JPH10156606A - Aluminum oxide coating tool and manufacture thereof - Google Patents

Aluminum oxide coating tool and manufacture thereof

Info

Publication number
JPH10156606A
JPH10156606A JP33494896A JP33494896A JPH10156606A JP H10156606 A JPH10156606 A JP H10156606A JP 33494896 A JP33494896 A JP 33494896A JP 33494896 A JP33494896 A JP 33494896A JP H10156606 A JPH10156606 A JP H10156606A
Authority
JP
Japan
Prior art keywords
aluminum oxide
oxide film
oxide
film
mainly composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33494896A
Other languages
Japanese (ja)
Other versions
JP3560303B2 (en
Inventor
Masayuki Gonda
正幸 権田
Toshio Ishii
敏夫 石井
Hiroshi Ueda
広志 植田
Nobuhiko Shima
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18283033&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10156606(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd, Hitachi Tool Engineering Ltd filed Critical Hitachi Metals Ltd
Priority to JP33494896A priority Critical patent/JP3560303B2/en
Priority to DE1997152644 priority patent/DE19752644C2/en
Priority to SE9704370A priority patent/SE521672C2/en
Publication of JPH10156606A publication Critical patent/JPH10156606A/en
Application granted granted Critical
Publication of JP3560303B2 publication Critical patent/JP3560303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum oxide coating tool of stable quality in a cutting characteristic or the like, by increasing adhesion of both interfaces of a connection layer, provided between an oxidized film mainly composed of α type aluminum oxide and a non-oxidized film which is a bed (base unit side film) thereof to come into direct contact with both the films, or mechanical strength of the connection layer itself and mechanical strength of the oxidized film itself mainly composed of the α type aluminum oxide. SOLUTION: In an aluminum oxide coating tool formed in a base unit surface with a single layer skin film of any one kind of carbide, nitride, carbide nitride, oxide, oxide carbide, oxide nitride and oxide carbide nitride of IVa, Va, VIa group metal in the periodic table or a multi-layer skin film consisting of two or more kinds and an oxidized film composed mainly of α type aluminum oxide of at least one layer, the strongest peak surface of X-ray diffraction of the oxidized film is a surface 110.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、切削用及び耐摩耗
用の酸化アルミニウム被覆工具とその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting and wear-resistant aluminum oxide-coated tool and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、被覆工具は超硬質合金、高速度
鋼、特殊鋼よりなる基体表面に硬質皮膜を化学蒸着法
や、物理蒸着法により成膜することにより作製される。
このような被覆工具は皮膜の耐摩耗性と基体の強靭性と
を兼ね備えており、広く実用に供されている。特に、高
硬度材を高速で切削する場合に、切削工具の刃先温度は
1000℃前後まで上がるとともに、被削材との接触に
よる摩耗や断続切削等の機械的衝撃に耐える必要があ
り、耐摩耗性と強靭性とを兼ね備えた被覆工具が重宝さ
れている。
2. Description of the Related Art In general, a coated tool is produced by forming a hard film on a substrate made of a super-hard alloy, high-speed steel or special steel by a chemical vapor deposition method or a physical vapor deposition method.
Such a coated tool has both the wear resistance of the film and the toughness of the substrate, and is widely used in practice. In particular, when cutting high-hardness materials at high speed, it is necessary to raise the cutting edge temperature of the cutting tool to around 1000 ° C. and to withstand mechanical shocks such as abrasion due to contact with a work material and intermittent cutting, and the like. Coated tools having both strength and toughness are useful.

【0003】硬質皮膜には、耐摩耗性と靭性に優れた周
期律表IVa、Va、VIa族金属の炭化物、窒化物、炭窒
化物からなる非酸化膜や耐酸化性に優れた酸化膜が単層
あるいは多層膜として用いられる。非酸化膜では例えば
TiC、TiN、TiCNが利用され、酸化膜では特に
α型酸化アルミニウムやκ型酸化アルミニウム等が利用
されている。炭化物、窒化物、炭窒化物等からなる非酸
化膜の欠点は酸化され易いことであり、この欠点を補う
ため、非酸化膜上に耐酸化性に優れた酸化アルミニウム
等の酸化膜を形成する多層膜構造を持たせることにより
非酸化膜の酸化を防止することが行われている。
The hard coating includes a non-oxidized film made of carbides, nitrides and carbonitrides of Group IVa, Va and VIa metals excellent in wear resistance and toughness and an oxide film excellent in oxidation resistance. Used as a single-layer or multilayer film. For example, TiC, TiN, and TiCN are used for the non-oxide film, and α-type aluminum oxide and κ-type aluminum oxide are particularly used for the oxide film. The disadvantage of non-oxide films made of carbides, nitrides, carbonitrides, etc. is that they are easily oxidized. To compensate for this disadvantage, an oxide film such as aluminum oxide with excellent oxidation resistance is formed on the non-oxide film. It has been practiced to prevent a non-oxidized film from being oxidized by having a multilayer film structure.

【0004】この非酸化膜/酸化膜の多層膜構造の欠点
は非酸化膜と酸化膜との間の密着性が低いこと、あるい
は高温で機械強度が安定しないことである。前記酸化膜
としてκ型酸化アルミニウム膜を用いた場合、このκ型
酸化アルミニウムは前記非酸化膜との密着性は比較的良
好でありしかも1000〜1020℃と比較的低温で成
膜できる長所はあるものの、準安定状態のアルミナであ
るため高温での使用時にα型酸化アルミニウムに変態す
るため体積が変化し、膜中にクラックが入り、膜が剥が
れるという欠点がある。これに対して、前記酸化膜とし
てα型酸化アルミニウムを用いた場合、このα型酸化ア
ルミニウムは高温でも安定なアルミナ膜であり高温特性
に優れる長所があるものの、非酸化膜の上に直接成膜す
るためには高温で成膜する必要があり、α型酸化アルミ
ニウムの結晶粒径が大きくなり機械特性が低下する欠点
がある。
The disadvantage of the non-oxide / oxide film multilayer structure is that the adhesion between the non-oxide film and the oxide film is low, or the mechanical strength is not stable at high temperatures. When a κ-type aluminum oxide film is used as the oxide film, the κ-type aluminum oxide has an advantage that it has relatively good adhesion to the non-oxide film and can be formed at a relatively low temperature of 1000 to 1020 ° C. However, since it is a metastable alumina, it is transformed into α-type aluminum oxide when used at a high temperature, so that its volume changes, cracks occur in the film, and the film peels off. In contrast, when α-type aluminum oxide is used as the oxide film, this α-type aluminum oxide is an alumina film that is stable even at high temperatures and has an advantage of excellent high-temperature characteristics, but is directly formed on a non-oxide film. In order to achieve this, it is necessary to form a film at a high temperature, and there is a disadvantage that the crystal grain size of the α-type aluminum oxide increases and the mechanical properties deteriorate.

