JPH10174854A - Gas dissolver - Google Patents

Gas dissolver

Info

Publication number
JPH10174854A
JPH10174854A JP35354796A JP35354796A JPH10174854A JP H10174854 A JPH10174854 A JP H10174854A JP 35354796 A JP35354796 A JP 35354796A JP 35354796 A JP35354796 A JP 35354796A JP H10174854 A JPH10174854 A JP H10174854A
Authority
JP
Japan
Prior art keywords
gas
hot water
cleaning
dissolving
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35354796A
Other languages
Japanese (ja)
Inventor
Kofuku Yamashita
幸福 山下
Takayuki Imaoka
孝之 今岡
Koji Yamanaka
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP35354796A priority Critical patent/JPH10174854A/en
Publication of JPH10174854A publication Critical patent/JPH10174854A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently clean off the org. matter, unreacted fluorine ion, etc., depositing on a gas-permeable membrane in a gas dissolver for dissolving a gas supplied through the gas-permeable membrane by providing a hot water feed pipe for cleaning the the membrane. SOLUTION: A hot water feed pipe 13 for supplying hot water from a hot water feeder 12 through a switching valve 11a is connected to an existing water feed pipe 7 for supplying ultrapure water to a gas dissolver 1 from an ultrapure water feeder 3. Further, a hot water feed pipe 13 for supplying hot water from the hot water feeder 12 through a switching valve 11b is connected to an existing gas feed pipe 8 for supplying a gas to the dissolver 1 from a gas feeder 4. The hot water for cleaning a gas-permeable membrane 2 is supplied to the dissolver 1. The hot water to be supplied to the dissolver 1 from the feeder 12 is preferably controlled to 45-65 deg.C, and the hot water should be supplied at 2-5l/min for >=5hr although it depends on the size of the gas-permeable membrane to be cleaned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガス溶解装置に関
し、例えば半導体基板、ガラス基板、電子部品、或いは
これらの製造装置部品等の如き電子部品部材類、或いは
光学レンズ等の洗浄を行うウェット処理装置において、
超純水に水素ガス、オゾンガス等の洗浄機能ガスを溶解
させた洗浄液を調整するため等に利用することのできる
ガス溶解装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas dissolving apparatus, for example, a wet processing apparatus for cleaning electronic components such as a semiconductor substrate, a glass substrate, an electronic component, or a component of the manufacturing apparatus, or an optical lens. At
The present invention relates to a gas dissolving apparatus that can be used for adjusting a cleaning liquid in which a cleaning function gas such as hydrogen gas and ozone gas is dissolved in ultrapure water.

【0002】[0002]

【従来の技術】LSI等の電子部品部材類の製造工程等
においては、表面を極めて清浄にすることが求められる
ことがある。例えばLSIは、シリコンウエハ上に酸化
ケイ素の絶縁被膜を形成し、次いでこの被膜上に所定の
パターンにレジスト層を設け、レジスト層を設けていな
い部分の絶縁被膜をエッチング等によって除去して金属
シリコンを露出させ、この表面を洗浄した後、目的に応
じてp型あるいはn型の元素を導入し、アルミニウム等
の金属配線を埋め込む工程(リソグラフィプロセス)を
繰り返して素子が製造されるが、p型、n型の元素を導
入する際や金属配線を埋め込む際に、金属シリコン表面
に、微粒子等の異物や、金属、有機物、自然酸化膜等が
付着していると、金属シリコンと金属配線との接触不良
や、接触抵抗増大により素子の特性が不良となることが
ある。このためLSI製造工程において、シリコンウエ
ハ表面の洗浄工程は高性能な素子を得る上で非常に重要
な工程であり、シリコンウエハ上の付着不純物は可能な
限り取り除くことが必要である。
2. Description of the Related Art In the process of manufacturing electronic parts such as LSIs, it is sometimes required to make the surface extremely clean. For example, in LSI, a silicon oxide insulating film is formed on a silicon wafer, a resist layer is provided in a predetermined pattern on the silicon film, and the insulating film in a portion where the resist layer is not provided is removed by etching or the like to remove metal silicon. After exposing the surface and cleaning the surface, a step (lithography process) of introducing a p-type or n-type element according to the purpose and embedding a metal wiring such as aluminum is repeated to manufacture an element. When introducing an n-type element or embedding metal wiring, if foreign matter such as fine particles, metal, organic matter, natural oxide film, etc. adhere to the metal silicon surface, the metal silicon and the metal wiring may The characteristics of the element may be poor due to poor contact or increased contact resistance. For this reason, in the LSI manufacturing process, the step of cleaning the surface of the silicon wafer is a very important step for obtaining a high-performance device, and it is necessary to remove impurities adhering to the silicon wafer as much as possible.

【0003】従来、シリコンウエハの洗浄(ウェット処
理)は、硫酸・過酸化水素水混合溶液、塩酸・過酸化水
素水混合溶液、フッ酸溶液、フッ化アンモニウム溶液等
による洗浄と、超純水による洗浄とを組み合わせて行
い、シリコンウエハ表面の原子レベルでの平坦性を損な
うことなく、シリコンウエハ表面に付着している有機
物、微粒子、金属、自然酸化膜等を除去している。
Conventionally, cleaning (wet processing) of a silicon wafer is performed by cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, a hydrofluoric acid solution, an ammonium fluoride solution, and the like, and using ultrapure water. The cleaning is performed in combination to remove organic substances, fine particles, metals, natural oxide films and the like adhering to the silicon wafer surface without impairing the flatness of the silicon wafer surface at the atomic level.

【0004】以下の(1)〜(13)は、従来のシリコン
ウエハの洗浄工程の具体的な一例である。 (1)硫酸・過酸化水素水洗浄工程;硫酸:過酸化水素
水=4:1(体積比)の混合溶液により、130℃で1
0分洗浄。 (2)超純水洗浄工程;超純水で10分洗浄。 (3)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (4)超純水洗浄工程;超純水で10分洗浄。 (5)アンモニア・過酸化水素水洗浄工程;アンモニア
水:過酸化水素水:超純水=0.05:1:5(体積
比)の混合溶液により、80℃で10分洗浄。 (6)超純水洗浄工程;超純水で10分洗浄。 (7)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (8)超純水洗浄工程;超純水で10分洗浄。 (9)塩酸・過酸化水素水洗浄工程;塩酸:過酸化水素
水:超純水=1:1:6(体積比)の混合溶液により、
80℃で10分洗浄。 (10)超純水洗浄工程;超純水で10分洗浄。 (11)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (12)超純水洗浄工程;超純水で10分洗浄。 (13)スピン乾燥又はIPA蒸気乾燥
The following (1) to (13) are specific examples of a conventional silicon wafer cleaning process. (1) Sulfuric acid / hydrogen peroxide solution washing step; a mixed solution of sulfuric acid: hydrogen peroxide solution = 4: 1 (volume ratio) at 130 ° C.
Wash for 0 minutes. (2) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (3) Hydrofluoric acid washing step; washing with 0.5% hydrofluoric acid for 1 minute. (4) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (5) Ammonia / hydrogen peroxide water washing step; washing with a mixed solution of ammonia water / hydrogen peroxide / ultra pure water = 0.05: 1: 5 (volume ratio) at 80 ° C. for 10 minutes. (6) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (7) Hydrofluoric acid washing step: washing with 0.5% hydrofluoric acid for 1 minute. (8) Ultrapure water washing step: washing with ultrapure water for 10 minutes. (9) Hydrochloric acid / hydrogen peroxide water washing step: a mixed solution of hydrochloric acid: hydrogen peroxide water: ultra pure water = 1: 1: 6 (volume ratio)
Wash at 80 ° C for 10 minutes. (10) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (11) Hydrofluoric acid washing step; washing with 0.5% hydrofluoric acid for 1 minute. (12) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (13) Spin drying or IPA vapor drying

【0005】上記(1)の工程は、主にシリコンウエハ
表面に付着している有機物の除去を行うためのもの、
(5)の工程は、主にシリコンウエハ表面に付着してい
る微粒子を除去するためのもの、(9)の工程は、主に
シリコンウエハ表面の金属不純物を除去するためのもの
であり、また(3)、(7)、(11)の工程はシリコ
ンウエハ表面の自然酸化膜を除去するために行うもので
ある。尚、上記各工程における洗浄液には、上記した主
目的以外の他の汚染物質除去能力がある場合が多く、例
えば(1)の工程で用いる硫酸・過酸化水素水混合溶液
は、有機物の他に金属不純物の強力な除去作用も有して
いるため、上記したような各洗浄液によって異なる不純
物を除去する方法の他に、一種類の洗浄液で複数の不純
物を除去するようにした方法もある。
The step (1) is mainly for removing organic substances adhering to the surface of the silicon wafer,
The step (5) is mainly for removing fine particles adhering to the silicon wafer surface, and the step (9) is mainly for removing metal impurities on the silicon wafer surface. Steps (3), (7) and (11) are performed to remove the natural oxide film on the surface of the silicon wafer. In addition, the cleaning liquid in each of the above steps often has a contaminant removing ability other than the above-mentioned main purpose. For example, the mixed solution of sulfuric acid and hydrogen peroxide used in the step (1) is not only organic but also organic substances. Since it also has a strong action of removing metal impurities, in addition to the above-described method of removing different impurities by each cleaning solution, there is also a method of removing a plurality of impurities with one type of cleaning solution.

