JPH10174833A - Removing method of benzene vapor and device therefor - Google Patents

Removing method of benzene vapor and device therefor

Info

Publication number
JPH10174833A
JPH10174833A JP8339937A JP33993796A JPH10174833A JP H10174833 A JPH10174833 A JP H10174833A JP 8339937 A JP8339937 A JP 8339937A JP 33993796 A JP33993796 A JP 33993796A JP H10174833 A JPH10174833 A JP H10174833A
Authority
JP
Japan
Prior art keywords
benzene
adsorption
temperature
vapor
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8339937A
Other languages
Japanese (ja)
Inventor
Shigeo Tomura
重男 戸村
Makoto Ozaki
誠 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I H I PLANTEC KK
Original Assignee
I H I PLANTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I H I PLANTEC KK filed Critical I H I PLANTEC KK
Priority to JP8339937A priority Critical patent/JPH10174833A/en
Publication of JPH10174833A publication Critical patent/JPH10174833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a benzene vapor removing method and the device remarkably economical in the view point of energy consumption and easy in the post- treatment of a desorbed gas after regeneration in adsorption and regeneration in an adsorption column. SOLUTION: In the method for removing benzene vapor from an air containing benzene vapor in a high concentration, the air containing benzene vapor is supplied to one of plural adsorption columns 21A, 21B packed with an adsorbent such as silica gel and kept at the normal temp. to adsorb benzene contained in the air and is exhausted as a purified gas. On the other hand, the adsorbent, on which benzene is adsorbed, in the adsorption columns 21A, 21B is indirectly heated to a temp. higher by 15-30 deg.C than the adsorption temp. with the pressure in the adsorption columns reduced to <=50Torr to desorb benzene from the adsorbent to be regenerated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ベンゼンを貯蔵タ
ンク等の容器へ充填する際に、その容器から排出される
空気に含まれるベンゼンベーパーの除去方法及びその装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing benzene vapor contained in air discharged from a container such as a storage tank when the container is filled with benzene.

【0002】[0002]

【従来の技術】ベンゼンをバージ、ローリー、貯蔵タン
クへ充填する場合に、それらの容器内の気相と液相との
置換により空気が大気に放出される。この置換空気中に
は、液から蒸発した高濃度のベーパー(夏期のベンゼン
濃度;約14〜26%)が含まれている。
2. Description of the Related Art When benzene is charged into barges, lorries and storage tanks, air is released to the atmosphere by replacing the gas phase and liquid phase in those containers. The replacement air contains high-concentration vapor evaporated from the liquid (benzene concentration in summer; about 14 to 26%).

【0003】今まで、置換空気中に含まれているベーパ
ーの量は、1000ppm 以下に抑えれば良かったが、最
近はこれが厳しく制限(現在は未定であるが将来30pp
m 以下)されようとしている。
Until now, the amount of vapor contained in the replacement air had only to be suppressed to 1000 ppm or less, but recently this has been severely restricted (currently undecided, but 30 pp in the future).
m or less).

【0004】従来は、図4に示した活性炭を使用した吸
着による除去装置が、使用されている。
[0004] Conventionally, a removal device by adsorption using activated carbon shown in FIG. 4 has been used.

【0005】図4において、ベンゼンベーパーを含む原
ガス10は、一対の吸着塔11A,11Bのいずれかに
供給され、活性炭層12を通って原ガス中のベンゼンが
吸着除去され、清浄ガス13として大気中に排気され
る。この吸着塔11A,11Bでは、その一方が吸着中
に他方では脱着再生が行われる。図4においては、吸着
塔11Aが吸着中で、吸着塔11Bが再生中を示してい
る。
[0005] In FIG. 4, a raw gas 10 containing benzene vapor is supplied to one of a pair of adsorption towers 11 A and 11 B, and benzene in the raw gas is adsorbed and removed through an activated carbon layer 12. Exhausted into the atmosphere. In the adsorption towers 11A and 11B, one of them is adsorbed while the other is desorbed and regenerated. FIG. 4 shows that the adsorption tower 11A is performing adsorption and the adsorption tower 11B is performing regeneration.

【0006】再生にはスチーム14を直接吸着塔11B
に吹き込んで、吸着したベンゼンを加熱除去している。
除去されたベンゼンは、スチームと共にリボイラ15を
通してデカンタ16に供給され、そのデカンタ16内で
2層に分離された上層のベンゼンが回収溶剤17として
回収されると共に下層の凝縮水が、分離水タンク19を
介して排水18される。
For regeneration, the steam 14 is directly transferred to the adsorption tower 11B.
To remove the adsorbed benzene by heating.
The removed benzene is supplied to the decanter 16 through the reboiler 15 together with the steam. In the decanter 16, the upper benzene separated into two layers is recovered as the recovery solvent 17, and the lower condensed water is separated into the separated water tank 19. Is drained 18 through.

【0007】この再生処理は、吸着塔内の活性炭自身が
可燃性であるため、再生時の安全を期し不活性ガスであ
るスチーム10を直接吸着剤に吹き込み、且つ温度が極
度に上昇しないように、減圧下で80〜90℃程度に加
熱している。
In this regeneration treatment, the activated carbon itself in the adsorption tower itself is flammable, so that in order to ensure safety during regeneration, steam 10, which is an inert gas, is directly blown into the adsorbent, and the temperature is not extremely increased. And heated to about 80 to 90 ° C. under reduced pressure.