【0005】このため従来より、前記非酸化膜の表面を
酸化させ酸化膜生成の基点を形成した後に酸化アルミニ
ウムを形成することにより1000〜1020℃と比較
的低温でα型酸化アルミニウムを得る手法が常用されて
いる。図4はこのような非酸化膜と酸化膜の界面近傍を
模式的に示したものであり、基体側に形成された非酸化
膜3とα型酸化アルミニウムを主とする酸化膜1との間
に結合層2が表記されている。上記のように結合層2は
一般に非酸化膜3の表面を酸化させることにより作製さ
れ、その厚さは1μm以下と薄い。このため、一見非酸
化膜3の上に直接酸化膜1が形成されているように見え
るが、本発明では非酸化膜3上に形成された酸化層をそ
の機能と特性を明確にするためその製法に関わらず全て
結合層2として表記する。
For this reason, conventionally, a method of obtaining an α-type aluminum oxide at a relatively low temperature of 1000 to 1020 ° C. by oxidizing the surface of the non-oxide film to form a base point for forming an oxide film and then forming aluminum oxide. It is commonly used. FIG. 4 schematically shows the vicinity of the interface between such a non-oxide film and the oxide film, and shows the relationship between the non-oxide film 3 formed on the substrate side and the oxide film 1 mainly composed of α-type aluminum oxide. Indicates the bonding layer 2. As described above, the bonding layer 2 is generally produced by oxidizing the surface of the non-oxide film 3, and its thickness is as thin as 1 μm or less. For this reason, at first glance, it appears that the oxide film 1 is directly formed on the non-oxide film 3. However, in the present invention, the oxide layer formed on the non-oxide film 3 is used to clarify its function and characteristics. Regardless of the production method, they are all described as the bonding layer 2.

【0006】上記のように結合層2を非酸化膜3表面の
酸化により形成した後成膜したα型酸化アルミニウムを
主とする酸化膜1は密着強度が充分ではなく、切削時に
酸化膜1がその下地である非酸化膜3から早期に剥がれ
る事故が発生することがある。このためα型酸化アルミ
ニウムを主とする酸化膜1と基体側に形成された非酸化
膜3との間の密着強度を高めるために結合層2の形成方
法に種々の工夫がなされてきた。例えば、特開平06−
316758号では鋳鉄に対する切削性能を向上させる
ため、下地にTiCN層(図4の3)を形成した後、酸
化ポテンシャルがH2Oの20ppm未満の濃度である
2キャリアガスを用い、CO2、CO及びAlCl3
順序に反応ガスを順次供給することによりアルミナの核
形成を開始させ、核形成時の温度を約1000℃にして
α−アルミナ膜を形成することにより、(012)面から
の等価X線強度TC(012)が1.3より大きいアル
ミナ層を提案している。この場合、TiCN層(図4の
3)の表面にまず酸化ポテンシャルがH2Oの20pp
m未満の濃度であるH2キャリアガスおよびCO2ガス、
COガスを流すことによりTiCN層表面が酸化される
ことにより結合層(図4中の2)が形成され、その後、
更にAlCl3を加えて流すことによりα−アルミナ膜
が形成されているものと考えられる。
As described above, the oxide film 1 mainly composed of α-type aluminum oxide formed after the bonding layer 2 is formed by oxidizing the surface of the non-oxide film 3 has insufficient adhesion strength. In some cases, an accident may occur in which the non-oxide film 3 serving as the base is peeled off at an early stage. Therefore, various methods have been devised for forming the bonding layer 2 in order to increase the adhesion strength between the oxide film 1 mainly composed of α-type aluminum oxide and the non-oxide film 3 formed on the substrate side. For example, Japanese Unexamined Patent Publication No.
In 316758, in order to improve the cutting performance for cast iron, after forming a TiCN layer (3 in FIG. 4) on the base, an H 2 carrier gas having an oxidation potential of less than 20 ppm of H 2 O is used, and CO 2 , The nucleation of alumina was started by sequentially supplying the reaction gas in the order of CO and AlCl 3 , the temperature at the time of nucleation was set to about 1000 ° C., and an α-alumina film was formed. An alumina layer having an equivalent X-ray intensity TC (012) of more than 1.3 has been proposed. In this case, the oxidation potential is first set to 20 pp of H 2 O on the surface of the TiCN layer (3 in FIG. 4).
H 2 carrier gas and CO 2 gas at a concentration of less than m,
By flowing CO gas, the surface of the TiCN layer is oxidized to form a bonding layer (2 in FIG. 4).
It is considered that an α-alumina film was formed by further adding AlCl 3 and flowing.

【0007】また、酸化アルミニウム自体の耐摩耗性お
よび耐欠損性を高めるために、アルミナの成膜時にH2
SガスおよびSO2ガスを添加した反応ガスを用いたり
(特開平06−31503号)あるいはH2Sガスおよ
びSO2ガスに加えて更に20〜30vol%のCO2
用いることにより(特開平07−108405号)、主
ピークである(030)面のX線回折ピーク強度I(0
30)と(104)面のX線回折ピーク強度I(10
4)との比がI(030)/I(104)>1、あるい
はこれに加えて更に(012)面のX線回折ピーク強度
I(012)がI(012)/I(030)>1なる関
係にあるα型結晶を主体にした結晶構造の酸化アルミニ
ウムを提案している。
[0007] In order to improve the wear resistance and fracture resistance of aluminum oxide itself, H 2 during deposition of the alumina
By using a reaction gas to which S gas and SO 2 gas are added (JP-A-06-31503) or by further using 20 to 30% by volume of CO 2 in addition to H 2 S gas and SO 2 gas (Japanese Patent Laid-Open No. -108405), the X-ray diffraction peak intensity I (0) of the (030) plane which is the main peak.
X-ray diffraction peak intensities I (10) of (30) and (104) planes
4) and I (030) / I (104)> 1, or in addition, the X-ray diffraction peak intensity I (012) of the (012) plane is I (012) / I (030)> 1. An aluminum oxide having a crystal structure mainly composed of an α-type crystal having the following relationship has been proposed.

【0008】[0008]

【発明が解決しようとする課題】本発明者等は超硬等の
基板上にα型酸化アルミニウムを主とする酸化膜を含む
多層膜を形成して作製した切削工具を切削テストし、そ
の破損部を詳細に評価した結果、上記のようにα型酸化
アルミニウムを主とする酸化膜1が下地である非酸化膜
3との界面の結合層部分(図4中の2)から剥がれた
り、酸化膜自体にクラックが入り結晶粒が脱落したりし
ていることがわかった。本発明が解決しようとする課題
はα型酸化アルミニウムを主とする酸化膜1とその下地
(基体側の膜)である非酸化膜3との間にあり両膜に直
接接触する結合層2の両界面の密着性あるいは結合層2
自体の機械強度やα型酸化アルミニウムを主とする酸化
膜1自体の機械強度を高めることにより、切削特性等の
品質が安定した酸化アルミニウム被覆工具を提供するこ
とである。
SUMMARY OF THE INVENTION The present inventors conducted a cutting test on a cutting tool produced by forming a multilayer film containing an oxide film mainly composed of α-type aluminum oxide on a substrate such as a carbide substrate, and found that the cutting tool was damaged. As a result of detailed evaluation of the portion, as described above, the oxide film 1 mainly composed of α-type aluminum oxide was peeled off from the bonding layer portion (2 in FIG. 4) at the interface with the non-oxide film 3 as the base, It was found that the film itself had cracks and crystal grains were falling off. The problem to be solved by the present invention is that the bonding layer 2 which is between the oxide film 1 mainly composed of α-type aluminum oxide and the non-oxide film 3 which is the base (film on the substrate side) and is in direct contact with both films. Adhesion of both interfaces or bonding layer 2
An object of the present invention is to provide an aluminum oxide-coated tool with stable quality such as cutting characteristics by increasing the mechanical strength of itself and the mechanical strength of the oxide film 1 mainly composed of α-type aluminum oxide.