【0006】シリコンウエハのウェット処理工程におい
て、シリコンウエハ表面に洗浄液や超純水を接触させる
方法としては、一般に洗浄液や超純水を貯めた洗浄槽に
複数のシリコンウエハを浸漬するバッチ洗浄法と呼ばれ
る方法が採用されているが、洗浄液の汚染を防止するた
めに洗浄液を循環ろ過しながら洗浄する方法、洗浄液に
よる処理後の超純水による洗浄方式として、超純水を洗
浄槽底部から供給して洗浄槽上部から溢れさせながら行
うオーバーフロー洗浄法、一旦ウエハ全面が超純水に浸
漬するまで洗浄槽内に超純水を貯めた後、一気に超純水
を洗浄槽底部から排出するクイックダンプ洗浄法等も採
用されている。また近年はバッチ洗浄法の他に、ウエハ
表面に洗浄液や超純水をシャワー状に吹き掛けて洗浄す
る方法や、ウエハを高速回転させてその中央に洗浄液や
超純水を吹き掛けて洗浄する方法等の、所謂枚葉洗浄法
も採用されている。
In the wet processing of a silicon wafer, a method of bringing a cleaning liquid or ultrapure water into contact with the surface of the silicon wafer generally includes a batch cleaning method in which a plurality of silicon wafers are immersed in a cleaning tank containing the cleaning liquid or ultrapure water. A method called washing is performed while circulating and filtering the cleaning liquid to prevent contamination of the cleaning liquid, and as a cleaning method using ultrapure water after treatment with the cleaning liquid, ultrapure water is supplied from the bottom of the cleaning tank. An overflow cleaning method that overflows from the top of the cleaning tank, and then stores the ultrapure water in the cleaning tank until the entire surface of the wafer is immersed in the ultrapure water, and then quickly discharges the ultrapure water from the bottom of the cleaning tank at once. Laws have also been adopted. In recent years, in addition to the batch cleaning method, a method of spraying a cleaning liquid or ultrapure water on a wafer surface in a shower shape or cleaning the wafer by rotating the wafer at a high speed and spraying a cleaning liquid or ultrapure water on the center thereof. A so-called single wafer cleaning method such as a method is also employed.

【0007】上記超純水による洗浄は、ウエハ表面に残
留する洗浄液等をすすぐ(リンス)ために行うものであ
る。このためすすぎに用いる超純水は微粒子、コロイド
状物質、有機物、金属イオン、陰イオン、溶存酸素等を
極限レベルまで除去した高純度の超純水が使用されてい
る。この超純水は洗浄液の溶媒としても用いられてい
る。
The cleaning with ultrapure water is performed to rinse (rinse) a cleaning liquid or the like remaining on the wafer surface. Therefore, the ultrapure water used for rinsing is high purity ultrapure water from which fine particles, colloidal substances, organic substances, metal ions, anions, dissolved oxygen and the like have been removed to an extremely low level. This ultrapure water is also used as a solvent for the cleaning liquid.

【0008】[0008]

【発明が解決しようとする課題】近年LSIの集積度は
飛躍的に向上し、初期の頃にはLSI製造工程における
リソグラフィプロセスが数回程度であったものが、20
回から30回にも増大し、ウエハの洗浄回数もリソグラ
フィプロセスの増大に伴って増加している。このためウ
エハのウェット処理に用いる洗浄液や超純水の原材料コ
スト、使用後の洗浄液や超純水の処理コスト、更には高
温でのウェット処理によってクリーンルーム内に生じた
洗浄液ガスをクリーンルーム内から排出するためのエア
ーコスト等が増大し、製品コストの増大につながってお
り、洗浄液の低濃度化や使用量の低減化、ウェット処理
工程の低温化、1回のウェット処理当たりの工程数の削
減、すすぎに用いる超純水の使用量の低減化等が課題と
なっている。
In recent years, the degree of integration of LSI has been dramatically improved. In the early days, the number of lithography processes in the LSI manufacturing process was about several times.
From 30 times to 30 times, and the number of times of cleaning of the wafer also increases with the increase in the lithography process. For this reason, the raw material cost of the cleaning liquid and ultrapure water used for the wet processing of the wafer, the processing cost of the cleaning liquid and ultrapure water after use, and the cleaning liquid gas generated in the clean room due to the wet processing at a high temperature are discharged from the clean room. Costs, such as the cost of air, increase the product cost, reduce the concentration and use amount of the cleaning solution, lower the temperature of the wet process, reduce the number of processes per wet process, and rinse. There is a problem of reducing the amount of ultrapure water used for the process.

【0009】上記のような問題点に鑑み本出願人は鋭意
研究した結果、洗浄液やすすぎ液の酸化還元電位が重要
であることを見出し、超純水に水素ガスを溶解してなる
負の酸化還元電位を有する洗浄液によって電子部品類を
洗浄する方法、超純水にオゾンガスを溶解せしめてなる
正の酸化還元電位を有する洗浄液によって洗浄する方
法、超純水に水素を溶解せしめてなる負の酸化還元電位
を有する洗浄液によって洗浄する方法等を先に提案し
た。
In view of the above problems, the present applicants have conducted intensive studies and have found that the oxidation-reduction potential of the cleaning solution and the rinsing solution is important. A method for cleaning electronic components with a cleaning liquid having a reduction potential, a method for cleaning with a cleaning liquid having a positive oxidation-reduction potential obtained by dissolving ozone gas in ultrapure water, and a method for negative oxidation obtained by dissolving hydrogen in ultrapure water A method of cleaning with a cleaning liquid having a reduction potential has been previously proposed.

【0010】上記水素ガスやオゾン等の洗浄機能ガスを
溶解した超純水をウェット処理における洗浄液として用
いるに際し、超純水に洗浄機能ガスを溶解させるための
一つとして、ガス透過膜を有するガス溶解装置がある。
この装置は円筒状ベッセル内に中空糸膜(ガス透過膜)
をベッセルの軸方向に配して複数収納したガス透過膜モ
ジュールを設けた構造を有するものである。このガス溶
解装置における中空糸膜は、中空糸状体の内外を貫通し
た、ガスは透過させるが液体は透過させない複数の微細
孔を有している。このガス透過装置によって超純水中に
水素、オゾン等のガスを溶解させる場合、外圧式と内圧
式とが採用されている。外圧式は、中空糸膜の内側にガ
スを供給し、外側に超純水を供給し、中空糸膜の内側か
ら外側に透過したガスを超純水中に溶解させる方法であ
り、内圧式は糸状膜の内側に超純水を供給し外側にガス
を供給して中空糸膜の外側から内側に透過したガスを超
純水に溶解させる方法である。
When using ultrapure water in which a cleaning function gas such as hydrogen gas or ozone is dissolved as a cleaning liquid in a wet process, one of the methods for dissolving the cleaning function gas in the ultrapure water is a gas having a gas permeable membrane. There is a melting device.
This device has a hollow fiber membrane (gas permeable membrane) in a cylindrical vessel.
Are arranged in the axial direction of the vessel and a plurality of gas permeable membrane modules are provided. The hollow fiber membrane in this gas dissolving device has a plurality of micropores that penetrate inside and outside the hollow fiber body and allow gas to permeate but not liquid. When a gas such as hydrogen or ozone is dissolved in ultrapure water by the gas permeation device, an external pressure type and an internal pressure type are adopted. The external pressure method is a method in which a gas is supplied to the inside of the hollow fiber membrane, ultrapure water is supplied to the outside, and the gas permeated from the inside to the outside of the hollow fiber membrane is dissolved in the ultrapure water. In this method, ultrapure water is supplied to the inside of the fibrous membrane and gas is supplied to the outside to dissolve the gas permeated from the outside to the inside of the hollow fiber membrane in the ultrapure water.

【0011】ところでガス透過膜の表面に、ガス透過膜
製造時に付着した有機物や塵、細菌等が残存している
と、シリコンウエハのウェット処理に用いる洗浄液中に
有機物や塵、細菌が混入する虞れがある。またガス透過
膜はフッ素系樹脂等の疎水性素材によって構成されてい
るため、洗浄液中にガス透過膜を構成する素材中の未反
応フッ素イオンが混入する虞もある。このような洗浄液
の汚染はシリコンウエハのウェット処理に著しい支障を
来す虞れがある。
If organic substances, dust, bacteria, and the like adhering to the gas permeable membrane during the production of the gas permeable membrane remain on the surface of the gas permeable membrane, there is a possibility that the organic substances, dust, and bacteria may be mixed in the cleaning liquid used for the wet treatment of the silicon wafer. There is. Further, since the gas permeable membrane is made of a hydrophobic material such as a fluorine-based resin, unreacted fluorine ions in the material constituting the gas permeable membrane may be mixed into the cleaning liquid. Such contamination of the cleaning liquid may significantly impair the wet processing of the silicon wafer.

【0012】このため、ガス透過膜式の洗浄装置を備え
たウェット処理装置では、使用前にガス溶解装置の洗浄
を行っているが、従来この洗浄は、ガス溶解装置の液供
給側に接続された超純水供給管から超純水を供給するこ
とにより行っている。しかしながら、超純水をガス溶解
装置の液供給側に供給して洗浄を行うだけでは、洗浄液
中に混入してくる有機物等やフッ素イオン等の濃度を、
シリコンウエハの洗浄に支障を来さないような低濃度に
まで短時間で低下させることは困難であり、通常、数日
もの洗浄時間を要するという問題があった。また従来の
超純水による洗浄では、ガス透過膜に付着した細菌を短
時間で洗浄除去することも困難であるため、ガス透過膜
上で細菌が繁殖する虞れがある。一旦ガス透過膜上で細
菌が繁殖してしまうと、ガス溶解装置からガス透過膜モ
ジュールを取り外して殺菌洗浄を行ったり、ガス透過膜
モジュールを交換する等の必要があり、この間、ガス溶
解装置が使用できなくなるためウェット処理効率の低下
を来したり、メンテナンスのためのコストがかさむ等の
問題があった。
For this reason, in a wet processing apparatus equipped with a gas permeable membrane type cleaning apparatus, the gas dissolving apparatus is cleaned before use, but conventionally, this cleaning is connected to the liquid supply side of the gas dissolving apparatus. It is performed by supplying ultrapure water from the ultrapure water supply pipe. However, by merely supplying ultrapure water to the liquid supply side of the gas dissolving apparatus and performing cleaning, the concentration of organic substances and fluorine ions mixed into the cleaning liquid is reduced.
It is difficult to reduce the concentration to a low concentration that does not hinder the cleaning of the silicon wafer in a short time, and there is a problem that a cleaning time of several days is usually required. In addition, in the conventional cleaning with ultrapure water, it is difficult to wash and remove the bacteria attached to the gas permeable membrane in a short time, and there is a possibility that the bacteria may propagate on the gas permeable membrane. Once bacteria have grown on the gas permeable membrane, it is necessary to remove the gas permeable membrane module from the gas dissolving device and perform sterilization cleaning, or replace the gas permeable membrane module. Since it cannot be used, there have been problems such as a decrease in wet treatment efficiency and an increase in maintenance costs.