【0008】[0008]

【発明が解決しようとする課題】ところで、この図4の
システムでの問題は、ベンゼン回収時に加熱に使用した
スチームとベンゼンが混合したまま凝縮させているた
め、凝縮水にベンゼンが可成り溶け込み、これを直接排
水することは、環境保護の立場から問題があり、更に再
処理することが必要になる。
The problem with the system shown in FIG. 4 is that the steam used for heating at the time of benzene recovery and benzene are condensed while being mixed, so that benzene considerably dissolves in the condensed water, Draining this directly is problematic from the standpoint of environmental protection and requires further reprocessing.

【0009】また再生温度も80〜90℃と比較的高温
で処理しなければならない問題がある。
Also, there is a problem that the treatment must be performed at a relatively high regeneration temperature of 80 to 90 ° C.

【0010】そこで、本発明の目的は、上記課題を解決
し、吸着塔で吸着と再生を行うにおいて使用エネルギー
の面で非常に経済的で、しかも再生後の脱着ガスの後処
理が容易なベンゼンベーパー除去方法及びその装置を提
供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, and it is very economical in terms of energy used in performing adsorption and regeneration in an adsorption tower, and benzene which is easy to post-process the desorbed gas after regeneration. It is an object of the present invention to provide a vapor removing method and an apparatus therefor.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、高濃度ベンゼンベーパーを含む空
気からベンゼンベーパーを除去する方法において、ベン
ゼンベーパーを含む空気を、シリカゲル等の吸着剤が充
填され、略常温に保持された複数の吸着塔のいずれかに
供給して空気中に含まれるベンゼンを吸着して清浄ガス
として排気し、他方ベンゼンを吸着した吸着塔内を吸着
温度より15〜30℃高くなるよう間接加熱すると共
に、その吸着塔内を約50Torr以下の圧力にして吸
着剤からベンゼンを脱着させて吸着剤を再生させるベン
ゼンベーパー除去方法である。
According to a first aspect of the present invention, there is provided a method for removing benzene vapor from air containing high-concentration benzene vapor, wherein the air containing benzene vapor is adsorbed on silica gel or the like. The benzene contained in the air is supplied to one of a plurality of adsorption towers maintained at approximately room temperature to adsorb benzene contained in the air and exhausted as a clean gas. This is a benzene vapor removing method in which indirect heating is performed so as to increase the temperature by 15 to 30 ° C., and benzene is desorbed from the adsorbent to regenerate the adsorbent by setting the pressure in the adsorption tower to about 50 Torr or less.

【0012】請求項2の発明は、高濃度ベンゼンベーパ
ーを含む空気からベンゼンベーパーを除去する装置にお
いて、シリカゲル等の吸着剤が充填された複数の吸着塔
と、上記回収塔から排出される空気をいずれかの吸着塔
に供給すると共にその吸着塔から清浄ガスを排気する空
気流路切替手段と、ベンゼン吸着後の吸着塔を吸着温度
より15〜30℃高くなるよう間接加熱する加熱手段
と、吸着塔内を約50Torr以下の圧力で吸引して吸
着剤からベンゼンを脱着させると共に脱着ガスを回収す
るベンゼン回収手段とを備えたベンゼンベーパー除去装
置である。
According to a second aspect of the present invention, there is provided an apparatus for removing benzene vapor from air containing high-concentration benzene vapor, comprising: a plurality of adsorption towers filled with an adsorbent such as silica gel; Air flow switching means for supplying to any of the adsorption towers and exhausting the clean gas from the adsorption tower, heating means for indirectly heating the adsorption tower after the benzene adsorption to 15 to 30 ° C. higher than the adsorption temperature, This is a benzene vapor removal apparatus provided with benzene recovery means for sucking the inside of the column at a pressure of about 50 Torr or less to desorb benzene from the adsorbent and recover desorbed gas.

【0013】請求項3の発明の加熱手段は、吸着塔の再
生時、脱着したベンゼンガスの熱を回収するベンゼン凝
縮熱回収手段を有する請求項2記載のベンゼンベーパー
除去装置である。
[0013] The heating means of the invention according to claim 3 is the benzene vapor removing apparatus according to claim 2, further comprising benzene condensation heat recovery means for recovering heat of the desorbed benzene gas during regeneration of the adsorption tower.

【0014】[0014]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0015】図1は、ベンゼンベーパを含む空気からベ
ンゼンを除去する複数の吸着塔21からなる吸着装置2
0と、その吸着装置20で吸着除去されたベンゼンを回
収する回収塔22とを組み合わせたベンゼンベーパー除
去装置を示している。
FIG. 1 shows an adsorption apparatus 2 comprising a plurality of adsorption towers 21 for removing benzene from air containing benzene vapor.
1 shows a benzene vapor removal apparatus in which a benzene vapor removal apparatus is combined with a recovery tower 22 that collects benzene adsorbed and removed by the adsorption apparatus 20.

【0016】吸着装置20は、複数の吸着塔21A,2
1Bからなり、各塔21内に、不燃性で、疎水処理され
たシリカゲル等からなる吸着剤が充填されている。
The adsorption apparatus 20 includes a plurality of adsorption towers 21A, 21A and 2A.
Each column 21 is filled with an adsorbent made of nonflammable, hydrophobically treated silica gel or the like.