【0009】一般に、前記結合層2はTiC、TiN、
TiCN膜等より成る非酸化膜3の表面をH2OとCO2
との混合ガスにより酸化することにより作製しているが
次のように品質の良いα型酸化アルミニウムを主とした
酸化膜被覆工具を安定して生産することは困難である。
即ち、結合層2成膜時に、CO2等による酸化性ガスの
濃度が高いと主にTi23(X線パターンはASTM
No.10−63参照)やTi35(ASTMNo.1
1−217)あるいはTiO2(ASTMファイル N
o.21−1276)が形成され、下地との密着強度が
低く、酸化層(結合層)自体がもろく機械強度が低くな
る欠点が生じる。一方、CO2等による酸化性ガスの濃
度を下げてTi23、Ti35、TiO2が形成されな
いように非酸下膜3の酸化を行うと下地であるTiC、
TiN、TiCN等の非酸化膜3表面の酸化が不十分に
なり、酸化アルミニウムの成膜温度が1020℃以下で
はκ型酸化アルミニウムが形成されα型酸化アルミニウ
ムが安定して形成されず、一方酸化アルミニウムの成膜
温度を1030℃以上にするとα型酸化アルミニウムを
主とする酸化膜1の粒径が粗大化するとともに、中心線
平均面粗さRaや最大面粗さRmaxも荒くなり被覆工
具の特性が低下する欠点が生じる。
Generally, the bonding layer 2 is made of TiC, TiN,
The surface of the non-oxide film 3 made of TiCN film or the like between H 2 O and CO 2
However, it is difficult to stably produce an oxide film-coated tool mainly composed of high-quality α-type aluminum oxide as described below.
That is, when the concentration of the oxidizing gas such as CO 2 is high during the formation of the bonding layer 2, Ti 2 O 3 (X-ray pattern
No. 10-63 reference) and Ti 3 O 5 (ASTMNo.1
1-217) or TiO 2 (ASTM file N
o. 21-1276), the adhesion strength to the base is low, the oxide layer (bonding layer) itself is brittle, and the mechanical strength is low. On the other hand, when the concentration of the oxidizing gas due to CO 2 or the like is reduced to oxidize the non-acidic lower film 3 so that Ti 2 O 3 , Ti 3 O 5 , and TiO 2 are not formed, the underlying TiC,
Oxidation of the surface of the non-oxidized film 3 such as TiN or TiCN becomes insufficient. When the film forming temperature of aluminum oxide is 1020 ° C. or less, κ-type aluminum oxide is formed and α-type aluminum oxide is not formed stably. When the film forming temperature of aluminum is set to 1030 ° C. or more, the grain size of the oxide film 1 mainly composed of α-type aluminum oxide becomes coarse, and the center line average surface roughness Ra and the maximum surface roughness Rmax also become rough, so that the coating tool becomes harder. A disadvantage occurs in that the characteristics are deteriorated.

【0010】また、上記のように下地である非酸化膜3
を酸化させて結合層2を作製するのではなく、非酸化膜
3の上にTiCO、TiNO、TiCNO等の結合層2
を新たに成膜させる方法として次のものが提案されてい
る。特開昭63−195268号ではアルミナ膜の内層
として0.5μm厚さのTiCNO膜を図4の結合層2
として1100℃や1030℃で成膜し、その後アルミ
ナ膜1をそれぞれ960℃と1000℃で成膜してお
り、特開平02−30406号では膜厚1μmのTiC
O膜やTiCNO膜を図4の結合層2として成膜した後
にアルミナ膜1を形成している。また、特開平05−3
45976号では膜厚0.5μmと3μmで粒径0.2
〜1.5μmのTiCNO膜やTiCO膜をTiCl4
やCO、H2、N2ガスを用いて結合層2として1000
℃で成膜した後、アルミナ膜1を1000℃で成膜して
いる。これら結合層2を別個に成膜する従来例の特徴は
それぞれ結合層2の成膜温度がアルミナ膜の成膜温度よ
りも高いこと(特開昭63−195268号)、結合層
2の膜厚が1μmと厚いこと(特開平02−30406
号)、結合層2の成膜時にCOガスを用いていること
(特開平05−345976号)である。結合層2の成
膜時に、CO2やH2O等の酸化性ガスが多すぎたり成膜
温度が高すぎたりすると結合層2中の酸素の含有量が多
くなりすぎ上記と同様に下地の非酸化膜3との密着性が
低下するとともに、結合層2自体の機械強度が低くなる
欠点が現れ、結合層2の膜厚が1μmと厚いと結合層を
構成する酸化膜自体の機械強度が低いため結合層内で破
断する欠点が現れ、CO2ガスの代わりにCOガスを用
いると結合層2中の含有酸素量が不十分になりα型酸化
アルミニウムを主とする酸化膜1が安定して形成されな
くなる欠点が現れた。上記のように、本発明の課題は下
地の非酸化膜3と酸化膜1とを結合する膜厚の薄い結合
層2の密着性と機械強度特性とを改善することにより、
非酸化膜3との密着性が良いとともに、粒径が小さく機
械強度の優れたα型酸化アルミニウムを主とする酸化膜
1を持つ、長寿命の酸化アルミニウム被覆工具およびそ
の製造方法を提供することである。
Further, as described above, the non-oxide film
Is not oxidized to form the bonding layer 2, but the bonding layer 2 of TiCO, TiNO, TiCNO, etc. is formed on the non-oxidized film 3.
The following has been proposed as a method for newly forming a film. In JP-A-63-195268, a 0.5 μm-thick TiCNO film is used as the inner layer of the alumina film as the bonding layer 2 shown in FIG.
A film is formed at 1100 ° C. or 1030 ° C., and then an alumina film 1 is formed at 960 ° C. and 1000 ° C., respectively.
After an O film or a TiCNO film is formed as the bonding layer 2 in FIG. 4, the alumina film 1 is formed. Also, Japanese Patent Application Laid-Open No. 05-3
No. 45976, a film thickness of 0.5 μm and 3 μm and a particle size of 0.2
TiCl the TiCNO film or TiCO film of ~1.5μm 4
And CO, H 2 , N 2 gas to form a bonding layer 2 of 1000
After the film formation at 1000 ° C., the alumina film 1 is formed at 1000 ° C. The features of the conventional example in which these bonding layers 2 are formed separately are that the film forming temperature of the bonding layer 2 is higher than the film forming temperature of the alumina film (Japanese Patent Laid-Open No. 63-195268). Is as thick as 1 μm (JP-A-02-30406)
) And the use of a CO gas at the time of forming the bonding layer 2 (Japanese Patent Application Laid-Open No. 05-345976). If the oxidizing gas such as CO 2 or H 2 O is too large or the film forming temperature is too high during the formation of the bonding layer 2, the oxygen content in the bonding layer 2 will be too large, and the base The adhesive strength with the non-oxide film 3 is reduced, and the mechanical strength of the bonding layer 2 itself is lowered. When the thickness of the bonding layer 2 is as thick as 1 μm, the mechanical strength of the oxide film itself constituting the bonding layer is reduced. When the CO gas is used instead of the CO 2 gas, the oxygen content in the bonding layer 2 becomes insufficient, and the oxide film 1 mainly composed of α-type aluminum oxide becomes stable. The disadvantage that it could not be formed appeared. As described above, an object of the present invention is to improve the adhesion and mechanical strength characteristics of the thin bonding layer 2 that bonds the underlying non-oxide film 3 and oxide film 1 to each other.
Provided is a long-life aluminum oxide-coated tool having an oxide film 1 mainly composed of α-type aluminum oxide having good adhesion to a non-oxide film 3 and having a small particle size and excellent mechanical strength, and a method for manufacturing the same. It is.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記知見
に基づき鋭意検討した結果、下地であるTiC、Ti
N、TiCN等の非酸化膜3とα型酸化アルミニウムを
主とする酸化膜1との間に形成する薄い結合層2を改質
することで非酸化膜3およびα型酸化アルミニウムを主
とする酸化膜1との密着性を改善し、α型酸化アルミニ
ウムを主とする酸化膜1の(110)面のX線ピーク強
度を強くするとともに、α型酸化アルミニウムを主とす
る酸化膜1の結晶粒径を微細化することにより機械特性
が改善されて前記の問題点が解消することを見出し、本
発明に想到した。
Means for Solving the Problems The inventors of the present invention have made intensive studies based on the above findings, and have found that TiC and Ti
By modifying the thin bonding layer 2 formed between the non-oxide film 3 of N, TiCN or the like and the oxide film 1 mainly containing α-type aluminum oxide, the non-oxide film 3 and α-type aluminum oxide are mainly used. The adhesiveness with the oxide film 1 is improved, the X-ray peak intensity of the (110) plane of the oxide film 1 mainly containing α-type aluminum oxide is increased, and the crystal of the oxide film 1 mainly containing α-type aluminum oxide is increased. The present inventors have found that by reducing the particle size, mechanical properties are improved and the above-mentioned problems are solved, and the present invention has been reached.