【0013】本発明は上記の点に鑑みなされたもので、
ガス透過膜に付着している有機物や塵、細菌等やガス透
過膜の構成素材中から溶出してくる未反応フッ素イオン
等を効率良く洗浄除去することのできる洗浄機能を備え
たガス溶解装置を提供することを目的とするものであ
る。
The present invention has been made in view of the above points,
A gas dissolving device with a washing function that can efficiently wash and remove organic substances, dust, bacteria, etc. adhering to the gas permeable membrane and unreacted fluorine ions eluted from the constituent materials of the gas permeable membrane. It is intended to provide.

【0014】[0014]

【課題を解決するための手段】本発明は、(1)ガス透
過膜を介して供給されるガスを液中に溶解させるガス溶
解装置において、該装置はガス透過膜の洗浄を行うため
の温水供給管が設けられていることを特徴とするガス溶
解装置、(2)ガス溶解装置がガス透過膜を介して区画
されたガス供給側と液供給側とを有し、ガス供給側には
ガス供給装置からのガスを供給するためのガス供給管
と、余剰ガスをガス処理装置に送るための余剰ガス排出
管とが接続され、液供給側には超純水供給装置からの超
純水を供給するための超純水供給管と、該超純水に前記
ガス供給装置から供給されるガスをガス透過膜を介して
溶解させて得た洗浄液を洗浄槽に移送するための洗浄液
供給管とが接続されていることを特徴とする(1)記載
のガス溶解装置、(3)ガス透過膜の洗浄を行うための
温水供給管を、ガス溶解装置にガスを供給するガス供給
管の途中に、ガス供給側と温水供給側とを切替える切替
え弁を介して連結したことを特徴とする(2)記載のガ
ス溶解装置、(4)ガス透過膜を洗浄した、ガス溶解装
置のガス供給側から排出される排温水を排温水回収装置
に導くための排温水管を、ガス処理装置に余剰ガスを送
るための余剰ガス排出管の途中に、ガス処理装置側と排
温水回収装置側とを切り換える切替え弁を介して接続し
たことを特徴とする(3)記載のガス溶解装置、(5)
ガス透過膜の洗浄を行うための温水供給管を、ガス溶解
装置に超純水を供給する超純水供給管の途中に、超純水
供給装置側と温水供給装置側とを切替える切替え弁を介
して連結したこと特徴とする(2)記載のガス溶解装
置、(6)ガス透過膜を洗浄した、ガス溶解装置の液供
給側から排出される排温水を排温水回収装置に導くため
の排温水管を、洗浄液を洗浄槽に移送する洗浄液供給管
の途中に、洗浄槽側と排温水回収装置側とを切り換える
切替え弁を介して接続したことを特徴とする(5)記載
のガス溶解装置、(7)ガス透過膜の洗浄を行うための
温水供給管を、ガス溶解装置にガスを供給するガス供給
管の途中にガス供給側と温水供給側とを切替える切替え
弁を介して連結してなるとともに、ガス溶解装置に超純
水を供給する超純水供給管の途中に超純水供給装置側と
温水供給装置側とを切替える切替え弁を介して連結して
連結してなることを特徴とする(2)記載のガス溶解装
置、(8)ガス透過膜を洗浄した、ガス溶解装置のガス
供給側から排出される排温水を排温水回収装置に導くた
めの排温水管を、ガス処理装置に余剰ガスを送るための
余剰ガス排出管の途中に、ガス処理装置側と排温水回収
装置側とを切り換える切替え弁を介して接続してなると
ともに、ガス溶解装置の液供給側から排出される排温水
を排温水回収装置に導くための排温水管を、洗浄液を洗
浄槽に移送する洗浄液供給管の途中に、洗浄槽側と排温
水回収装置側とを切り換える切替え弁を介して接続した
ことを特徴とする(7)記載のガス溶解装置、(9)ガ
ス溶解装置が超音波発生装置を備えていることを特徴と
する(1)〜(8)のいずれかに記載のガス溶解装置を
要旨とする。
According to the present invention, there is provided (1) a gas dissolving apparatus for dissolving a gas supplied through a gas permeable membrane into a liquid, the apparatus comprising hot water for cleaning the gas permeable membrane. A gas dissolving device having a supply pipe; (2) the gas dissolving device has a gas supply side and a liquid supply side partitioned by a gas permeable membrane, and the gas supply side has a gas supply side. A gas supply pipe for supplying gas from the supply device and a surplus gas discharge pipe for sending surplus gas to the gas treatment device are connected, and ultrapure water from the ultrapure water supply device is supplied to the liquid supply side. An ultrapure water supply pipe for supplying, and a cleaning liquid supply pipe for transferring a cleaning liquid obtained by dissolving a gas supplied from the gas supply device to the ultrapure water through a gas permeable membrane to a cleaning tank. Is connected to the gas dissolving apparatus according to (1), ) A hot water supply pipe for cleaning the gas permeable membrane is connected to a gas supply pipe for supplying gas to the gas dissolving device via a switching valve for switching between a gas supply side and a hot water supply side. The gas dissolving apparatus according to (2) above, and (4) a waste water pipe for guiding waste hot water discharged from the gas supply side of the gas dissolving apparatus after cleaning the gas permeable membrane to a waste water collecting apparatus, using a gas treatment. (3) The gas dissolving apparatus according to (3), wherein the gas dissolving apparatus is connected to a surplus gas discharge pipe for sending surplus gas to the apparatus via a switching valve that switches between a gas processing apparatus side and a waste water collecting apparatus side. (5)
A hot water supply pipe for cleaning the gas permeable membrane is provided with a switching valve that switches between the ultrapure water supply device side and the hot water supply device side in the middle of the ultrapure water supply pipe that supplies ultrapure water to the gas dissolving device. (6) The gas dissolving apparatus according to (2), wherein the exhausted hot water discharged from the liquid supply side of the gas dissolving apparatus after cleaning the gas permeable membrane is guided to the exhausted hot water recovery apparatus. The gas dissolving apparatus according to (5), wherein the hot water pipe is connected to the cleaning liquid supply pipe for transferring the cleaning liquid to the cleaning tank via a switching valve for switching between the cleaning tank side and the waste water collecting apparatus side. (7) A hot water supply pipe for cleaning the gas permeable membrane is connected to a gas supply pipe for supplying gas to the gas dissolving device via a switching valve for switching between a gas supply side and a hot water supply side. Ultrapure water that supplies ultrapure water to the gas dissolution equipment The gas dissolving device according to (2), wherein (8) gas permeation is provided by being connected via a switching valve for switching between the ultrapure water supply device side and the hot water supply device side in the middle of the supply pipe. The exhausted hot water pipe for guiding the exhausted hot water discharged from the gas supply side of the gas dissolving apparatus, which has washed the membrane, to the exhausted hot water recovery apparatus, in the middle of the excess gas exhaust pipe for sending the excess gas to the gas processing apparatus, It is connected via a switching valve that switches between the gas treatment device side and the waste water recovery device side, and has a waste water pipe for guiding the waste water discharged from the liquid supply side of the gas dissolving device to the waste water recovery device. The gas dissolving apparatus according to (7), wherein the gas dissolving apparatus is connected to a cleaning liquid supply pipe for transferring the cleaning liquid to the cleaning tank via a switching valve for switching between the cleaning tank side and the waste water collecting apparatus side. ) Gas dissolving device equipped with ultrasonic generator Characterized Rukoto (1) and gist gas dissolution device according to any one of - (8).