【0017】この吸着装置21には、供給ライン23か
らのベンゼンベーパを含む置換空気を、いずれかの吸着
塔21A,21Bに切り替えて供給する入口側流路切替
弁24A,24Bと、その吸着塔21A,21Bに導入
した空気を清浄ガスとして排気ライン25に流す出口側
流路切替弁26A,26Bが接続される。
The adsorber 21 has inlet-side flow switching valves 24A and 24B for switching and supplying replacement air containing benzene vapor from the supply line 23 to one of the adsorption towers 21A and 21B, and the adsorption towers. Outlet-side flow switching valves 26A and 26B for connecting the air introduced into 21A and 21B to the exhaust line 25 as clean gas are connected.

【0018】吸着塔21A,21B内には、ベンゼン吸
着後の吸着塔21A,21Bを、吸着温度より15〜3
0℃高くなるよう間接加熱する加熱手段27A,27B
が設けられ、また吸着塔21A,21Bには、ベンゼン
吸着後の吸着塔21A,21B内を吸引して吸着塔21
A,21B内を、約50Torr以下の圧力にして、吸
着剤からベンゼンを脱着させると共に脱着ガスを回収塔
22に供給するベンゼン回収手段30が接続される。
In the adsorption towers 21A and 21B, the adsorption towers 21A and 21B after benzene adsorption are placed in the adsorption towers 15 to 3 from the adsorption temperature.
Heating means 27A and 27B for indirect heating to increase the temperature by 0 ° C
Is provided in the adsorption towers 21A and 21B.
A, 21B is pressurized to a pressure of about 50 Torr or less, and benzene recovery means 30 for desorbing benzene from the adsorbent and supplying the desorption gas to the recovery tower 22 is connected.

【0019】ベンゼン回収手段30は、吸着塔21A,
21Bの入口側と回収塔22の気液触部31の下部を結
ぶ脱着ガスライン32と、その脱着ガスライン32に接
続された真空ポンプ33,熱交換器34,冷却器35
と、切替弁24A,24B,26A,26Bと連動し、
吸着塔21A,21B内の脱着ガスを脱着ガスライン3
2に流す脱着切替弁36A,36Bと、吸着塔21A,
21Bの清浄ガス出口側に接続され、脱着中の吸着塔2
1A,21B内にパージガスを供給するパージガス供給
ライン37A,37Bとから構成される。
The benzene recovery means 30 includes an adsorption tower 21A,
A desorption gas line 32 connecting the inlet side of 21B and the lower part of the gas-liquid contact part 31 of the recovery tower 22, and a vacuum pump 33, a heat exchanger 34, and a cooler 35 connected to the desorption gas line 32.
And interlock with the switching valves 24A, 24B, 26A, 26B,
The desorbed gas in the adsorption towers 21A and 21B is transferred to the desorbed gas line 3
2, the desorption switching valves 36A and 36B flowing to the adsorption tower 21A,
Adsorption tower 2 connected to the clean gas outlet side of 21B and being desorbed
Purge gas supply lines 37A and 37B for supplying a purge gas into 1A and 21B.

【0020】また、回収塔22の気液接触部31の上部
には、プレクールされた重油或いはベンゼンがライン7
0より供給され、脱着ガスライン32からの脱着ガス
は、気液接触部31で気液接触して脱着ガス中のベンゼ
ンが凝縮して回収塔22の底部に溜まり、ガス中の空気
は、回収塔22の上部のライン38より供給ライン23
に戻される。回収塔22の底部に溜まったベンゼン液
は、回収ポンプ39で回収される。
In the upper part of the gas-liquid contact part 31 of the recovery tower 22, precooled heavy oil or benzene is supplied through a line 7.
The gas desorbed from the desorption gas line 32 is gas-liquid contacted in the gas-liquid contact part 31 to condense benzene in the desorption gas and accumulate at the bottom of the recovery tower 22, and the air in the gas is recovered. The supply line 23 from the line 38 at the top of the tower 22
Is returned to. The benzene liquid collected at the bottom of the recovery tower 22 is recovered by a recovery pump 39.

【0021】加熱手段27A,27Bは、吸着塔21
A,21B内に設けた加熱コイル40A,40Bと、そ
の加熱コイル40A,40Bに温水を供給する温水供給
手段41と、温水供給手段41の温水を、加熱コイル4
0A,40Bのいずれかに供給するための入口側切替弁
42A,42B、出口側切替弁43A,43B,44
A,44Bからなる。
The heating means 27A and 27B are
A, 21B, heating coils 40A, 40B, hot water supply means 41 for supplying hot water to the heating coils 40A, 40B,
0A, 40B, inlet-side switching valves 42A, 42B, and outlet-side switching valves 43A, 43B, 44.
A, 44B.