【0012】すなわち本発明は、基体表面に周期律表の
IVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、
酸化物、酸炭化物、酸窒化物および酸炭窒化物のいずれ
か一種の単層皮膜または二種以上からなる多層皮膜、並
びに少なくとも一層のα型酸化アルミニウムを主とする
酸化膜が形成されている酸化アルミニウム被覆工具にお
いて、前記酸化膜のX線回析最強ピーク面が(110)
面であることを特徴とする酸化アルミニウム被覆工具で
ある。また、基体表面に周期律表のIVa、Va、VIa族
金属の炭化物、窒化物、炭窒化物、酸化物、酸炭化物、
酸窒化物および酸炭窒化物のいずれか一種の単層皮膜ま
たは二種以上からなる多層皮膜、並びに少なくとも一層
のα型酸化アルミニウムを主とする酸化膜が形成されて
いる酸化アルミニウム被覆工具において、前記酸化膜の
X線回析の(110)面による等価ピーク強度PR(1
10)が1以上好ましくは1.5以上であることを特徴
とする酸化アルミニウム被覆工具である。また、前記α
型酸化アルミニウムを主とする酸化膜の膜厚が2.5μ
m未満のときの酸化膜の平均粒径が2μm以下であり、
その膜厚が2.5μm以上のときの平均粒径が4μm以
下であることを特徴とするものである。また、前記α型
酸化アルミニウムを主とする酸化膜の中心線平均面粗さ
Raが0.6μm以下好ましくは0.5μm以下である
ことを特徴とするものであり、また、前記酸化膜の膜厚
が2.5μm未満のときのその酸化膜の最大面粗さRm
axが2μm以下であり、前記膜厚が2.5μm以上の
ときの最大面粗さRmaxが3μm以下であることを特
徴とするものである。また、前記各膜間の密着性が高ま
るように、α型酸化アルミニウムを主とする酸化膜(図
4中の1)の格子縞と、α型酸化アルミニウムを主とす
る酸化膜と直接接触する結合層(図4中の2)の格子縞
とが界面において連続していることを特徴とするもので
ある。ここで、格子縞とは、透過電子顕微鏡(TEM)
で結晶を高倍率で観察したときに得られる格子像の縞模
様の縞のことを云う。二つ以上の相接する膜(結晶)の
格子像を撮影しようとした時、これらの膜の結晶方位が
共に透過電子顕微鏡の入射ビームと大略平行な時にのみ
両者の結晶の格子像が同時に観察される。α型酸化アル
ミニウムを主とする酸化膜1の格子縞と結合層2の各格
子縞とが界面において連続しているということは即ち両
結晶の結晶方位が共に入射ビームに大略平行であり、α
型酸化アルミニウムを主とする酸化膜1と結合層2の両
者がエピタキシャルの関係にあることを示している。両
膜の結晶方位が平行でなく片一方の結晶方位のみが透過
電子顕微鏡の入射ビームに平行なときは、その結晶のみ
の格子像が得られ、平行でないもう片一方の結晶の格子
像は得られない。また、両結晶の結晶方位が平行であっ
ても両結晶が直接接触しておらず他の物質が介在してい
る場合には、両結晶の格子像は得られるものの間にある
介在物により格子縞が途中で中断し両者の格子縞は連続
しない。また、本発明はα型酸化アルミニウムを主とす
る酸化膜の表面にチタンの窒化膜が形成されていること
を特徴とするものである。また、本発明は周期律表のIV
a、Va、VIa族金属の炭化物、窒化物、炭窒化物の一
種以上とFe、Ni、Co、W、Mo、Crの一種以上
とよりなる超硬質合金を基体とすることを特徴とする酸
化アルミニウム被覆工具である。
That is, according to the present invention, the surface of the base
Group IVa, Va, VIa group metal carbides, nitrides, carbonitrides,
Oxide, oxycarbide, oxynitride and oxycarbonitride are formed of any one type of single-layer film or a multi-layer film composed of two or more types thereof, and at least one oxide film mainly composed of α-type aluminum oxide. In the aluminum oxide-coated tool, the strongest X-ray diffraction peak plane of the oxide film is (110).
An aluminum oxide-coated tool characterized by being a surface. In addition, on the surface of the substrate, carbides, nitrides, carbonitrides, oxides, oxycarbides of metals belonging to groups IVa, Va and VIa of the periodic table,
In an aluminum oxide-coated tool in which an oxynitride and an oxycarbonitride are a single layer coating or a multilayer coating composed of two or more kinds thereof, and at least one oxide film mainly composed of α-type aluminum oxide, Equivalent peak intensity PR (1) by (110) plane of X-ray diffraction of the oxide film
10) is not less than 1 and preferably not less than 1.5. In addition, the α
The thickness of the oxide film mainly composed of aluminum oxide is 2.5μ
m, the average particle size of the oxide film is 2 μm or less;
When the film thickness is 2.5 μm or more, the average particle size is 4 μm or less. Further, the oxide film mainly composed of the α-type aluminum oxide has a center line average surface roughness Ra of 0.6 μm or less, preferably 0.5 μm or less, and a film of the oxide film. Maximum surface roughness Rm of the oxide film when the thickness is less than 2.5 μm
a is 2 μm or less, and the maximum surface roughness Rmax when the film thickness is 2.5 μm or more is 3 μm or less. Also, the lattice stripes of the oxide film mainly composed of α-type aluminum oxide (1 in FIG. 4) and the bonding directly contacting the oxide film mainly composed of α-type aluminum oxide so as to increase the adhesion between the respective films. It is characterized in that lattice fringes of the layer (2 in FIG. 4) are continuous at the interface. Here, the lattice fringe means a transmission electron microscope (TEM).
Means a stripe pattern of a lattice image obtained when the crystal is observed at a high magnification. When trying to take a lattice image of two or more adjacent films (crystals), the lattice images of both crystals are simultaneously observed only when the crystal orientations of these films are almost parallel to the incident beam of the transmission electron microscope. Is done. The fact that the lattice fringes of the oxide film 1 mainly composed of α-type aluminum oxide and the lattice fringes of the coupling layer 2 are continuous at the interface means that the crystal orientations of both crystals are substantially parallel to the incident beam, and α
This shows that both the oxide film 1 mainly composed of aluminum oxide and the bonding layer 2 have an epitaxial relationship. When the crystal orientations of both films are not parallel and only one crystal orientation is parallel to the incident beam of the transmission electron microscope, a lattice image of only that crystal is obtained, and a lattice image of the other non-parallel crystal is obtained. I can't. In addition, even if the crystal orientations of both crystals are parallel, if both crystals are not in direct contact with each other and another substance is interposed, the lattice image of both crystals will be lattice fringes due to inclusions between those obtained. Are interrupted on the way, and the lattice fringes are not continuous. Further, the present invention is characterized in that a titanium nitride film is formed on the surface of an oxide film mainly composed of α-type aluminum oxide. Further, the present invention relates to IV of the periodic table.
An oxidation characterized by using, as a base, a super-hard alloy comprising at least one of carbides, nitrides and carbonitrides of a, Va and VIa group metals and at least one of Fe, Ni, Co, W, Mo and Cr. It is an aluminum coated tool.