【0015】[0015]

【実施例】以下、本発明のガス溶解装置の一実施例を図
面に基づき説明する。図1は本発明のガス溶解装置をウ
ェット処理装置に設けた場合の構成を示す模式図であ
る。図中、1はガス溶解装置、2はガス透過膜で、ガス
溶解装置1はガス透過膜2で区画された液供給側1a
と、ガス供給側1bとを有している。このウェット処理
装置は、ガス溶解装置1と、ガス溶解装置1の液供給側
1aに超純水を供給する超純水製造装置等からなる超純
水供給装置3と、ガス溶解装置1のガス供給側1bに水
素ガス、オゾンガス等の洗浄機能ガスを供給するガス供
給装置4と、洗浄機能ガスをガス透過膜2を介して超純
水中に溶解させて得た洗浄液により、例えばシリコンウ
エハ等の被洗浄品を洗浄する洗浄槽5と、ガス供給装置
4からガス溶解装置1に供給された余剰のガスを処理す
るガス処理装置6とを備えている。超純水は超純水供給
装置3から超純水供給管7によってガス溶解装置1の液
供給側1aに供給され、洗浄機能ガスはガス供給装置4
からガス供給管8によってガス溶解装置1のガス供給側
1bに供給される。またガス溶解装置1の液供給側1a
に供給された超純水に、ガス供給側1bに供給されたガ
スをガス透過膜2を介して溶解させて得た洗浄液は、洗
浄液供給管9によって洗浄槽5に送られ、ガス溶解装置
1において超純水に溶解した余りの余剰ガスは、余剰ガ
ス排出管10によってガス処理装置6に移送されて処理
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the gas dissolving apparatus of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration in a case where the gas dissolving apparatus of the present invention is provided in a wet processing apparatus. In the figure, 1 is a gas dissolving device, 2 is a gas permeable membrane, and the gas dissolving device 1 is a liquid supply side 1a partitioned by the gas permeable membrane 2.
And a gas supply side 1b. The wet processing apparatus includes a gas dissolving apparatus 1, an ultrapure water supply apparatus 3 including an ultrapure water producing apparatus for supplying ultrapure water to a liquid supply side 1a of the gas dissolving apparatus 1, and a gas dissolving apparatus 1. A gas supply device 4 for supplying a cleaning function gas such as hydrogen gas or ozone gas to the supply side 1b, and a cleaning liquid obtained by dissolving the cleaning function gas in ultrapure water via the gas permeable membrane 2, for example, a silicon wafer or the like And a gas treatment device 6 for treating excess gas supplied from the gas supply device 4 to the gas dissolving device 1. Ultrapure water is supplied from the ultrapure water supply device 3 to the liquid supply side 1 a of the gas dissolving device 1 by the ultrapure water supply pipe 7, and the cleaning function gas is supplied to the gas supply device 4.
From the gas supply pipe 8 to the gas supply side 1b of the gas melting device 1. The liquid supply side 1a of the gas dissolving device 1
The cleaning liquid obtained by dissolving the gas supplied to the gas supply side 1b in the ultrapure water supplied through the gas permeable membrane 2 is sent to the cleaning tank 5 by the cleaning liquid supply pipe 9, and the gas dissolving device 1 The excess gas dissolved in the ultrapure water is transferred to the gas processing device 6 by the excess gas discharge pipe 10 and processed.

【0016】超純水製造装置3には、原水を凝集沈殿装
置、砂ろ過装置、活性炭ろ過装置で処理する前処理装置
と、この前処理水を逆浸透膜装置、2床3塔イオン交換
装置、混床式イオン交換装置、精密フィルターで処理し
て一次純水を得る一次純水製造装置と、一次純水に紫外
線照射、混床式ポリッシャー、限外ろ過膜処理を施し
て、一次純水中に残留する微粒子、コロイド物質、有機
物、金属イオン、陰イオン等を除去する二次純水製造装
置とを備え、更に必要に応じて脱ガス装置を備えている
(いずれも図示せず。)。
The ultrapure water production device 3 includes a pretreatment device for treating raw water with a coagulating sedimentation device, a sand filtration device, and an activated carbon filtration device, and a reverse osmosis membrane device, a two-bed, three-column ion exchange device. , A mixed-bed ion exchange device, a primary-pure water production device that obtains primary purified water by processing with a precision filter, and a primary-purified water that is subjected to ultraviolet irradiation, a mixed-bed polisher, and an ultrafiltration membrane treatment. A secondary pure water producing apparatus for removing fine particles, colloidal substances, organic substances, metal ions, anions and the like remaining in the apparatus is provided, and a degassing apparatus is further provided if necessary (neither is shown). .

【0017】上記超純水製造装置3で製造される超純水
とは、工業用水、上水、井水、河川水、湖沼水等の原水
を凝集沈殿、ろ過、凝集ろ過、活性炭処理等の前処理装
置で処理することにより、原水中の粗大な懸濁物質、有
機物等を除去し、次いでイオン交換装置、逆浸透膜装置
等の脱塩装置を主体とする一次純水製造装置で処理する
ことにより、微粒子、コロイド物質、有機物、金属イオ
ン、陰イオン等の不純物の大部分を除去し、更にこの一
次純水を紫外線照射装置、混床式ポリッシャー、限外ろ
過膜や逆浸透膜を装着した膜処理装置からなる二次純水
製造装置で循環処理することにより、残留する微粒子、
コロイド物質、有機物、金属イオン、陰イオン等の不純
物を可及的に除去した高純度純水を指し、その水質とし
ては、例えば電気抵抗率が17.0MΩ・cm以上、全
有機炭素が100μgC/リットル以下、微粒子数(粒
径0.07μm以上のもの)が50ケ/ミリリットル以
下、生菌数が50ケ/リットル以下、シリカが10μg
SiO2 /リットル以下、ナトリウム0.1μgNa/
リットル以下のものを指す。例えば下記表1に示す水質
を有しているものが好ましく、このような水質の超純水
であれば、超純水中の汚染物質がウエハ表面に付着する
ことはないとされている。
The ultrapure water produced by the ultrapure water production apparatus 3 is used for coagulating sedimentation, filtration, coagulation filtration, activated carbon treatment and the like of raw water such as industrial water, clean water, well water, river water, lake water and the like. By treating with a pretreatment device, coarse suspended substances and organic matter in the raw water are removed, and then treated with a primary pure water production device mainly including a desalination device such as an ion exchange device and a reverse osmosis membrane device. By removing most of impurities such as fine particles, colloidal substances, organic substances, metal ions, anions, etc., this primary pure water is equipped with an ultraviolet irradiation device, mixed bed polisher, ultrafiltration membrane and reverse osmosis membrane Circulating treatment in a secondary pure water production device consisting of a membrane treatment device
High-purity pure water from which impurities such as colloidal substances, organic substances, metal ions, and anions have been removed as much as possible. Examples of the water quality include electric resistivity of 17.0 MΩ · cm or more and total organic carbon of 100 μgC / 1 liter or less, the number of fine particles (particle size 0.07 μm or more) is 50 / ml or less, the number of viable bacteria is 50 / l or less, and silica is 10 μg
SiO 2 / liter or less, sodium 0.1 μg Na /
Refers to one or less liters. For example, those having the water quality shown in the following Table 1 are preferable, and it is said that if the water quality is ultrapure water, contaminants in the ultrapure water will not adhere to the wafer surface.

【0018】[0018]

【表1】 [Table 1]

【0019】ガス溶解装置1において超純水に溶解され
る洗浄機能ガスとしては、例えば水素ガス、オゾンガ
ス、塩素ガス等が用いられる。上記水素ガスやオゾンガ
ス等は、超純水中に溶解していることにより洗浄機能を
発現するが、窒素や炭酸ガスは例えば洗浄液中に溶解し
ているオゾンガスと反応してイオン化したり、水中で解
離してイオン化したりして抵抗率を低下させるため、窒
素や炭酸ガス等のガスが洗浄液に溶解していることは好
ましくない。また超純水中に酸素が溶存していると、洗
浄液中に溶解している水素と反応して水(H2 O)を生
成してしまうため、溶存水素濃度が低下し、洗浄効率を
低下させるため同様に好ましくない。通常、超純水製造
装置3によって超純水を製造する際に脱ガス処理が施さ
れているため、超純水製造装置3から供給される超純水
中のガス溶解量は非常に低くなってはいるが、超純水を
ガス溶解装置1に導入する前に、脱ガス装置(図示せ
ず)によって超純水中に残存する窒素、炭酸ガス、酸素
等を更に除去しておくことが好ましい。脱ガス装置にお
いてはガス溶解装置1に供給する超純水中の全溶存ガス
濃度を10ppm未満、好ましくは2ppm以下となる
ように脱ガスしておくことが好ましい。脱ガス装置にお
いて、超純水中の溶存ガスの脱ガスを行う方法として
は、ガス透過膜を介して真空脱ガスする方法が好まし
い。
As the cleaning function gas dissolved in ultrapure water in the gas dissolving apparatus 1, for example, hydrogen gas, ozone gas, chlorine gas or the like is used. The hydrogen gas, ozone gas, and the like exhibit a cleaning function by being dissolved in ultrapure water, but nitrogen or carbon dioxide gas reacts with, for example, ozone gas dissolved in the cleaning solution to ionize, or in water. It is not preferable that a gas such as nitrogen or carbon dioxide is dissolved in the cleaning solution because the resistivity is lowered by dissociation and ionization. Also, if oxygen is dissolved in ultrapure water, it reacts with hydrogen dissolved in the cleaning solution to generate water (H 2 O), so that the concentration of dissolved hydrogen decreases and cleaning efficiency decreases. It is also not preferred because Normally, since degassing is performed when ultrapure water is produced by the ultrapure water production device 3, the amount of dissolved gas in the ultrapure water supplied from the ultrapure water production device 3 becomes extremely low. However, before introducing ultrapure water into the gas dissolving apparatus 1, nitrogen, carbon dioxide, oxygen, etc. remaining in the ultrapure water may be further removed by a degassing device (not shown). preferable. In the degassing device, it is preferable to degas so that the total dissolved gas concentration in the ultrapure water supplied to the gas dissolving device 1 is less than 10 ppm, preferably 2 ppm or less. In the degassing apparatus, as a method for degassing the dissolved gas in the ultrapure water, a method of vacuum degassing via a gas permeable membrane is preferable.