【0022】温水供給手段41は、温水槽45と、その
温水槽45内の温水を加熱コイル40A,40Bにポン
プ46を介して供給する温水供給ライン47と、その温
水供給ライン47からの温水を、加熱コイル40A,4
0Bのいずれかに供給する入口側切替弁48A,48B
と、加熱コイル40A,40Bの出口側に接続された切
替弁43A,43B,44A,44Bと、その一方の出
口側切替弁43A,43Bから混合器48を介して加温
後の温水を温水槽44に戻す温水戻しライン49とから
なる。
The hot water supply means 41 includes a hot water tank 45, a hot water supply line 47 for supplying hot water in the hot water tank 45 to the heating coils 40 A and 40 B via a pump 46, and a hot water from the hot water supply line 47. , Heating coil 40A, 4
0B to supply any of the inlet side switching valves 48A, 48B
And switching valves 43A, 43B, 44A, 44B connected to the outlet side of the heating coils 40A, 40B, and hot water heated from one of the outlet side switching valves 43A, 43B via a mixer 48 into a hot water tank. And a hot water return line 49 for returning to 44.

【0023】温水槽45には、スチームがライン55よ
り制御弁56、混合器49を介して供給され、温水槽4
5内で凝縮した温水50がポンプ46より入口側切替弁
42A,42Bの一方を通って対応する加熱コイル40
A,40Bに流れ、そこで吸着塔21A,21Bの吸着
剤を加熱し、出口側切替弁43A,43B,44A,4
4Bを通り、一部は出口側切替弁43A,43Bを通り
排水ライン58より排水され、残りは出口側切替弁44
A,44Bを通り、ベンゼン凝縮熱回収手段71として
の熱交換器34と温水戻しライン49を通り、混合器4
8を介して温水槽45に戻される。
Steam is supplied to the hot water tank 45 from a line 55 through a control valve 56 and a mixer 49.
The hot water 50 condensed in the pump 5 passes through one of the inlet-side switching valves 42A and 42B from the pump 46 to the corresponding heating coil 40.
A, 40B, where the adsorbent in the adsorption towers 21A, 21B is heated, and the outlet side switching valves 43A, 43B, 44A, 4
4B, a part is drained from the drain line 58 through the outlet side switching valves 43A and 43B, and the rest is the outlet side switching valve 44.
A, 44B, the heat exchanger 34 as the benzene condensation heat recovery means 71 and the hot water return line 49, and the mixer 4
8 and is returned to the hot water tank 45.

【0024】温水槽45には、冷却水供給ライン60が
接続され、混合器48からの蒸気と循環水と供給ライン
60からの冷却水とで温水槽45内の温水温度が調整さ
れる。
A cooling water supply line 60 is connected to the hot water tank 45, and the temperature of the hot water in the hot water tank 45 is adjusted by the steam from the mixer 48, the circulating water, and the cooling water from the supply line 60.

【0025】すなわち、温水槽45には温度検出器61
が設けられ、他方、吸着塔21A,21Bには、温度検
出器62A,62Bが設けられ、これら温度検出値が制
御装置63に入力される。制御装置63は、再生時の吸
着塔21A,21B内の温度が吸着温度より15〜30
℃高くなるよう、すなわち塔内温度が約55〜60℃と
なるように、制御弁56を調整してスチーム量を制御
し、温水槽45内の温水温度を適正値に保つように制御
する。
That is, the temperature detector 61 is provided in the hot water tank 45.
On the other hand, temperature detectors 62A and 62B are provided in the adsorption towers 21A and 21B, and the detected temperature values are input to the controller 63. The control device 63 sets the temperature in the adsorption towers 21A and 21B at the time of regeneration to 15 to 30 below the adsorption temperature.
The control valve 56 is adjusted to control the amount of steam so that the temperature in the hot water tank 45 is maintained at an appropriate value so that the temperature in the tower is about 55 to 60 ° C.

【0026】また、脱着再生が完了した吸着塔21A,
21B内の吸着剤は、加熱コイル40A,40B内に温
水が流れた直後で、常温より高くなっているため、冷却
水供給ライン60から冷却水を切替弁65A,65Bを
適宜切り換えて加熱コイル40A,40Bに流して冷却
すると共に出口側切替弁43A,43Bより排水ライン
58に排水する。
In addition, the adsorption towers 21A, which have completed the desorption and regeneration,
Since the adsorbent in 21B is higher than room temperature immediately after the hot water flows in the heating coils 40A and 40B, the cooling water is switched from the cooling water supply line 60 by appropriately switching the switching valves 65A and 65B to the heating coil 40A. , 40B to be cooled and drained to the drain line 58 from the outlet side switching valves 43A, 43B.

【0027】次にベンゼンベーパーの除去方法を説明す
る。
Next, a method for removing benzene vapor will be described.

【0028】貯蔵タンクなどの容器にベンゼンを充填し
て排出される置換空気中には、高濃度ベンゼンベーパー
が含まれており、この置換空気が、供給ライン23よ
り、入口側切替弁24A,24Bを介して吸着塔21
A,21Bのいずれかに導入されて、置換空気中のベン
ゼンベーパーが、シリカゲル等の吸着剤に吸着されて除
去され、ベンゼン濃度30ppm以下に下げられて清浄
ガス排気ライン25から清浄ガスとして排気される。
The replacement air discharged after filling a container such as a storage tank with benzene contains high-concentration benzene vapor. This replacement air is supplied from the supply line 23 to the inlet side switching valves 24A, 24B. Through the adsorption tower 21
A and 21B, benzene vapor in the displacement air is removed by being adsorbed by an adsorbent such as silica gel, the benzene concentration is reduced to 30 ppm or less, and the benzene vapor is exhausted as a clean gas from the clean gas exhaust line 25. You.