【0013】また、本発明の製造方法は、周期律表のIV
a、Va、VIa族金属の炭化物、窒化物、炭窒化物のい
ずれか一種または二種以上からなる非酸化膜層と、前記
非酸化膜層の成膜時に用いたガス構成を主として更に
0.1〜5vol%好ましくは0.5〜3vol%の酸
化性ガスを加え成膜温度950〜1020℃で成膜した
周期律表のIVa、Va、VIa族金属の酸化物、酸炭化
物、酸窒化物および酸炭窒化物のいずれか一種または二
種以上からなる薄層との組み合わせからなる結合層を成
膜し、その上にα型酸化アルミニウムを主とする酸化膜
を成膜することを特徴とする酸化アルミニウム被覆工具
の製造方法である。
Further, the production method of the present invention provides a method of preparing
A non-oxide film layer made of one or more of carbides, nitrides, and carbonitrides of Group a, Va, and VIa metals, and a gas composition used for forming the non-oxide film layer are mainly used. An oxide, oxycarbide, or oxynitride of a Group IVa, Va, or VIa metal of the periodic table formed by adding an oxidizing gas of 1 to 5 vol%, preferably 0.5 to 3 vol%, and forming a film at a film forming temperature of 950 to 1020 ° C. And a bonding layer formed of a combination of a thin layer of one or more of oxycarbonitrides, and an oxide film mainly composed of α-type aluminum oxide formed thereon. This is a method for producing an aluminum oxide-coated tool.

【0014】[0014]

