浸漬してMgO膜
を完全に除去し、目的のGaN結晶基板を得た。
Example 1 An MgO film as a buffer layer was grown to a thickness of about 0.05 μm on a 2 inch φ sapphire C surface by a sputtering method. At this time, in order to reduce oxygen deficiency of MgO, oxygen gas was introduced in addition to ordinary argon gas introduction. Sapphire seed substrate having MgO film
The apparatus was placed in an OVPE apparatus and heated to 500 ° C. while flowing nitrogen at 20 SLM. Next, ammonia 10SL
A cap layer of GaN having a thickness of 0.1 μm was grown while flowing M, hydrogen 10 SLM, nitrogen 10 SLM, and trimethylgallium 50 μmol / min. The sapphire seed substrate with the cap layer is placed in a normal HVPE apparatus, heated to 800 ° C. while flowing 10 SLM of nitrogen, and reacted with Ga while flowing 1 SLM of hydrogen chloride and 3 SLM of ammonia to form a thick film having a thickness of 100 μm. A GaN crystal was grown. The sapphire seed substrate having the thick-film GaN crystal thus obtained was immersed in hydrochloric acid for 20 minutes to completely remove the MgO film, thereby obtaining a target GaN crystal substrate.

【0019】実施例2 500℃にてHVPE法でキャップ層を成長させた以外
は、実施例1と同様にしてGaN結晶基板を得た。
Example 2 A GaN crystal substrate was obtained in the same manner as in Example 1 except that a cap layer was grown at 500 ° C. by the HVPE method.

【0020】実施例3 MgO膜に代えて、バッファー層として約0.05μm
厚のZnO膜をスパッタ法によりサファイア種基板上に
成長させた以外は、実施例1と同様にしてGaN結晶基
板を得た。
Example 3 Instead of the MgO film, a buffer layer of about 0.05 μm
A GaN crystal substrate was obtained in the same manner as in Example 1, except that a thick ZnO film was grown on a sapphire seed substrate by a sputtering method.

【0021】実施例4 MgO膜の成長厚さを約0.1μmとした以外は、実施
例1と同様にしてGaN結晶基板を得た。
Example 4 A GaN crystal substrate was obtained in the same manner as in Example 1 except that the growth thickness of the MgO film was about 0.1 μm.

【0022】実施例5 GaNキャップ層の成長厚さを約0.05μmとした以
外は、実施例1と同様にしてGaN結晶基板を得た。
Example 5 A GaN crystal substrate was obtained in the same manner as in Example 1 except that the growth thickness of the GaN cap layer was about 0.05 μm.

【0023】実施例6 GaNキャップ層を400℃で成長させた以外は、実施
例1と同様にしてGaN結晶基板を得た。
Example 6 A GaN crystal substrate was obtained in the same manner as in Example 1 except that the GaN cap layer was grown at 400 ° C.

【0024】比較例1 GaNキャップ層を形成することなくMgOバッファー
層上に直接厚膜GaN結晶を成長させた以外は、実施例
1と同様の方法を行った。しかし、厚膜GaN結晶を成
長中にMgOの熱分解が進んだためにサファイア種基板
面上に直接GaN結晶が成長した領域が生じ、その領域
では、格子定数の差により単結晶膜が得られなかった
り、GaN結晶内にクラックが入ったりした。また、残
存する少量のMgOバッファー層を塩酸により除去して
も、サファイア種基板から厚膜GaN結晶を分離できな
かった。このためにダイアモンドペーストによる機械的
研磨によりGaN結晶基板を得た。得られたGaN結晶
基板は発生クラックにより、2〜3mm角前後の小面積
のものばかりであった。
Comparative Example 1 A method similar to that of Example 1 was performed except that a thick GaN crystal was grown directly on the MgO buffer layer without forming a GaN cap layer. However, since the thermal decomposition of MgO progressed during the growth of the thick-film GaN crystal, a region where the GaN crystal grew directly on the surface of the sapphire seed substrate was generated. In that region, a single crystal film was obtained due to a difference in lattice constant. There were no cracks or cracks in the GaN crystal. Further, even when the remaining small amount of the MgO buffer layer was removed with hydrochloric acid, a thick-film GaN crystal could not be separated from the sapphire seed substrate. For this purpose, a GaN crystal substrate was obtained by mechanical polishing with a diamond paste. The resulting GaN crystal substrate had only a small area of about 2 to 3 mm square due to cracks generated.