【0029】この際、入口側切替弁24A,24Bと出
口側切替弁26A,26Bとは連動して、開閉し、吸着
塔21A側が吸着中の場合は、その入口側と出口側の切
替弁24A,26Aが開で、他方の切替弁24B,26
Bが閉とされ、吸着塔21B側が吸着中の場合は、切替
弁24B,26Bが開で、切替弁24A,26Aが閉と
される。
At this time, the inlet-side switching valves 24A, 24B and the outlet-side switching valves 26A, 26B open and close in conjunction with each other, and when the adsorption tower 21A is adsorbing, the inlet-side and outlet-side switching valves 24A, 24B. , 26A are open and the other switching valves 24B, 26A
When B is closed and the adsorption tower 21B side is adsorbing, the switching valves 24B and 26B are opened and the switching valves 24A and 26A are closed.

【0030】吸着塔21A(又は21B)での吸着は、
常温で行われ、また吸着剤は不燃性で疎水処理がなされ
ているため水分の吸着は極めて少なく、置換空気中の水
分の吸着は極度に少なく、ベーパー吸着量の1/10以
下になる。この吸着塔21Aで、ベーパー出口濃度は3
0ppm以下にされ、大気に放出される。
The adsorption in the adsorption tower 21A (or 21B)
The adsorption is performed at room temperature, and the adsorbent is nonflammable and has been subjected to a hydrophobic treatment. Therefore, the adsorption of moisture is extremely small, and the adsorption of moisture in the displacement air is extremely small, which is 1/10 or less of the amount of vapor adsorbed. In this adsorption tower 21A, the vapor outlet concentration is 3
It is reduced to 0 ppm or less and released to the atmosphere.

【0031】吸着時、吸着熱のため吸着塔21Aの温度
が上昇して、吸着量が減少することを防止するため、加
熱コイル40A(又は40B)に冷却水ライン60から
の冷却水を流して冷却する。
At the time of adsorption, in order to prevent the temperature of the adsorption tower 21A from rising due to heat of adsorption and to reduce the amount of adsorption, cooling water from the cooling water line 60 is supplied to the heating coil 40A (or 40B). Cooling.

【0032】吸着剤は、重量比で数%のベーパーを吸着
すると飽和するので、再生の完了した未吸着の吸着塔2
1B(又は21A)に切換えて、置換空気を同様に処理
する。
The adsorbent saturates when adsorbing a few percent by weight of vapor.
Switch to 1B (or 21A) and treat the replacement air similarly.

【0033】このベンゼンを吸着した吸着塔21A(又
は21B)の脱着再生は、その吸着塔21A内の吸着剤
は、真空ポンプ33で減圧すると同時に吸着剤を、加熱
手段27Aで加熱(PTSA:Pressure & Temperaturu Swing
Adsorption)して、吸着されているベンゼンを脱着して
再生する。
In the desorption regeneration of the adsorption tower 21A (or 21B) adsorbing benzene, the adsorbent in the adsorption tower 21A is depressurized by the vacuum pump 33 and simultaneously heated by the heating means 27A (PTSA: Pressure). & Temperaturu Swing
Adsorption) to desorb and regenerate the adsorbed benzene.

【0034】この場合、吸着温度と脱着温度及び圧力の
間には相関関係があり、本発明者らは、実験により疎水
処理シリカゲルについて、その関係を明らかにした。実
験では、常温(20〜40℃)で吸着した場合、約25
Torrの圧力下で再生温度を吸着温度より15〜30℃高
くすることにより再生できることが明らかになった。
In this case, there is a correlation between the adsorption temperature, the desorption temperature and the pressure, and the present inventors have clarified the relationship of the hydrophobically treated silica gel by experiments. In experiments, it was found that when adsorbed at room temperature (20-40 ° C), about 25
It was found that the regeneration can be performed by increasing the regeneration temperature by 15 to 30 ° C. under the pressure of Torr above the adsorption temperature.

【0035】この実験例を、図2,図3により説明す
る。
This experimental example will be described with reference to FIGS.

【0036】図2は、吸着塔21を40℃吸着,60℃
脱着の条件で行った場合の吸着塔内温度とベンゼンの出
口濃度の経時変化を示したもので、約40分脱着を行っ
た後、冷却を約50分行い、40℃で吸着を行うと、約
50分間の吸着剤の吸着能は、その出口濃度が30pp
m以下に保持できることが確認できた。このことは、吸
着温度より20℃高い温度で再生しても十分な吸着能を
得られることを示している。
FIG. 2 shows that the adsorption tower 21 is adsorbed at 40.degree.
It shows the change over time in the temperature of the adsorption tower and the outlet concentration of benzene when performed under the conditions of desorption, and after performing desorption for about 40 minutes, cooling is performed for about 50 minutes, and adsorption is performed at 40 ° C. The adsorbing capacity of the adsorbent for about 50 minutes is determined by the outlet concentration of 30 pp.
m could be maintained. This indicates that a sufficient adsorptivity can be obtained even if the regeneration is performed at a temperature 20 ° C. higher than the adsorption temperature.