【0020】またガス溶解装置1において超純水に溶解
せしめる洗浄機能ガスが水素ガスやオゾンガスの場合、
超純水の電気分解手段によって生じた水素ガスや超純水
中の水酸イオンを酸化して生成したオゾンガスが高純度
であるために好ましい。ガス溶解装置1のガス透過膜2
は前記したように中空糸膜であり、超純水にガスを溶解
させる方法としては、中空糸膜の内側に洗浄機能ガスを
供給し、外側に超純水を供給して超純水に洗浄機能ガス
を溶解させる外圧式、中空糸膜の内側に超純水を供給
し、外側に洗浄機能ガスを供給して超純水に洗浄機能ガ
スを溶解させる内圧式等が挙げられる。中空糸膜の素材
としては、例えば四フッ化エチレン樹脂(PTFE)、
フッ化ビニリデン樹脂(PVDF)等のフッ素系樹脂や
ポリオレフィン等が挙げられる。
When the cleaning gas to be dissolved in ultrapure water in the gas dissolving apparatus 1 is hydrogen gas or ozone gas,
Hydrogen gas generated by ultrapure water electrolysis means and ozone gas generated by oxidizing hydroxyl ions in ultrapure water are preferable because of their high purity. Gas permeable membrane 2 of gas dissolving device 1
Is a hollow fiber membrane as described above. As a method for dissolving a gas in ultrapure water, a cleaning function gas is supplied to the inside of the hollow fiber membrane, and ultrapure water is supplied to the outside to clean the ultrapure water. An external pressure type in which a functional gas is dissolved, an internal pressure type in which ultrapure water is supplied inside the hollow fiber membrane, and a cleaning functional gas is supplied to the outside to dissolve the cleaning functional gas in the ultrapure water, and the like. As the material of the hollow fiber membrane, for example, tetrafluoroethylene resin (PTFE),
Fluorinated resins such as vinylidene fluoride resin (PVDF) and polyolefins are exemplified.

【0021】本発明のガス溶解装置1は、ガス透過膜を
備えた従来のガス溶解装置に、ガス透過膜の洗浄を行う
ための温水供給管を接続したことを特徴とするものであ
るが、本発明のガス溶解装置1をウェット処理装置に設
ける場合には、図1に示すように、超純水供給装置3か
らガス溶解装置1に超純水を供給する既存の超純水供給
管7に切替え弁11aを介して温水供給装置12から温
水を供給する温水供給管13を接続し、またガス供給装
置4からガス溶解装置1にガスを供給する既存のガス供
給管8に切替え弁11bを介して温水供給装置12から
温水を供給する温水供給管13を接続し、ガス透過膜2
を洗浄するための温水をガス溶解装置1に供給するよう
に構成することが好ましい。切替え弁11aは、ガス溶
解装置1の液供給側1aに、超純水供給装置3からの超
純水を供給するか、温水供給装置12からの温水を供給
するかの切り換えができるように構成され、切替え弁1
1bはガス溶解装置1のガス供給側1bに、ガス供給装
置4からのガスを供給するか、温水供給装置12からの
温水を供給するかの切替えができるように構成されてい
る。
The gas dissolving apparatus 1 of the present invention is characterized in that a hot water supply pipe for cleaning the gas permeable membrane is connected to a conventional gas dissolving apparatus having a gas permeable membrane. When the gas dissolving apparatus 1 of the present invention is provided in a wet processing apparatus, as shown in FIG. 1, an existing ultrapure water supply pipe 7 for supplying ultrapure water from the ultrapure water supply apparatus 3 to the gas dissolving apparatus 1 is used. Is connected to a hot water supply pipe 13 for supplying hot water from a hot water supply device 12 via a switching valve 11a, and a switching valve 11b is connected to an existing gas supply pipe 8 for supplying gas from the gas supply device 4 to the gas dissolving device 1. A hot water supply pipe 13 for supplying hot water from a hot water supply device 12 is connected through the gas permeable membrane 2
It is preferable to supply hot water for cleaning the gas to the gas dissolving apparatus 1. The switching valve 11a is configured to be able to switch between supplying ultrapure water from the ultrapure water supply device 3 and supplying hot water from the hot water supply device 12 to the liquid supply side 1a of the gas dissolving device 1. And switching valve 1
1b is configured to be able to switch between supplying the gas from the gas supply device 4 and supplying the hot water from the hot water supply device 12 to the gas supply side 1b of the gas dissolving device 1.

【0022】一方、ガス溶解装置1に供給され、ガス透
過膜2の洗浄を行った後の排温水は、排温水回収装置1
4にて処理されるが、ガス溶解装置1の液供給側1aか
ら排出される排温水は、排温水管15を既存の洗浄液供
給管9に切替え弁11cを介して接続して排温水回収装
置14に移送し、ガス溶解装置1のガス供給側1bから
排出される排温水は、排温水管15を既存の余剰ガス排
出管10に切替え弁11dを介して接続して排温水回収
装置14に移送するように構成することが好ましい。切
替え弁11cはガス溶解装置1の液供給側1aと、洗浄
槽5又は排温水回収装置14との接続の切り換えができ
るように構成され、切替え弁11cの切替えによって洗
浄液(洗浄機能ガスを溶解した超純水)の場合には洗浄
槽5に移送され、排温水の場合には排温水回収装置14
に移送される。また切替え弁11dは、ガス溶解装置1
のガス供給側1bと、ガス処理装置6又は排温水回収装
置14との接続の切り換えができるように構成され、切
替え弁11dの切替えによって余剰ガスの場合にはガス
処理装置6に移送され、排温水の場合には排温水回収装
置14に移送される。
On the other hand, the exhausted hot water supplied to the gas dissolving apparatus 1 and after the gas permeable membrane 2 has been washed is discharged to the exhausted hot water recovering apparatus 1.
The exhausted hot water discharged from the liquid supply side 1a of the gas dissolving apparatus 1 is connected to the existing cleaning liquid supply pipe 9 via the switching valve 11c, and the exhausted hot water discharged from the liquid supply side 1a of the gas dissolving apparatus 1 The exhausted hot water discharged from the gas supply side 1b of the gas dissolving device 1 is transferred to the exhaust hot water recovery device 14 by connecting the exhaust hot water pipe 15 to the existing surplus gas exhaust pipe 10 via the switching valve 11d. Preferably, it is configured to be transported. The switching valve 11c is configured to be able to switch the connection between the liquid supply side 1a of the gas dissolving apparatus 1 and the cleaning tank 5 or the waste water collecting apparatus 14. The switching of the switching valve 11c causes the cleaning liquid (the cleaning function gas to be dissolved). In the case of ultrapure water, it is transferred to the cleaning tank 5, and in the case of wastewater, the wastewater recovery device 14
Is transferred to Further, the switching valve 11d is a gas dissolving device 1
The connection between the gas supply side 1b and the gas processing device 6 or the exhaust hot water recovery device 14 can be switched. When the surplus gas is transferred by switching the switching valve 11d, the gas is transferred to the gas processing device 6 and discharged. In the case of hot water, it is transferred to the waste water collecting device 14.

【0023】上記したように、ガス溶解装置1に温水を
供給するための温水供給管13や、ガス溶解装置1のガ
ス透過膜2を洗浄した後の排温水を排温水回収装置14
に移送するための排温水管15を、既存の配管に切替え
弁を介して接続するようにすると、既存の設備の僅かな
加工によって本発明のガス溶解装置を取り付けることが
できるため好ましい。
As described above, the hot water supply pipe 13 for supplying hot water to the gas dissolving apparatus 1 and the waste hot water after washing the gas permeable membrane 2 of the gas dissolving apparatus 1 are collected by the waste hot water collecting apparatus 14.
It is preferable that the exhaust gas hot water pipe 15 to be transferred to the existing pipe be connected to the existing pipe via a switching valve, because the gas dissolving apparatus of the present invention can be attached by a small processing of the existing equipment.

【0024】図1に示した装置では温水供給装置12か
ら供給される温水を、ガス溶解装置1の液供給側1a及
びガス供給側1bの両方に供給するように構成した場合
を示したが、温水を液供給側1a又はガス供給側1bの
いずれか一方のみに供給するように構成しても良いが、
この場合は液供給側1に温水を供給するように構成する
ことが好ましい。また温水を液供給側1a、ガス供給側
1bの一方のみに供給した場合、ガス透過膜2は片側の
みが洗浄されることとなり、ガス透過膜2の温水洗浄さ
れない側の面に付着していた有機物等は、ガス透過膜2
の微細孔を介して他方の面に透過してくる虞れがある。
このため、本発明の特に好ましい態様は図1に示すよう
にガス溶解装置1の液供給側1a及びガス供給側1bの
両方に温水を供給するように構成することである。尚、
ガス溶解装置1の液供給側1a又はガス供給側1bのい
ずれか一方のみに温水を供給するように構成した場合、
排温水回収装置14に排温水を移送するための排温水管
15は、ガス溶解装置1の温水を供給した側(液供給側
1a、ガス供給側1bのいずれか一方)に接続されれば
良い。
The apparatus shown in FIG. 1 shows a case where the hot water supplied from the hot water supply apparatus 12 is supplied to both the liquid supply side 1a and the gas supply side 1b of the gas dissolving apparatus 1. Hot water may be supplied to only one of the liquid supply side 1a and the gas supply side 1b,
In this case, it is preferable to supply hot water to the liquid supply side 1. Also, when hot water was supplied to only one of the liquid supply side 1a and the gas supply side 1b, only one side of the gas permeable membrane 2 was washed, and the gas permeable membrane 2 was attached to the surface of the gas permeable membrane 2 on the side where the hot water was not washed. Organic substances and the like are gas permeable membranes 2
There is a possibility that the light may be transmitted to the other surface through the fine holes.
For this reason, a particularly preferred embodiment of the present invention is to supply hot water to both the liquid supply side 1a and the gas supply side 1b of the gas dissolving apparatus 1 as shown in FIG. still,
When configured to supply hot water to only one of the liquid supply side 1a and the gas supply side 1b of the gas dissolving apparatus 1,
The hot water pipe 15 for transferring the hot water to the hot water recovery device 14 may be connected to the hot water supply side (one of the liquid supply side 1a and the gas supply side 1b) of the gas dissolving apparatus 1. .