【発明の実施の形態】図1は本発明品の酸化アルミニウ
ム被覆工具の皮膜部分を試料面にして2θ−θ走査法に
よりX線回析パターンを測定したときの一例を示したも
のである。X線源にはCuのKα1(波長λ=1.54
05A)を用いた。本発明品は、従来品と同様に基体表
面にTiNとTiCNを成膜した後、TiC層を薄く成
膜しそのまま連続してTiCの成膜に用いた構成ガスに
さらにCO2ガスを追加して反応させてTiCO層を成
膜することによりTiC層/TiCO層よりなる結合層
を作製した後、その表面上にα型酸化アルミニウムを成
膜したものである。図中にはα−Al23のX線ピーク
のみピーク面を表記し、他の形成化合物によるピーク
(例えばTiCN等。)のピーク名は表記していない。
図1より、本発明品はα−Al23のX線ピークの(1
10)面が他のピークに比べ強いピークを示し、(01
2)ピークや(030)ピークの強度は弱く、(11
0)のピーク強度を越えないことがわかる。α−Al2
3の(hkl)面からのX線ピーク強度を定量的に評
価するために次式により(hkl)面による等価ピーク
強度PR(hkl)とTC(hkl)とを定義した。こ
こでI(hkl)は(hkl)面による実測時のX線回
折強度を表し、I0(hkl)はASTMファイル N
o.10−173 (Powder Diffract
ion File Published by JCP
DS International Center f
or Diffraction Data)に記載され
ているX線回折強度であり、配向が等方的である粉末粒
子の(hkl)面からのX線回折強度を表している。T
C(hkl)は特開平06ー316758号中の定義と
同一であり、PR(hkl)は更に(124)、(03
0)のピークまで含めて同様の定義を行ったものであ
る。PR(hkl)、TC(hkl)はともに、AST
Mのデータに記載された等方粒子のX線ピーク強度に対
する、X線回折で実測した皮膜の(hkl)面からのX
線回折ピーク強度の相対強度を示しており、PR(hk
l)、TC(hkl)の値が大きい程(hkl)面から
のX線ピーク強度が他のピーク強度よりも強く、(hk
l)方向に測定サンプルが配向していることを示す。 PR(hkl)={I(hkl)/I0(hkl)}/[Σ
{I(hkl)/I0(hkl)}/8] 但し、(hkl)=(012)、(104)、(11
0)、(113)、(024)、(116)、(12
4)、(030) TC(hkl)={I(hkl)/I0(hkl)}/[Σ
{I(hkl)/I0(hkl)}/6] 但し、(hkl)=(012)、(104)、(11
0)、(113)、(024)、(116) 具体的には、図1のPR(110)は5.04であり、
図1の(110)のX線ピーク強度が粉末粒子が示す
(110)X線ピーク強度よりも5.04倍強いことを
示している。なお、2θが20〜80°の範囲内には上
記の8ピーク以外に(006)、(202)、(21
1)、(122)、(018)ピークも存在するがこれ
らのピーク強度はI0が10以下でありピーク強度Iの少
しの変化でI/I0が大きく変動するためPR(hk
l)、TC(hkl)の計算には含めなかった。
FIG. 1 shows an example of an X-ray diffraction pattern measured by a 2θ-θ scanning method using a coating portion of an aluminum oxide-coated tool of the present invention as a sample surface. The X-ray source is Cu Kα1 (wavelength λ = 1.54).
05A) was used. In the present invention, TiN and TiCN are formed on the substrate surface in the same manner as the conventional product, then a thin TiC layer is formed, and CO 2 gas is further added to the constituent gas used for forming the TiC continuously. After forming a TiC layer / TiCO layer by forming a TiCO layer by reacting with each other, α-type aluminum oxide is formed on the surface of the bonding layer. In the drawing, only the X-ray peak of α-Al 2 O 3 is shown as a peak surface, and the peak names of peaks (for example, TiCN or the like) due to other forming compounds are not shown.
As shown in FIG. 1, the product of the present invention has an X-ray peak of α-Al 2 O 3 (1
10) The plane shows a stronger peak than the other peaks, and (01)
2) The intensity of the peak or (030) peak is weak, and (11)
It can be seen that the peak intensity does not exceed 0). α-Al 2
In order to quantitatively evaluate the X-ray peak intensity from the (hkl) plane of O 3, the equivalent peak intensity PR (hkl) and TC (hkl) based on the (hkl) plane were defined by the following equation. Here, I (hkl) represents the X-ray diffraction intensity at the time of actual measurement by the (hkl) plane, and I 0 (hkl) represents the ASTM file N
o. 10-173 (Power Diffract
ion File Published by JCP
DS International Center f
or Diffraction Data), and indicates the X-ray diffraction intensity from the (hkl) plane of powder particles having isotropic orientation. T
C (hkl) is the same as that defined in JP-A-06-316758, and PR (hkl) further includes (124) and (03)
The same definition is made including the peak of 0). PR (hkl) and TC (hkl) are both AST
X from the (hkl) plane of the film measured by X-ray diffraction with respect to the X-ray peak intensity of the isotropic particles described in the data of M
Shows the relative intensity of the X-ray diffraction peak intensity, and PR (hk
l), the larger the value of TC (hkl) is, the stronger the X-ray peak intensity from the (hkl) plane is than the other peak intensities.
1) Indicates that the measurement sample is oriented in the direction. PR (hkl) = {I ( hkl) / I 0 (hkl)} / [Σ
{I (hkl) / I 0 (hkl)} / 8 where (hkl) = (012), (104), (11
0), (113), (024), (116), (12
4), (030) TC ( hkl) = {I (hkl) / I 0 (hkl)} / [Σ
{I (hkl) / I 0 (hkl)} / 6] (hkl) = (012), (104), (11
0), (113), (024), (116) Specifically, the PR (110) in FIG. 1 is 5.04,
The X-ray peak intensity of (110) in FIG. 1 is 5.04 times stronger than the (110) X-ray peak intensity of the powder particles. When 2θ is in the range of 20 to 80 °, in addition to the above eight peaks, (006), (202), and (21)
Although peaks 1), (122), and (018) also exist, these peak intensities have an I 0 of 10 or less, and a small change in the peak intensity I greatly changes I / I 0, so that PR (hk)
l), not included in the calculation of TC (hkl).

【0015】本発明品の酸化膜表面の平均結晶粒径は
(株)日立製作所製の走査電子顕微鏡(S−2300)
の写真により測定し、膜厚が2.5μm未満のときは2
μm以下であり、膜厚が2.5μm以上のときは4μm
以下であった。また、中心線平均面粗さRaは0.6μ
m以下であり、また、最大面粗さRmaxは酸化膜の膜
厚が2.5μm未満のときは2μm以下であり、膜厚が
2.5μm以上のときは3μm以下であった。
The average crystal grain size on the surface of the oxide film of the product of the present invention was measured by a scanning electron microscope (S-2300) manufactured by Hitachi, Ltd.
Measured when the film thickness is less than 2.5 μm, 2
μm or less, and 4 μm when the film thickness is 2.5 μm or more.
It was below. The center line average surface roughness Ra is 0.6 μm.
m or less, and the maximum surface roughness Rmax was 2 μm or less when the thickness of the oxide film was less than 2.5 μm, and 3 μm or less when the thickness of the oxide film was 2.5 μm or more.

【0016】また、本発明品の一例であるα型酸化アル
ミニウムを主とする酸化膜と本酸化膜に直接接触してい
るTiC/TiCO結合層及びその下のTiCN膜との
界面近傍を(株)日立製作所製の透過電子顕微鏡(H−
9000UHR)により観測したところ、後述の図3の
ように膜間の各界面において格子縞が連続していること
が確認された。図5にこの格子縞の連続状況を模式的に
示す。図5はあくまで以下に述べる原子レベルでの膜の
成膜状況を説明するために示すものであり、各界面にお
ける格子縞の連続性は、格子縞間にわずかのずれ(不整
合性)が許容され、格子縞の連続状況、格子縞間隔、個
数等は図5に限定されるものでないことは言うまでもな
いことである。
The vicinity of the interface between the oxide film mainly composed of α-type aluminum oxide, which is an example of the product of the present invention, the TiC / TiCO bonding layer which is in direct contact with the present oxide film, and the TiCN film thereunder is shown in FIG. ) Hitachi transmission electron microscope (H-
Observation by 9000 UHR) confirmed that lattice fringes were continuous at each interface between the films as shown in FIG. 3 described later. FIG. 5 schematically shows the continuity of the lattice fringes. FIG. 5 is provided only to explain the film formation state at the atomic level described below. Regarding the continuity of the lattice fringes at each interface, a slight shift (mismatch) between the lattice fringes is allowed. It goes without saying that the continuity of the lattice fringe, the lattice fringe interval, the number and the like are not limited to those shown in FIG.