【0025】比較例2 GaNキャップ層の成長温度をMgOの熱分解温度たる
800℃で行った以外は、実施例1と同様の方法を行っ
た。しかしGaNキャップ層の成長中にMgOの熱分解
が進み、塩酸処理によるもサファイア種基板と厚膜Ga
N結晶との分離できない個所が生じた。このためにダイ
アモンドペーストによる機械的研磨によりGaN結晶基
板を得た。得られたGaN結晶基板は発生クラックによ
り、2〜3mm角前後の小面積のものばかりであった。
Comparative Example 2 A method similar to that of Example 1 was performed except that the growth temperature of the GaN cap layer was 800 ° C., which is the thermal decomposition temperature of MgO. However, during the growth of the GaN cap layer, the thermal decomposition of MgO proceeds, and the sapphire seed substrate and the thick Ga
There were places that could not be separated from the N crystals. For this purpose, a GaN crystal substrate was obtained by mechanical polishing with a diamond paste. The resulting GaN crystal substrate had only a small area of about 2 to 3 mm square due to cracks generated.

【0026】比較例3 MgOバッファー層の成長を省略した以外は、実施例1
と同様の方法を行った。その結果、GaN膜は得られた
ものの、格子定数の差によりアモルファス状〜多結晶状
態であり、単結晶のGaN膜は得られなかった。
Comparative Example 3 Example 1 was repeated except that the growth of the MgO buffer layer was omitted.
The same method as described above was performed. As a result, although a GaN film was obtained, it was in an amorphous state to a polycrystalline state due to a difference in lattice constant, and a single crystal GaN film was not obtained.

【0027】実施例1〜5、および比較例1〜3から得
た各GaN結晶基板の特長を以下に示す。なお以下にお
いて平均面積の単位はmm角であり、移動度の単位はV
/cm.Sであり、またX線回折半値幅の単位は秒であ
る。 実施例1(平均面積:15、移動度:320、X線回折
半値幅:155)、実施例2(平均面積:15、移動
度:280、X線回折半値幅:162)、実施例3(平
均面積:15、移動度:350、X線回折半値幅:14
5)、実施例4(平均面積:15、移動度:327、X
線回折半値幅:149)、実施例5(平均面積:15、
移動度:319、X線回折半値幅:151)、比較例1
(平均面積:2、移動度:151、X線回折半値幅:4
50)、比較例2(平均面積:2、移動度:142、X
線回折半値幅:497)、比較例3(平均面積:1、移
動度:139、X線回折半値幅:485)。
The features of the GaN crystal substrates obtained from Examples 1 to 5 and Comparative Examples 1 to 3 are shown below. In the following, the unit of the average area is mm square, and the unit of the mobility is V
/ Cm. S and the unit of the X-ray diffraction half width is seconds. Example 1 (average area: 15, mobility: 320, X-ray diffraction half width: 155), Example 2 (average area: 15, mobility: 280, X-ray diffraction half width: 162), Example 3 ( Average area: 15, mobility: 350, X-ray diffraction half width: 14
5), Example 4 (average area: 15, mobility: 327, X
Line diffraction half width: 149), Example 5 (average area: 15,
Mobility: 319, X-ray diffraction half width: 151), Comparative Example 1
(Average area: 2, mobility: 151, X-ray diffraction half width: 4)
50), Comparative Example 2 (average area: 2, mobility: 142, X
X-ray diffraction half width: 497), Comparative Example 3 (average area: 1, mobility: 139, X-ray diffraction half width: 485).

【0028】[0028]

【発明の効果】本発明によれば、高品質且つ大面積のG
aN系基板を容易にしかも高歩留りにて製造することが
できる。このGaN系基板を用いることにより、劈開に
よる共振面の作製、基板の表裏面にp、n両電極を対向
設置することなど、赤色LDやLEDにおいて行われて
いることが青色のLDやLEDの製造にも適用できるこ
とになる。
According to the present invention, high quality and large area G
An aN-based substrate can be easily manufactured at a high yield. By using this GaN-based substrate, what is performed in a red LD or LED, such as production of a resonance surface by cleavage and installation of p and n electrodes opposite to each other on the front and back surfaces of the substrate, is performed for a blue LD or LED. It can be applied to manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の青色LEDの断面図である。FIG. 1 is a cross-sectional view of a conventional blue LED.