【0025】本発明のガス溶解装置1には、超音波発生
装置16を備えることができ、温水によるガス透過膜2
の洗浄時に超音波を照射すると更に洗浄効果を向上する
ことができる。超音波発生装置16から照射される超音
波としては30kHz以上の周波数のものが用いられ
る。
The gas dissolving apparatus 1 of the present invention can be provided with an ultrasonic generator 16 and is provided with a gas permeable membrane 2 made of hot water.
Irradiation of ultrasonic waves at the time of cleaning can further improve the cleaning effect. The ultrasonic waves emitted from the ultrasonic generator 16 have a frequency of 30 kHz or more.

【0026】ガス溶解装置1に温水を供給してガス透過
膜2を洗浄する方法としては、温水を連続的に供給して
洗浄する方法や、断続的に供給して洗浄する方法等が挙
げられる。また図1に示すように超純水供給管7、ガス
供給管8、洗浄水供給管9及び余剰ガス排出管10に、
それぞれ開閉弁17a、17b、17c及び17dを設
け、ガス溶解装置1内にガス透過膜2の洗浄用温水を供
給した後、各開閉弁17a〜17dを閉じてガス溶解装
置1内に温水を封入して一定時間保持後、開閉弁を開い
てガス溶解装置1内から温水を流し出す操作を、1回な
いし2回以上繰り返し行う方法も採用できる。また温水
をガス溶解装置1の液供給側1a、ガス供給側1bの両
方に供給して洗浄を行う場合、液供給側1aとガス供給
側1bに同時に温水を供給する方法を採用しても、液供
給側1aとガス供給側1bに交互に温水を供給する方法
を採用しても良い。
The method of cleaning the gas permeable membrane 2 by supplying hot water to the gas dissolving apparatus 1 includes a method of cleaning by supplying hot water continuously, and a method of cleaning by supplying intermittently. . Also, as shown in FIG. 1, the ultrapure water supply pipe 7, the gas supply pipe 8, the washing water supply pipe 9, and the surplus gas discharge pipe 10,
Opening / closing valves 17a, 17b, 17c and 17d are provided, respectively, and hot water for cleaning the gas permeable membrane 2 is supplied into the gas dissolving apparatus 1. Then, the opening / closing valves 17a to 17d are closed and hot water is sealed in the gas dissolving apparatus 1. After holding for a certain period of time, the operation of opening the on-off valve and flowing out hot water from the gas dissolving apparatus 1 may be repeated once or twice or more. Further, when cleaning is performed by supplying hot water to both the liquid supply side 1a and the gas supply side 1b of the gas dissolving apparatus 1, even if a method of simultaneously supplying hot water to the liquid supply side 1a and the gas supply side 1b is adopted, A method of alternately supplying hot water to the liquid supply side 1a and the gas supply side 1b may be adopted.

【0027】温水供給装置12からガス溶解装置1に供
給する温水は、45〜65℃のものが好ましく、温水供
給流量は洗浄すべきガス透過膜のサイズにもよるが、2
〜5リットル/分で5時間以上連続して供給することが
好ましい。また温水供給装置12において加温される原
水としては、通常、超純水が使用される。
The hot water supplied from the hot water supply device 12 to the gas dissolving device 1 is preferably 45 to 65 ° C. The hot water supply flow rate depends on the size of the gas permeable membrane to be cleaned.
It is preferable to supply continuously at 5 to 5 liters / minute for 5 hours or more. As raw water heated in the hot water supply device 12, ultrapure water is usually used.

【0028】以下、具体的な実施例を挙げて本発明を更
に詳細に説明する。 実施例1 図1に示すウェット処理装置におけるガス溶解装置に、
新しいガス溶解膜モジュールを取り付け、このガス溶解
膜モジュールにおけるTOCの初期値を、湿式酸化UV
分解法によるTOC計によって測定した。TOC初期値
の測定にはガス溶解装置に常温の超純水(20℃、TO
C:1.0ppb)を2リットル/分の速度で流し、5
分後にガス溶解装置から排出される超純水中のTOC値
をTOC初期値とした。TOC初期値測定後、ガス溶解
装置に60℃の温水(超純水を60℃に加温したも
の。)を2リットル/分の速度で1時間流した後、常温
の超純水(20℃)を2リットル/分の速度で1時間流
して安定化させた後に、ガス溶解装置から排出される超
純水中のTOCを測定した(温水を流した時間を洗浄時
間とし、1時間温水を流した場合を洗浄時間1時間とす
る)。同様にして温水を24時間流した後、常温の超純
水を1時間流して安定化させた後のTOC(洗浄時間2
4時間)、120時間温水を流した後、常温の超純水を
1時間流して安定化させた後のTOC(洗浄時間120
時間)を測定した。これらの結果を表2に示す。温水は
温水供給装置からガス溶解装置の液供給側及びガス供給
側に同時に供給し、超純水はガス溶解装置の液供給側の
みに供給した。TOC計で測定したサンプルはガス溶解
装置の液排出側から出た水である。
Hereinafter, the present invention will be described in more detail with reference to specific examples. Example 1 A gas dissolving apparatus in the wet processing apparatus shown in FIG.
A new gas dissolving membrane module was installed, and the initial value of TOC in this gas dissolving membrane module was set to wet oxidation UV.
It was measured by a TOC meter based on a decomposition method. To measure the TOC initial value, ultrapure water (20 ° C, TO
C: 1.0 ppb) at a flow rate of 2 liter / min.
After a minute, the TOC value in the ultrapure water discharged from the gas dissolving apparatus was set as the TOC initial value. After measuring the TOC initial value, hot water of 60 ° C. (super-pure water heated to 60 ° C.) was passed through the gas dissolving apparatus at a rate of 2 liter / min for 1 hour, and then ultra-pure water at normal temperature (20 ° C.) ) Was flowed at a rate of 2 liters / minute for 1 hour to stabilize, and then the TOC in the ultrapure water discharged from the gas dissolving apparatus was measured (the time during which hot water was flown was defined as the cleaning time, and the time during which the hot water was flown for 1 hour). The washing time is defined as one hour.) Similarly, after flowing hot water for 24 hours, TOC (cleaning time 2
4 hours), 120 hours of flowing hot water, and 1 hour of normal temperature ultrapure water to stabilize the TOC (washing time 120 hours).
Time) was measured. Table 2 shows the results. Hot water was simultaneously supplied from the hot water supply device to the liquid supply side and the gas supply side of the gas dissolving device, and ultrapure water was supplied only to the liquid supply side of the gas dissolving device. The sample measured by the TOC meter is water discharged from the liquid discharge side of the gas dissolving apparatus.

【0029】比較例1 実施例1の温水洗浄を常温の超純水洗浄(20℃、供給
速度2リットル/分)に置き換えた他は、実施例1と同
様の処理を行った。結果を表2にあわせて示す。尚、比
較例1の場合の洗浄時間1時間とは、実施例1の温水洗
浄にかえて常温の超純水を1時間流した後、実施例1と
条件をあわせるために実施例1と同様に常温の超純水を
1時間流す操作を行ったものであり、実際の超純水供給
時間は2時間である。同様に洗浄時間24時間の場合に
は実際の超純水供給時間は25時間であり、洗浄時間1
20時間の場合には実際の超純水供給時間は121時間
である。尚、比較例1ではガス溶解装置に温水供給装置
が接続されていないものを用い、超純水はガス溶解装置
の液供給側のみに供給した。
Comparative Example 1 The same treatment as in Example 1 was performed, except that the washing with warm water in Example 1 was replaced with washing with ultrapure water at normal temperature (20 ° C., supply rate 2 liter / min). The results are shown in Table 2. The cleaning time of 1 hour in the case of Comparative Example 1 is the same as that of Example 1 in order to match the conditions with Example 1 after flowing ultrapure water at normal temperature for 1 hour instead of the hot water cleaning of Example 1. The operation of flowing ultrapure water at room temperature for 1 hour was performed, and the actual supply time of ultrapure water was 2 hours. Similarly, when the cleaning time is 24 hours, the actual ultrapure water supply time is 25 hours, and the cleaning time is 1 hour.
In the case of 20 hours, the actual ultrapure water supply time is 121 hours. In Comparative Example 1, a gas dissolving apparatus without a hot water supply apparatus was used, and ultrapure water was supplied only to the liquid supply side of the gas dissolving apparatus.

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示す結果より明らかなように、実施
例1では1時間の洗浄時間でもTOC値は大幅に低下
し、24時間洗浄を行った場合のTOC値は、供給した
超純水中のTOC値と略同程度となり、ガス溶解膜に付
着している有機物は事実上、完全に除去された。これに
対して比較例1では、洗浄時間1時間では高いTOC値
を示し、120時間も洗浄を行わなければ実施例1の洗
浄時間24時間の場合と略同様のTOC値にならなかっ
た。
As is clear from the results shown in Table 2, in Example 1, the TOC value was significantly reduced even with a cleaning time of 1 hour, and the TOC value in the case of performing cleaning for 24 hours was as follows. And the organic matter attached to the gas-dissolved film was practically completely removed. On the other hand, in Comparative Example 1, a high TOC value was exhibited for a cleaning time of 1 hour, and the TOC value was not substantially the same as that of Example 1 for a cleaning time of 24 hours unless cleaning was performed for 120 hours.