【0017】本発明品のα型酸化アルミニウムを主とす
る酸化膜の密着性や機械特性が優れる理由は明確ではな
いが次のことが考えられる。本発明品のα型酸化アルミ
ニウムを主とする酸化膜は図1のようにX線回析時の
(110)面ピーク強度が強く、α型酸化アルミニウム
の(110)面が母材と平行方向に強く配向しているも
のである。本発明の製造方法により作製すると、下地の
非酸化膜(図4中の3)や結合層(図4中の2)および
α型酸化アルミニウムを主とする酸化膜(図4中の1)
の間にエピタキシャルの関係が成立し、即ち各膜が界面
において連続的に形成(格子縞が連続的に形成)される
ため、α型酸化アルミニウムの(110)面が面内に強
く配向し、同時に、下地の非酸化膜3や結合層2と酸化
膜1との界面に空孔や、大きな欠陥が非常に生じにく
く、膜相互の密着性が高くなるものと考えられる。この
ような意味で、前記格子縞の連続性(エピタキシャルの
関係)はすべての界面で成立する必要はなく、透過電子
顕微鏡により結合層近傍を5万倍で観察したときに上記
格子縞の連続性(エピタキシャルの関係)が認められる
領域が存在すれば、本発明による優れた作用効果を獲得
することができる。本発明において下地に用いるTi
C、TiN、TiCN等の非酸化膜(図4中の3)及び
結合層(図4中の2に対応し、例えば、TiC/TiC
O、TiN/TiNO、TiCN/TiCNO等。)の
両者はfcc結晶構造を持っており、これらの膜がエピ
タキシャルに成長するとα型酸化アルミニウムを主とす
る酸化膜3は(110)方向に配向しやすくなるものと
考えられる。また、(110)面による等価X線ピーク
強度PR(110)が1以上好ましくは1.5以上であ
ることにより、通常は粉末状にして測定する等方的に配
向したα型酸化アルミニウムが示す(110)X線ピー
ク強度(即ち、ASTMファイルNo.10−173に
記載されているX線強度)よりも本発明品の(110)
X線ピーク強度が1倍以上好ましくは1.5倍以上であ
り、(110)面が1倍以上好ましくは1.5倍以上配
向していることになり、上記の理由で密着性が優れるこ
とがわかる。本発明において、(110)ピーク強度が
強いときは(012)ピーク強度や(030)ピーク強
度は相対的に弱くなる傾向がみられる。PR(110)
の強度が大略1倍以上の時、TC(012)は1.3以
下であり、PR(110)の強度が大きくなるとともに
TC(012)値は小さくなり、PR(110)=8付
近ではTC(012)は約0.1になる。PR(11
0)が1以上では、(030)ピークと(104)ピー
クの強度比I(030)/I(104)は0〜9.97
と値がばらつき、(012)ピークと(030)ピーク
の強度比I(012)/I(030)は0.08〜6
3.06と値がばらつきPR(110)とI(030)
/I(104)やI(012)/I(030)との相関は
見られなかった。本開発品は(110)ピークが特に強
く(030)ピークや(012)ピークは相対的に弱く
なっており、(030)ピークや(012)ピークの強
度が大きい特開平06−31503号や特開平07−1
08405号のアルミナ膜とは本質的に異なるものであ
ることがわかる。
The reason why the oxide film mainly comprising α-type aluminum oxide of the present invention is excellent in adhesion and mechanical properties is not clear, but the following may be considered. As shown in FIG. 1, the oxide film mainly containing α-type aluminum oxide of the present invention has a strong peak intensity in the (110) plane at the time of X-ray diffraction, and the (110) plane of the α-type aluminum oxide is parallel to the base material. Are strongly oriented. When manufactured by the manufacturing method of the present invention, an underlying non-oxide film (3 in FIG. 4), a bonding layer (2 in FIG. 4), and an oxide film mainly composed of α-type aluminum oxide (1 in FIG. 4)
In other words, an epitaxial relationship is established between the films, that is, each film is continuously formed at the interface (lattice stripes are continuously formed), so that the (110) plane of the α-type aluminum oxide is strongly oriented in the plane, and It is considered that vacancies and large defects hardly occur at the interface between the underlying non-oxide film 3 and the bonding layer 2 and the oxide film 1, and the adhesion between the films is increased. In this sense, the continuity (epitaxial relationship) of the lattice fringes does not need to be established at all interfaces, and the continuity of the lattice fringes (epitaxial relation) is observed when the vicinity of the coupling layer is observed at a magnification of 50,000 with a transmission electron microscope. If there is a region in which the relationship (1) is recognized, the excellent operation and effect according to the present invention can be obtained. Ti used for the base in the present invention
Non-oxidized films (3 in FIG. 4) such as C, TiN, and TiCN, and a bonding layer (corresponding to 2 in FIG. 4, for example, TiC / TiC
O, TiN / TiNO, TiCN / TiCNO, etc. 2) have an fcc crystal structure, and it is considered that when these films grow epitaxially, the oxide film 3 mainly composed of α-type aluminum oxide is likely to be oriented in the (110) direction. Further, when the equivalent X-ray peak intensity PR (110) by the (110) plane is 1 or more, preferably 1.5 or more, it indicates an isotropically oriented α-type aluminum oxide which is usually measured in powder form. The (110) X-ray peak intensity (ie, the X-ray intensity described in ASTM file No. 10-173) of the product of the present invention is higher than that of (110).
The X-ray peak intensity is 1 or more times, preferably 1.5 times or more, and the (110) plane is oriented 1 time or more, preferably 1.5 times or more, and the adhesion is excellent for the above reason. I understand. In the present invention, when the (110) peak intensity is high, the (012) peak intensity and the (030) peak intensity tend to be relatively weak. PR (110)
When the intensity is approximately 1 or more, TC (012) is 1.3 or less, the intensity of PR (110) increases, the TC (012) value decreases, and near the PR (110) = 8, TC (012) decreases. (012) becomes about 0.1. PR (11
When (0) is 1 or more, the intensity ratio I (030) / I (104) between the (030) peak and the (104) peak is 0 to 9.97.
The intensity ratio I (012) / I (030) between the (012) peak and the (030) peak is 0.08 to 6
3.06 and the value fluctuated PR (110) and I (030)
No correlation with / I (104) or I (012) / I (030) was found. In this developed product, the (110) peak is particularly strong, the (030) peak and the (012) peak are relatively weak, and the intensity of the (030) peak and the (012) peak is large. Kaihei 07-1
It can be seen that this is essentially different from the alumina film of No. 08405.