【符号の説明】[Explanation of symbols]

1 p側電極 2 n側電極 S サファイア基板 4 n型GaN系半導体 6 p型GaN系半導体 Reference Signs List 1 p-side electrode 2 n-side electrode S sapphire substrate 4 n-type GaN-based semiconductor 6 p-type GaN-based semiconductor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 只友 一行 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuyuki Tadomo 4-3 Ikejiri, Itami-shi, Hyogo Mitsubishi Electric Cable Industry Co., Ltd. Itami Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 種基板の上に二族酸化物からなるバッフ
ァー層を形成し、その上に低温下でInX GaY AlZ
N(ここに0≦X≦1、0≦Y≦1、0≦Z≦1、X+
Y+Z=1)からなるキャップ層を形成し、さらにその
上に厚膜のInX GaY AlZ N(ここに0≦X≦1、
0≦Y≦1、0≦Z≦1、X+Y+Z=1)層を形成す
ることを特徴とするGaN系基板の製造方法。
1. A buffer layer made of a Group II oxide is formed on a seed substrate, and In x Ga Y Al Z is formed thereon at a low temperature.
N (where 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X +
A cap layer made of Y + Z = 1) is formed thereon, and a thick In x Ga Y Al Z N (where 0 ≦ X ≦ 1, where 0 ≦ X ≦ 1,
0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1) A method of manufacturing a GaN-based substrate, characterized by forming a layer.
【請求項2】 厚膜のInX GaY AlZ N層を形成し
た後に、該バッファー層を除去して種基板から厚膜のI
X GaY AlZ N層を分離する請求項1記載のGaN
系基板の製造方法。
2. After forming a thick In x Ga Y Al Z N layer, the buffer layer is removed and the thick I x Ga Y Al Z N layer is removed from the seed substrate.
n X Ga Y Al Z N layer GaN according to claim 1, wherein separating the
Method of manufacturing system substrate.
【請求項3】 該キャップ層の形成をバッファー層を形
成する二族酸化物の熱分解温度未満の低温で行う請求項
1または2記載のGaN基板の製造方法。
3. The method of manufacturing a GaN substrate according to claim 1, wherein the formation of the cap layer is performed at a low temperature lower than the thermal decomposition temperature of the group II oxide forming the buffer layer.
【請求項4】 キャップ層の形成を非還元性雰囲気下で
行う請求項1〜3のいずれかに記載のGaN系基板の製
造方法。
4. The method for producing a GaN-based substrate according to claim 1, wherein the formation of the cap layer is performed in a non-reducing atmosphere.
【請求項5】 厚膜のInX GaY AlZ N層をHVP
E法で形成する請求項1〜4のいずれかに記載のGaN
系基板の製造方法。
5. The method according to claim 1, wherein the thick In x Ga Y Al Z N layer is formed by HVP.
5. The GaN according to claim 1, wherein the GaN is formed by an E method.
Method of manufacturing system substrate.
JP33844496A 1996-12-18 1996-12-18 Manufacture of gan-based substrate Pending JPH10178202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33844496A JPH10178202A (en) 1996-12-18 1996-12-18 Manufacture of gan-based substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33844496A JPH10178202A (en) 1996-12-18 1996-12-18 Manufacture of gan-based substrate

Publications (1)

Publication Number Publication Date
JPH10178202A true JPH10178202A (en) 1998-06-30

Family

ID=18318221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33844496A Pending JPH10178202A (en) 1996-12-18 1996-12-18 Manufacture of gan-based substrate

Country Status (1)