【0032】実施例2 図1に示すウェット処理装置におけるガス溶解装置に、
新しいガス溶解膜モジュールを取り付け、このガス溶解
膜モジュールからのフッ素イオン濃度の初期値を、イオ
ンクロマト分析法によって測定した。フッ素イオン濃度
初期値の測定は、ガス溶解装置に常温の超純水(20
℃、TOC:1.0ppb)を2リットル/分の速度で
流し、5分後にガス溶解装置から排出される超純水中の
フッ素イオン濃度を測定して初期値とした。フッ素イオ
ン濃度初期値の測定後、ガス溶解装置に60℃の温水
(超純水を60℃に加温したもの)を2リットル/分の
速度で1時間流した後、常温の超純水(20℃)を2リ
ットル/分の速度で1時間流して安定化させた後に、ガ
ス溶解装置から排出される超純水中のフッ素イオン濃度
を測定した(温水を流した時間を洗浄時間とし、1時間
温水を流した場合を洗浄時間1時間とする)。同様にし
て温水を24時間流した後、常温の超純水を1時間流し
て安定化させた後のフッ素イオン濃度(洗浄時間24時
間)、120時間温水を流した後、常温の超純水を1時
間流して安定化させた後のフッ素イオン濃度(洗浄時間
120時間)を測定した。これらの結果を表3に示す。
温水は温水供給装置からガス溶解装置の液供給側及びガ
ス供給側に同時に供給し、超純水はガス溶解装置の液供
給側のみに供給した。
Example 2 A gas dissolving apparatus in the wet processing apparatus shown in FIG.
A new gas dissolving membrane module was installed, and the initial value of the concentration of fluorine ions from the gas dissolving membrane module was measured by ion chromatography. The initial value of the fluorine ion concentration is measured by using a gas dissolving apparatus with ultra-pure water (20
° C, TOC: 1.0 ppb) was flowed at a rate of 2 liter / min, and after 5 minutes, the concentration of fluorine ions in the ultrapure water discharged from the gas dissolving apparatus was measured and set as an initial value. After measuring the initial value of the fluorine ion concentration, hot water at 60 ° C. (heated to ultra-pure water at 60 ° C.) was passed through the gas dissolving apparatus at a rate of 2 liters / minute for 1 hour. (20 ° C.) for 1 hour at a flow rate of 2 liters / minute for stabilization, and then the fluorine ion concentration in the ultrapure water discharged from the gas dissolving apparatus was measured (the time during which hot water was flown was defined as the cleaning time, Washing time is 1 hour when warm water is flown for 1 hour). In the same manner, after flowing hot water for 24 hours, fluorine ion concentration (cleaning time: 24 hours) after stabilizing by flowing ultrapure water at room temperature for 1 hour, flowing hot water for 120 hours, and then ultrapure water at room temperature. Was flowed for 1 hour to stabilize, and the fluorine ion concentration (washing time: 120 hours) was measured. Table 3 shows the results.
Hot water was simultaneously supplied from the hot water supply device to the liquid supply side and the gas supply side of the gas dissolving device, and ultrapure water was supplied only to the liquid supply side of the gas dissolving device.

【0033】比較例2 実施例2の温水洗浄を常温の超純水洗浄(20℃、供給
速度2リットル/分)に置き換えた他は、実施例2と同
様の処理を行った。結果を表3にあわせて示す。尚、比
較例2の場合の洗浄時間1時間とは、実施例2の温水洗
浄にかえて常温の超純水を1時間流した後、実施例2と
条件をあわせるために実施例2と同様に常温の超純水を
1時間流す操作を行ったものであり、実際の超純水供給
時間は2時間である。同様に洗浄時間24時間の場合に
は実際の超純水供給時間は25時間であり、洗浄時間1
20時間の場合には実際の超純水供給時間は121時間
である。尚、比較例2ではガス溶解装置に温水供給装置
が接続されていないものを用い、超純水はガス溶解装置
の液供給側のみに供給した。
Comparative Example 2 The same treatment as in Example 2 was performed, except that the washing with warm water in Example 2 was replaced with washing with ultrapure water at normal temperature (20 ° C., supply rate 2 liter / min). The results are shown in Table 3. The cleaning time of 1 hour in the case of Comparative Example 2 is the same as that of Example 2 in order to match the conditions with Example 2 after flowing ultrapure water at normal temperature for 1 hour instead of the hot water cleaning of Example 2. The operation of flowing ultrapure water at room temperature for 1 hour was performed, and the actual supply time of ultrapure water was 2 hours. Similarly, when the cleaning time is 24 hours, the actual ultrapure water supply time is 25 hours, and the cleaning time is 1 hour.
In the case of 20 hours, the actual ultrapure water supply time is 121 hours. In Comparative Example 2, a gas dissolving apparatus without a hot water supply apparatus was used, and ultrapure water was supplied only to the liquid supply side of the gas dissolving apparatus.

【0034】[0034]

【表3】 [Table 3]

【0035】表3に示す結果より明らかなように、実施
例2では1時間の洗浄時間でもフッ素イオン濃度は大幅
に低下し、24時間洗浄を行った場合には0.5ppb
以下まで低下し、ガス溶解膜からのフッ素イオンの流出
は認められなくなった。これに対して比較例2では、洗
浄時間1時間では初期値に比べてフッ素イオン濃度は低
下したものの、まだかなり高い値を示しており、24時
間洗浄後でも1時間洗浄後の値と殆ど変化がなかった。
また比較例2では洗浄でフッ素イオン濃度が0.5pp
b以下となるまでに120時間の洗浄が必要であった。
As is evident from the results shown in Table 3, in Example 2, the fluorine ion concentration was significantly reduced even with a cleaning time of 1 hour, and 0.5 ppb was obtained after cleaning for 24 hours.
It decreased to below, and no outflow of fluorine ions from the gas dissolving membrane was observed. On the other hand, in Comparative Example 2, although the fluorine ion concentration was lower than the initial value at the cleaning time of 1 hour, the value was still considerably high, and even after the cleaning for 24 hours, the value was almost the same as the value after the cleaning for 1 hour. There was no.
In Comparative Example 2, the fluorine ion concentration was 0.5 pp by washing.
It was necessary to wash for 120 hours until the value became b or less.

【0036】[0036]

【発明の効果】以上説明したように、本発明のガス溶解
装置はガス透過膜の洗浄を行うための温水供給管を備
え、ガス溶解装置に温水を供給してガス透過膜を洗浄す
ることができるように構成したため、常温の超純水によ
る洗浄しか行えなかった従来のガス溶解装置に比べ、短
時間でガス透過膜に付着してる有機物や塵、細菌等を洗
浄除去でき、ガス透過膜がフッ素系樹脂からなる場合で
も、ガス透過膜の構成素材中の未反応フッ素イオンを短
時間で洗浄除去できる。また温水をガス溶解装置の液供
給側及びガス供給側の両方に供給するように構成する
と、ガス透過膜の両面側の洗浄ができ、ガス透過膜の液
供給側の面のみを超純水で洗浄するだけの従来の装置の
場合のように、ガス透過膜の洗浄していない側の面に付
着している有機物等が洗浄面側に透過してくる虞れもな
く、より効果的な洗浄を行うことができる。
As described above, the gas dissolving apparatus of the present invention is provided with the hot water supply pipe for cleaning the gas permeable membrane, and can supply hot water to the gas dissolving apparatus to clean the gas permeable membrane. As compared to conventional gas dissolving equipment that can only clean with ultrapure water at room temperature, organic substances, dust, bacteria, etc. adhering to the gas permeable membrane can be washed and removed in a short time, and the gas permeable membrane can be cleaned. Even in the case of using a fluororesin, unreacted fluorine ions in the constituent material of the gas permeable membrane can be washed and removed in a short time. If hot water is supplied to both the liquid supply side and the gas supply side of the gas dissolving device, both sides of the gas permeable membrane can be cleaned, and only the liquid supply side of the gas permeable membrane is made of ultrapure water. As in the case of the conventional apparatus that only performs cleaning, there is no possibility that organic substances and the like adhering to the surface of the gas permeable membrane that has not been cleaned are permeated to the cleaning surface side, and more effective cleaning is performed. It can be performed.

【0037】更に、既存のウェット処理装置等における
ガス溶解装置として本発明を装置を用いる場合、ガス溶
解装置に温水を供給するための温水供給管を既存の超純
水供給管やガス供給管に切替え弁を介して接続し、洗浄
後の温水を排温水回収装置に移送するための排温水管
を、既存の洗浄液供給管や余剰ガス排出管に切替え弁を
介して接続するようにすれば、既存の装置に僅かな加工
を加えるだけで取り付けることができ、取り付けコスト
も低く抑えることができる等の効果を有する。
Further, when the present invention is used as a gas dissolving apparatus in an existing wet processing apparatus or the like, a hot water supply pipe for supplying hot water to the gas dissolving apparatus is connected to an existing ultrapure water supply pipe or gas supply pipe. If connected via a switching valve, and a drained hot water pipe for transferring the hot water after washing to the drained hot water recovery device is connected to the existing cleaning liquid supply pipe or excess gas discharging pipe via the switching valve, It can be attached to an existing device with only a small amount of processing, and the cost of attachment can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガス溶解装置を備えたウェット処理装
置の構成の模式図である。
FIG. 1 is a schematic view of a configuration of a wet processing apparatus provided with a gas dissolving apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス溶解装置 1a 液供給側 1b ガス供給側 2 ガス透過膜 3 超純水供給装置 4 ガス供給装置 5 洗浄槽 6 ガス処理装置 7 超純水供給管 8 ガス供給管 9 洗浄液供給管 10 余剰ガス排出管 11a 切替え弁 11b 切替え弁 11c 切替え弁 11d 切替え弁 12 温水供給装置 13 温水供給管 14 排温水回収装置 15 排温水管 16 超音波発生装置 DESCRIPTION OF SYMBOLS 1 Gas dissolving apparatus 1a Liquid supply side 1b Gas supply side 2 Gas permeable membrane 3 Ultrapure water supply apparatus 4 Gas supply apparatus 5 Cleaning tank 6 Gas treatment apparatus 7 Ultrapure water supply pipe 8 Gas supply pipe 9 Cleaning liquid supply pipe 10 Excess gas Discharge pipe 11a Switching valve 11b Switching valve 11c Switching valve 11d Switching valve 12 Hot water supply device 13 Hot water supply pipe 14 Waste water collection device 15 Waste water pipe 16 Ultrasonic wave generator