【0037】同じく図3は、吸着塔21を40℃吸着,
70℃脱着の条件で行った場合の吸着塔内温度とベンゼ
ンの出口濃度の経時変化を示したもので、約60分脱着
を行った後、冷却を約50分行ったもので、この場合、
40℃で吸着を行うと、約80分間、吸着剤の吸着能は
良好で、その間、出口濃度を30ppm以下に保持でき
る。
FIG. 3 also shows that the adsorption tower 21 is adsorbed at 40 ° C.
The graph shows the change over time in the temperature in the adsorption tower and the outlet concentration of benzene when the desorption was performed at 70 ° C. After desorption for about 60 minutes, cooling was performed for about 50 minutes. In this case,
When the adsorption is performed at 40 ° C., the adsorbing ability of the adsorbent is good for about 80 minutes, during which the outlet concentration can be kept at 30 ppm or less.

【0038】このように再生温度が高いと、吸着能も高
くなるが、再生温度を高くすると、そのエネルギー消費
も多くなるため、吸着温度に対して15〜30℃高い温
度で再生することが好ましい。
As described above, when the regeneration temperature is high, the adsorptivity is also increased. However, when the regeneration temperature is increased, the energy consumption is increased. Therefore, the regeneration is preferably performed at a temperature higher by 15 to 30 ° C. than the adsorption temperature. .

【0039】なお、図2,図3の実験例では、脱着・冷
却時間に対して吸着時間は短いが、これは再生と吸着温
度の関係を説明する例であり、この例で実際に再生と吸
着を行う場合、吸着塔21を3台以上設置すれば良く、
また2台で行う場合は、脱着・冷却時間が短くなるよう
に塔内圧力や冷却水温度を調整すれば良い。
In the experimental examples shown in FIGS. 2 and 3, the adsorption time is shorter than the desorption / cooling time. This is an example for explaining the relationship between the regeneration and the adsorption temperature. When performing adsorption, three or more adsorption towers 21 may be installed.
When two units are used, the pressure in the tower and the temperature of the cooling water may be adjusted so as to shorten the desorption / cooling time.

【0040】吸着塔21A(又は21B)が吸着に使用
する場合、前もって冷却水(30℃)を、吸着塔21A
内に内装されている加熱コイル40Aに流すことによ
り、35℃程度にすることができる。
When the adsorption tower 21A (or 21B) is used for adsorption, cooling water (30 ° C.) is previously supplied to the adsorption tower 21A.
The temperature can be set to about 35 ° C. by flowing the heat through the heating coil 40 </ b> A provided inside.

【0041】一方、吸着塔21A(又は21B)に流入
する置換空気は、20〜25℃であれば、吸着量が数%
ではベッド温度は数度上昇するのみである。従って、こ
の条件での再生温度は約55〜60℃にすれば良い。他
の季節で置換空気の温度が低い場合はもっと低い温度で
良い。いずれにしても、脱着再生は、吸着時の温度より
15〜30℃高くなる温度に加熱して再生できるので、
使用エネルギー面で従来装置に較べて非常に経済的な方
法を提供することになる。
On the other hand, if the replacement air flowing into the adsorption tower 21A (or 21B) is at 20 to 25 ° C., the adsorption amount is several%.
Then the bed temperature rises only a few degrees. Therefore, the regeneration temperature under this condition may be set to about 55 to 60 ° C. If the temperature of the replacement air is low in other seasons, a lower temperature may be used. In any case, desorption regeneration can be performed by heating to a temperature 15 to 30 ° C. higher than the temperature at the time of adsorption,
This provides a very economical method in terms of energy use as compared to conventional devices.

【0042】この再生を合理的に行う(省エネ)ため
に、吸着塔21A(又は21B)に設置された温度検出
器62A(又は62B)で吸着温度を検出し、温水槽4
5ないの再生用の温水の温度を吸着温度より15〜30
℃高くするように、温水槽45の温水50の温度を温度
検出器61で検出して、その制御温度を設定する。
In order to perform this regeneration rationally (energy saving), the adsorption temperature is detected by a temperature detector 62A (or 62B) installed in the adsorption tower 21A (or 21B), and the hot water tank 4
5 The temperature of the hot water for regeneration is 15 to 30 from the adsorption temperature.
The temperature of the hot water 50 in the hot water tank 45 is detected by the temperature detector 61 so as to increase the temperature by a degree, and the control temperature is set.

【0043】なお、この温水槽45の温度の設定は、必
ずしも自動でなくとも良く、四季或いは毎月の気温によ
り約15〜30℃高く手動で制御値を設定しても良い。
このことにより過剰なエネルギーの使用が防止できる。
The setting of the temperature of the hot water tank 45 is not necessarily automatic, and the control value may be manually set higher by about 15 to 30 ° C. depending on the temperature of the four seasons or each month.
This can prevent the use of excessive energy.