Country Link
JP (1) JPH10178202A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291258B2 (en) 1998-07-21 2001-09-18 Murata Manufacturing Co., Ltd. Semiconductor photonic device, method for making the same, and method for forming ZnO film
WO2002031890A3 (en) * 2000-10-13 2003-03-06 Univ North Carolina State OPTOELECTRONIC AND MICROELECTRONIC DEVICES INCLUDING CUBIC ZnMgO AND/OR CdMgO ALLOYS AND METHODS OF FABRICATING SAME
JP2003282439A (en) * 2002-03-27 2003-10-03 Seiko Epson Corp Substrate for device and manufacturing method thereof
US6750481B2 (en) 1999-07-23 2004-06-15 Sony Corporation Semiconductor laminated substrate, semiconductor crystal substrate and semiconductor device and method of manufacturing the same
JP2004363373A (en) * 2003-06-05 2004-12-24 Sharp Corp Oxide semiconductor light emitting element and method of manufacturing the same
JP2006165070A (en) * 2004-12-02 2006-06-22 Mitsubishi Cable Ind Ltd Manufacturing method of nitride semiconductor crystal
JP2008047864A (en) * 2006-08-11 2008-02-28 Samsung Electro Mech Co Ltd Manufacturing method of nitride semiconductor light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291258B2 (en) 1998-07-21 2001-09-18 Murata Manufacturing Co., Ltd. Semiconductor photonic device, method for making the same, and method for forming ZnO film
US6750481B2 (en) 1999-07-23 2004-06-15 Sony Corporation Semiconductor laminated substrate, semiconductor crystal substrate and semiconductor device and method of manufacturing the same
WO2002031890A3 (en) * 2000-10-13 2003-03-06 Univ North Carolina State OPTOELECTRONIC AND MICROELECTRONIC DEVICES INCLUDING CUBIC ZnMgO AND/OR CdMgO ALLOYS AND METHODS OF FABRICATING SAME
JP2003282439A (en) * 2002-03-27 2003-10-03 Seiko Epson Corp Substrate for device and manufacturing method thereof
JP2004363373A (en) * 2003-06-05 2004-12-24 Sharp Corp Oxide semiconductor light emitting element and method of manufacturing the same
JP2006165070A (en) * 2004-12-02 2006-06-22 Mitsubishi Cable Ind Ltd Manufacturing method of nitride semiconductor crystal
JP2008047864A (en) * 2006-08-11 2008-02-28 Samsung Electro Mech Co Ltd Manufacturing method of nitride semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP5023318B2 (en) 3-5 nitride semiconductor multilayer substrate, 3-5 nitride semiconductor free-standing substrate manufacturing method, and semiconductor device
EP0817282B1 (en) Semiconductor device
JP2002284600A (en) Method for manufacturing gallium nitride crystal substrate and the same
US8664687B2 (en) Nitride semiconductor light-emitting device and process for producing the same
JP3929657B2 (en) Crystal growth method and group III nitride crystal production method
JPWO2007029655A1 (en) Method for producing hexagonal nitride single crystal, method for producing hexagonal nitride semiconductor crystal and hexagonal nitride single crystal wafer
JP2008156141A (en) Semiconductor substrate and method for manufacturing the same
JP2008034834A (en) Growing method of nitride single crystal on silicon substrate, nitride-semiconductor light-emitting element using the same and manufacturing method of the same
US20240072198A1 (en) Semiconductor substrate, semiconductor device, and electronic device
JP2003055097A (en) Unit substrate comprising nitride semiconductor and method of producing the same
JP2003017420A (en) Gallium nitride compound semiconductor substrate and method of manufacturing the same
CN116941016A (en) Semiconductor substrate, method and apparatus for manufacturing the same, and template substrate
JPH10178202A (en) Manufacture of gan-based substrate
JP2000252219A (en) PRODUCTION OF GaN SUBSTRATE
JPH07267796A (en) Production of gallium nitride single crystal
JP3566476B2 (en) Method for manufacturing semiconductor light emitting device
JP2001007394A (en) Semiconductor substrate, manufacture thereof and semiconductor light emitting element
JPH10199815A (en) Manufacture of gan crystal
JP4313478B2 (en) AlGaInP light emitting diode
JP2003209062A (en) Crystal growth method of compound semiconductor layer and semiconductor element
JP2005251961A (en) Group iii nitride single crystal wafer and method for manufacturing semiconductor device using same
JP2000235956A (en) Method for growing group iii nitride semiconductor crystal layer and semiconductor device equipped with the same
JP2000012979A (en) Method for manufacturing nitride semiconductor substrate
US8309985B2 (en) Light emitting device
JP2003332244A (en) Method for manufacturing nitride semiconductor substrate