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガス透過膜を介して供給されるガスを液
中に溶解させるガス溶解装置において、該装置はガス透
過膜の洗浄を行うための温水供給管が設けられているこ
とを特徴とするガス溶解装置。
1. A gas dissolving apparatus for dissolving a gas supplied through a gas permeable membrane into a liquid, wherein the apparatus is provided with a hot water supply pipe for cleaning the gas permeable membrane. Gas dissolving equipment.
【請求項2】 ガス溶解装置がガス透過膜を介して区画
されたガス供給側と液供給側とを有し、ガス供給側には
ガス供給装置からのガスを供給するためのガス供給管
と、余剰ガスをガス処理装置に送るための余剰ガス排出
管とが接続され、液供給側には超純水供給装置からの超
純水を供給するための超純水供給管と、該超純水に前記
ガス供給装置から供給されるガスをガス透過膜を介して
溶解させて得た洗浄液を洗浄槽に移送するための洗浄液
供給管とが接続されていることを特徴とする請求項1記
載のガス溶解装置。
2. A gas dissolving device having a gas supply side and a liquid supply side partitioned by a gas permeable membrane, wherein a gas supply pipe for supplying gas from the gas supply device is provided on the gas supply side. An excess gas discharge pipe for sending excess gas to the gas processing apparatus, and an ultrapure water supply pipe for supplying ultrapure water from the ultrapure water supply apparatus to the liquid supply side; 2. A cleaning liquid supply pipe for transferring a cleaning liquid obtained by dissolving gas supplied from the gas supply device to water through a gas permeable membrane to a cleaning tank is connected. Gas dissolving equipment.
【請求項3】 ガス透過膜の洗浄を行うための温水供給
管を、ガス溶解装置にガスを供給するガス供給管の途中
に、ガス供給側と温水供給側とを切替える切替え弁を介
して連結したことを特徴とする請求項2記載のガス溶解
装置。
3. A hot water supply pipe for cleaning the gas permeable membrane is connected to a gas supply pipe for supplying gas to the gas dissolving device, via a switching valve for switching between a gas supply side and a hot water supply side. The gas dissolving apparatus according to claim 2, wherein:
【請求項4】 ガス透過膜を洗浄した、ガス溶解装置の
ガス供給側から排出される排温水を排温水回収装置に導
くための排温水管を、ガス処理装置に余剰ガスを送るた
めの余剰ガス排出管の途中に、ガス処理装置側と排温水
回収装置側とを切り換える切替え弁を介して接続したこ
とを特徴とする請求項3記載のガス溶解装置。
4. A waste water pipe for guiding the waste water discharged from the gas supply side of the gas dissolving device to the waste water recovery device after cleaning the gas permeable membrane, and a surplus water line for sending surplus gas to the gas treatment device. 4. The gas dissolving apparatus according to claim 3, wherein the gas dissolving apparatus is connected to the gas exhaust pipe via a switching valve for switching between the gas processing apparatus side and the waste water collecting apparatus side.
【請求項5】 ガス透過膜の洗浄を行うための温水供給
管を、ガス溶解装置に超純水を供給する超純水供給管の
途中に、超純水供給装置側と温水供給装置側とを切替え
る切替え弁を介して連結したこと特徴とする請求項2記
載のガス溶解装置。
5. A hot water supply pipe for cleaning a gas permeable membrane is provided in the middle of an ultrapure water supply pipe for supplying ultrapure water to a gas dissolving apparatus, and is connected to an ultrapure water supply apparatus side and a hot water supply apparatus side. 3. The gas dissolving apparatus according to claim 2, wherein the gas dissolving apparatus is connected via a switching valve that switches between the two.
【請求項6】 ガス透過膜を洗浄した、ガス溶解装置の
液供給側から排出される排温水を排温水回収装置に導く
ための排温水管を、洗浄液を洗浄槽に移送する洗浄液供
給管の途中に、洗浄槽側と排温水回収装置側とを切り換
える切替え弁を介して接続したことを特徴とする請求項
5記載のガス溶解装置。
6. A cleaning liquid supply pipe for transferring a cleaning liquid to a cleaning tank, wherein the drain water pipe for guiding the discharged hot water discharged from the liquid supply side of the gas dissolving apparatus to the discharged hot water recovery apparatus after cleaning the gas permeable membrane. 6. The gas dissolving device according to claim 5, wherein the gas dissolving device is connected via a switching valve for switching between the cleaning tank side and the waste water collecting device side.
【請求項7】 ガス透過膜の洗浄を行うための温水供給
管を、ガス溶解装置にガスを供給するガス供給管の途中
にガス供給側と温水供給側とを切替える切替え弁を介し
て連結してなるとともに、ガス溶解装置に超純水を供給
する超純水供給管の途中に超純水供給装置側と温水供給
装置側とを切替える切替え弁を介して連結して連結して
なることを特徴とする請求項2記載のガス溶解装置。
7. A hot water supply pipe for cleaning the gas permeable membrane is connected to a gas supply pipe for supplying a gas to the gas dissolving device via a switching valve for switching between a gas supply side and a hot water supply side. And a connection between the ultrapure water supply pipe for supplying ultrapure water to the gas dissolving apparatus and a switching valve for switching between the ultrapure water supply apparatus side and the hot water supply apparatus side. 3. The gas dissolving apparatus according to claim 2, wherein
【請求項8】 ガス透過膜を洗浄した、ガス溶解装置の
ガス供給側から排出される排温水を排温水回収装置に導
くための排温水管を、ガス処理装置に余剰ガスを送るた
めの余剰ガス排出管の途中に、ガス処理装置側と排温水
回収装置側とを切り換える切替え弁を介して接続してな
るとともに、ガス溶解装置の液供給側から排出される排
温水を排温水回収装置に導くための排温水管を、洗浄液
を洗浄槽に移送する洗浄液供給管の途中に、洗浄槽側と
排温水回収装置側とを切り換える切替え弁を介して接続
したことを特徴とする請求項7記載のガス溶解装置。
8. A waste water pipe for guiding waste water discharged from the gas supply side of the gas dissolving device, which has washed the gas permeable membrane, to a waste water recovery device, and an excess pipe for sending excess gas to the gas treatment device. In the middle of the gas discharge pipe, it is connected via a switching valve that switches between the gas processing device side and the waste hot water recovery device side, and the waste hot water discharged from the liquid supply side of the gas dissolving device is connected to the waste hot water recovery device. 8. The drainage hot water pipe for guiding is connected to the cleaning liquid supply pipe for transferring the cleaning liquid to the cleaning tank via a switching valve for switching between the cleaning tank side and the waste hot water recovery device side. Gas dissolving equipment.
【請求項9】 ガス溶解装置が超音波発生装置を備えて
いることを特徴とする請求項1〜8のいずれかに記載の
ガス溶解装置。
9. The gas dissolving apparatus according to claim 1, wherein the gas dissolving apparatus includes an ultrasonic generator.
JP35354796A 1996-12-17 1996-12-17 Gas dissolver Pending JPH10174854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35354796A JPH10174854A (en) 1996-12-17 1996-12-17 Gas dissolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35354796A JPH10174854A (en) 1996-12-17 1996-12-17 Gas dissolver

Publications (1)

Publication Number Publication Date
JPH10174854A true JPH10174854A (en) 1998-06-30

Family

ID=18431584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35354796A Pending JPH10174854A (en) 1996-12-17 1996-12-17 Gas dissolver

Country Status (1)

Country Link
JP (1) JPH10174854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066351A (en) * 2006-09-05 2008-03-21 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2010023002A (en) * 2008-07-24 2010-02-04 Kurita Water Ind Ltd Apparatus for supplying gas-dissolved water and method for producing gas-dissolved water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066351A (en) * 2006-09-05 2008-03-21 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2010023002A (en) * 2008-07-24 2010-02-04 Kurita Water Ind Ltd Apparatus for supplying gas-dissolved water and method for producing gas-dissolved water

Similar Documents

Publication Publication Date Title
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
US5635053A (en) Method and apparatus for cleaning electronic parts
JP4109455B2 (en) Hydrogen dissolved water production equipment
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
JP3198899B2 (en) Wet treatment method
TWI417949B (en) Silicon surface preparation
WO2009128327A1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JP3639102B2 (en) Wet processing equipment
JP4034668B2 (en) Ultrapure water production system and operation method thereof
JP3296407B2 (en) Cleaning method and cleaning device for electronic component members
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JP3940967B2 (en) Method for producing cleaning water for electronic material and method for cleaning electronic material
JP2000290693A (en) Cleaning of electronic parts and members
JP4119040B2 (en) Functional water production method and apparatus
JP3620577B2 (en) Cleaning method for ultrapure water production system
JPH10174854A (en) Gas dissolver
JP3768027B2 (en) Gas dissolved water production equipment
US20050211632A1 (en) Base dosing water purification system and method
JP2004050019A (en) Ultra-pure water supply equipment
JP2006073747A (en) Method and device for treating semiconductor wafer
JP4583520B2 (en) Waste water treatment apparatus and method
JPH10235358A (en) Apparatus and method for electrolytic water-making
JP3507588B2 (en) Wet processing method and processing apparatus
KR100424541B1 (en) Method and device for washing electronic parts member, or the like
JP2000008083A (en) Gas-dissolved water production equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030109