【0044】吸着塔21A(又は21B)を再生する場
合、真空ポンプ33で吸引脱着されるベンゼンベーパー
(一部空気が混合)は、0.1〜0.15MPaの圧力
下で約79℃(352K)で凝縮する。また凝縮熱は約
94Kcal/kgであるので、真空ポンプ33の吐出
ガスをベンゼン凝縮熱回収手段71としての熱交換器3
4と温水戻しライン49で循環温水で熱交換させること
で、熱回収ができる。これにより脱着に必要な熱量の約
40%が回収できる。また、気温の低い場合は、再生温
度も低くなるので、回収熱量の率はさらに高くなる。こ
れも実験データから、再生温度を吸着温度より15〜3
0℃で可能なことを確認したことによる。
When the adsorption tower 21A (or 21B) is regenerated, the benzene vapor (partially mixed with air) sucked and desorbed by the vacuum pump 33 is heated to about 79 ° C. (352 K) under a pressure of 0.1 to 0.15 MPa. ) To condense. Since the heat of condensation is about 94 Kcal / kg, the gas discharged from the vacuum pump 33 is supplied to the heat exchanger 3 as the benzene condensation heat recovery means 71.
By exchanging heat with circulating hot water in 4 and the hot water return line 49, heat can be recovered. As a result, about 40% of the heat required for desorption can be recovered. When the temperature is low, the regeneration temperature is also low, so that the rate of the recovered heat becomes even higher. This is also based on experimental data, showing that the regeneration temperature is 15 to 3
It was confirmed that it was possible at 0 ° C.

【0045】本実施の形態においては、真空ポンプ33
で、減圧下でかつ間接加熱により、再生を行っているた
めに、回収ベンゼンベーパーと共存する水分量は、従来
の方法に較べて極度に少ないので、水に溶解したベンゼ
ンの処理装置は非常に小型のものでよい。
In this embodiment, the vacuum pump 33
Since the regeneration is performed under reduced pressure and by indirect heating, the amount of water coexisting with the recovered benzene vapor is extremely small as compared with the conventional method. A small one is acceptable.

【0046】このように、吸着塔21A(又は21B)
から、真空ポンプ33で吐出された脱着ガスは、脱着ガ
スライン32より熱交換器34を通って熱回収され、さ
らに冷却器35で冷却されて凝縮され、回収塔22の気
液分離部31の下部に流入し、そこでベンゼン液が回収
され、空気は、ライン38を介して供給ライン23に戻
され、最終的には排気ライン25から排気される。
As described above, the adsorption tower 21A (or 21B)
, The desorbed gas discharged by the vacuum pump 33 is recovered from the desorbed gas line 32 through the heat exchanger 34, is further cooled and condensed by the cooler 35, and is condensed by the gas-liquid separation unit 31 of the recovery tower 22. It flows into the lower part, where the benzene liquid is recovered, and the air is returned to the supply line 23 via the line 38 and finally exhausted from the exhaust line 25.

【0047】回収塔22内に回収されたベンゼン液は、
回収塔22の液面制御により所定の貯蔵タンクに回収ポ
ンプ39で連続的に移送するか、回収塔22の液溜の容
積を1日分の回収液を溜められるようにしておき、ロー
リ等で所定のタンクに輸送する。
The benzene liquid recovered in the recovery tower 22 is
The liquid is continuously transferred to a predetermined storage tank by the recovery pump 39 by controlling the liquid level of the recovery tower 22, or the volume of the liquid in the recovery tower 22 is set so that the recovered liquid for one day can be stored. Transport to designated tank.

【0048】[0048]

【発明の効果】以上要するに本発明によれば、置換空気
中のベンゼンベーパーを常温で吸着し、再生温度を吸着
温度より15〜30℃高く、かつ約50Torr以下の
圧力に保って再生することで、極限近くまでベンゼンを
除去できると共に吸着塔を小型化でき、しかも再生後の
後処理も容易となる。
In summary, according to the present invention, the benzene vapor in the displacement air is adsorbed at room temperature, and the regeneration is performed by keeping the regeneration temperature 15 to 30 ° C. higher than the adsorption temperature and at a pressure of about 50 Torr or less. In addition, benzene can be removed to near the limit and the size of the adsorption tower can be reduced, and post-treatment after regeneration becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明において、脱着温度と吸着温度における
吸着塔温度とベンゼンの出口濃度の経時変化の実験結果
を示す図である。
FIG. 2 is a diagram showing experimental results of a change over time in an adsorption tower temperature and a benzene outlet concentration at a desorption temperature and an adsorption temperature in the present invention.

【図3】同じく、本発明において、脱着温度と吸着温度
における吸着塔温度とベンゼンの出口濃度の経時変化の
実験結果を示す図である。
FIG. 3 is a graph showing experimental results of changes over time in the adsorption tower temperature and the benzene outlet concentration at the desorption temperature and the adsorption temperature in the present invention.

【図4】従来の除去装置をを示す図である。FIG. 4 is a view showing a conventional removing device.

【符号の説明】[Explanation of symbols]

21A,21B 吸着塔 23 置換空気の供給ライン 27A,27B 加熱手段 30 ベンゼン回収手段 21A, 21B adsorption tower 23 replacement air supply line 27A, 27B heating means 30 benzene recovery means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/81 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B01D 53/81

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高濃度ベンゼンベーパーを含む空気から
ベンゼンベーパーを除去する方法において、ベンゼンベ
ーパーを含む空気を、シリカゲル等の吸着剤が充填さ
れ、略常温に保持された複数の吸着塔のいずれかに供給
して空気中に含まれるベンゼンを吸着して清浄ガスとし
て排気し、他方ベンゼンを吸着した吸着塔内を吸着温度
より15〜30℃高くなるよう間接加熱すると共に、そ
の吸着塔内を約50Torr以下の圧力にして吸着剤か
らベンゼンを脱着させて吸着剤を再生させることを特徴
とするベンゼンベーパー除去方法。
1. A method for removing benzene vapor from air containing high-concentration benzene vapor, wherein the air containing benzene vapor is filled with an adsorbent such as silica gel in one of a plurality of adsorption towers maintained at approximately normal temperature. Benzene contained in the air is adsorbed and exhausted as a clean gas. On the other hand, the inside of the adsorption tower adsorbing benzene is heated indirectly to 15 to 30 ° C. higher than the adsorption temperature, and the inside of the adsorption tower is A method for removing benzene vapor, comprising regenerating the adsorbent by desorbing benzene from the adsorbent at a pressure of 50 Torr or less.
【請求項2】 高濃度ベンゼンベーパーを含む空気から
ベンゼンベーパーを除去する装置において、シリカゲル
等の吸着剤が充填された複数の吸着塔と、上記回収塔か
ら排出される空気をいずれかの吸着塔に供給すると共に
その吸着塔から清浄ガスを排気する空気流路切替手段
と、ベンゼン吸着後の吸着塔を吸着温度より15〜30
℃高くなるよう間接加熱する加熱手段と、吸着塔内を約
50Torr以下の圧力で吸引して吸着剤からベンゼン
を脱着させると共に脱着ガスを回収するベンゼン回収手
段とを備えたベンゼンベーパー除去装置。
2. An apparatus for removing benzene vapor from air containing high-concentration benzene vapor, comprising: a plurality of adsorption towers filled with an adsorbent such as silica gel; Air flow switching means for supplying clean air to the adsorption tower and exhausting clean gas from the adsorption tower;
A benzene vapor removing apparatus comprising: a heating means for indirectly heating the temperature of the adsorbent so as to increase the temperature by ℃;
【請求項3】 加熱手段は、吸着塔の再生時、脱着した
ベンゼンガスの熱を回収するベンゼン凝縮熱回収手段を
有する請求項2記載のベンゼンベーパー除去装置。
3. The benzene vapor removing apparatus according to claim 2, wherein the heating means has a benzene condensation heat recovery means for recovering heat of the desorbed benzene gas during regeneration of the adsorption tower.
JP8339937A 1996-12-19 1996-12-19 Removing method of benzene vapor and device therefor Pending JPH10174833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8339937A JPH10174833A (en) 1996-12-19 1996-12-19 Removing method of benzene vapor and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8339937A JPH10174833A (en) 1996-12-19 1996-12-19 Removing method of benzene vapor and device therefor

Publications (1)

Publication Number Publication Date
JPH10174833A true JPH10174833A (en) 1998-06-30

Family

ID=18332178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8339937A Pending JPH10174833A (en) 1996-12-19 1996-12-19 Removing method of benzene vapor and device therefor

Country Status (1)

Country Link
JP (1) JPH10174833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105080287A (en) * 2015-08-13 2015-11-25 中国石油化工股份有限公司 Activated carbon desorption method of activated carbon canister in benzene vapor recovery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105080287A (en) * 2015-08-13 2015-11-25 中国石油化工股份有限公司 Activated carbon desorption method of activated carbon canister in benzene vapor recovery device
CN105080287B (en) * 2015-08-13 2017-06-13 中国石油化工股份有限公司青岛安全工程研究院 The activated charcoal desorption method of charcoal canister in benzene vapor retracting device

Similar Documents

Publication Publication Date Title
US5765395A (en) Process and apparatus for recovering vapor
JPH0246630B2 (en)
JP5482776B2 (en) Organic solvent-containing gas treatment system
JPH10113529A (en) Circulation for separating first component of gas mixture from second component of gas mixture
JPH09308814A (en) System and method for recovery of organic solvent
US5183484A (en) Process for removal of water in raw material mixed gas
AU2019369728B2 (en) Carbon dioxide separation recovery system and method
JP6897884B2 (en) Organic solvent recovery system
JP2005000862A (en) Adsorption apparatus and adsorption method
JP4327716B2 (en) Adsorbent bed operation and regeneration
JPH11179136A (en) Method for removing carbon dioxide from gas by circulating type pressure swing adsorption process
JP3133988B2 (en) Equipment for treating lean gaseous hydrocarbons contained in waste gas
JP4070399B2 (en) Helium gas purification method
JPH10174833A (en) Removing method of benzene vapor and device therefor
JP2001137646A (en) Device and method for adsorption treating waste gas
TW565468B (en) Method and device for recovering hydrocarbon vapor
US3728844A (en) Vapor adsorption process
JPH06226029A (en) Method for recovering solvent
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
JP7236888B2 (en) Operation method of vacuum desorption type volatile organic compound recovery equipment
JPH0584417A (en) Method and equipment for recovering solvent
JPH0938445A (en) Method for regenerating adsorption tower
JP6740818B2 (en) Organic solvent recovery system
JP6067368B2 (en) Adsorbent regeneration device, adsorbent regeneration method, carbon dioxide purification device, and carbon dioxide purification method
JP3223253B2 (en) CFC regeneration method and apparatus