【0018】本発明方法で作製すると非酸化膜と結合層
およびα型酸化アルミニウムを主とする酸化膜とがエピ
タキシャルに成長するため、α型酸化アルミニウムを主
とする酸化膜を比較的低温度で密着性高く成膜出来る。
したがって、α型酸化アルミニウムを主とする酸化膜の
平均結晶粒径をこの酸化膜の膜厚が2.5μm未満のと
きは2μm以下、前記膜厚が2.5μm以上のときは4
μm以下に成膜出来、また、前記酸化膜の中心線平均面
粗さRaを0.6μm以下、最大面粗さRmaxを前記
酸化膜の膜厚が2.5μm未満のときは2μm以下でか
つその膜厚が2.5μm以上のときは3μm以下にする
事が出来る。上記のように、本発明ではα型酸化アルミ
ニウムを主とした酸化膜の粒径と中心線平均面粗さR
a、最大面粗さRmaxが小さいため切削加工等の工具
として使用したときの摩擦が少なく、膜の磨耗や脱粒が
少なくなり、優れた機械特性が得られたものと考えられ
る。同様の理由で膜表面の中心線平均面粗さRaは0.
5μm以下が望ましく、α型酸化アルミニウムを主とし
た酸化膜の磨耗や脱粒が更に少なくなり工具特性が更に
向上する。
When the non-oxide film, the bonding layer and the oxide film mainly containing α-type aluminum oxide are grown epitaxially by the method of the present invention, the oxide film mainly containing α-type aluminum oxide is grown at a relatively low temperature. A film can be formed with high adhesion.
Therefore, the average crystal grain size of the oxide film mainly composed of α-type aluminum oxide is 2 μm or less when the thickness of the oxide film is less than 2.5 μm, and 4 when the thickness is 2.5 μm or more.
μm or less, and the center line average surface roughness Ra of the oxide film is 0.6 μm or less, and the maximum surface roughness Rmax is 2 μm or less when the thickness of the oxide film is less than 2.5 μm and When the film thickness is 2.5 μm or more, it can be reduced to 3 μm or less. As described above, in the present invention, the grain size and the center line average surface roughness R of the oxide film mainly composed of α-type aluminum oxide
a) Since the maximum surface roughness Rmax is small, friction when used as a tool for cutting or the like is small, and wear and shedding of the film are reduced, and it is considered that excellent mechanical properties are obtained. For the same reason, the center line average surface roughness Ra of the film surface is 0.1.
The thickness is preferably 5 μm or less, and the wear and shedding of the oxide film mainly composed of α-type aluminum oxide are further reduced, and the tool characteristics are further improved.

【0019】次に、本発明による新規な酸化アルミニウ
ム被覆工具を得る製造方法について解説する。本発明
は、周期律表のIVa、Va、VIa族金属の炭化物、窒化
物、炭窒化物のいずれか一種または二種以上からなる非
酸化膜(図4中の3)を成膜した後、まず周期律表のIV
a、Va、VIa族金属の炭化物、窒化物、炭窒化物のい
ずれか一種または二種以上からなる非酸化層を薄く成膜
し、そのまま連続してこの非酸化膜の成膜を構成したガ
スを主として更に0.1〜3.0vol%の酸化性ガス
を加えて成膜温度950〜1020℃で成膜することに
より結合層(図4中の2)を成膜した後、その上にα型
酸化アルミニウムを主とする酸化膜(図4中の1)を成
膜するものである。このように成膜する事により、まず
周期律表のIVa、Va、VIa族金属の炭化物、窒化物、
炭窒化物のいずれか一種または二種以上からなる非酸化
層(図4中の2−2)を薄く成膜することにより下地で
ある非酸化膜3とのエピタキシャル関係が得やすくなり
非酸化膜3と結合層2との間に高い密着性が得られ、更
に連続して酸化性ガスを加えて成膜した層(図4中の2
−1)によりα型酸化アルミニウムを主とする酸化膜1
との間にエピタキシャル関係が得やすくなり結合層2と
酸化膜1との間に高い密着性が得られるのが本発明によ
る製造方法の特徴であり、膜剥がれを起こし難く、長寿
命の酸化アルミニウム被覆工具を製造することができ
る。この時、結合層内を連続的に成膜するため途中で追
加する酸化性ガス量は全ガス流量の0.1〜5vol%
である必要がある。酸化性ガス量が0.1vol%未満
では結合層表面の酸素量が少ないため結合層上にκ型酸
化アルミニウムが出来やすくなり、安定してα型酸化ア
ルミニウムを主とする酸化膜が成膜出来ず、5vol%
を越えると結合層の酸化が進みすぎTi23、Ti
35、TiO2等が多く成膜されるため結合層自体の機
械的強度が低下しα型酸化アルミニウムを主とする酸化
膜が結合層内で剥離しやすくなる欠点が生じる。また、
成膜温度が950℃未満の時は緻密な結合層を成膜出来
ず膜剥がれを生じやすく、1020℃を越える時は結合
層の結晶粒が粗くしかも酸化が進みすぎ膜剥がれを生じ
やすくなる。また、本発明のα型酸化アルミニウムの成
膜にはAlCl3やH2、CO2、H2S等のガスを用い酸
化膜を成膜でき、毒性や腐食性の高いSO2ガスを用い
る必要はなく、またCO2ガス量も通常の流量である2
0vol%以下で成膜出来るため安定してα型酸化アル
ミニウムを主とする酸化膜を成膜することができる。
Next, a method for producing a novel aluminum oxide-coated tool according to the present invention will be described. The present invention forms a non-oxide film (3 in FIG. 4) formed of one or more of carbides, nitrides, and carbonitrides of metals of groups IVa, Va, and VIa of the periodic table, First, IV of the periodic table
a gas comprising a thin non-oxidized layer made of one or more of carbides, nitrides, and carbonitrides of a, Va, and VIa group metals, and continuously forming the non-oxidized film as it is Is formed at a film formation temperature of 950 to 1020 ° C. by adding an oxidizing gas of mainly 0.1 to 3.0 vol% to form a bonding layer (2 in FIG. 4). An oxide film (1 in FIG. 4) mainly composed of aluminum oxide is formed. By forming a film in this manner, first, carbides, nitrides, and metals of Group IVa, Va, and VIa of the periodic table
By forming a thin non-oxide layer (2-2 in FIG. 4) made of one or more of carbonitrides, an epitaxial relationship with the non-oxide film 3 serving as a base can be easily obtained. A high adhesion is obtained between the layer 3 and the bonding layer 2, and a layer formed by continuously adding an oxidizing gas (2 in FIG. 4).
-1) Oxide film 1 mainly composed of α-type aluminum oxide
The feature of the manufacturing method according to the present invention is that an epitaxial relationship is easily obtained between the bonding layer 2 and the bonding layer 2 and the oxide film 1 and high adhesion is obtained. Coated tools can be manufactured. At this time, the amount of the oxidizing gas added in the middle to continuously form the film in the bonding layer is 0.1 to 5 vol% of the total gas flow rate.
Needs to be When the amount of the oxidizing gas is less than 0.1 vol%, the amount of oxygen on the surface of the bonding layer is small, so that κ-type aluminum oxide is easily formed on the bonding layer, and an oxide film mainly composed of α-type aluminum oxide can be stably formed. 5 vol%
Proceeds oxidation coupling layer exceeds the excessive Ti 2 O 3, Ti
Since a large amount of 3 O 5 , TiO 2 or the like is formed, the mechanical strength of the bonding layer itself is reduced, and a defect that an oxide film mainly composed of α-type aluminum oxide is easily peeled in the bonding layer occurs. Also,
When the film formation temperature is lower than 950 ° C., a dense bonding layer cannot be formed and the film is liable to peel off. When the temperature exceeds 1020 ° C., the crystal grains of the bonding layer are coarse and oxidization proceeds excessively, and the film is liable to peel. Further, in the film formation of the α-type aluminum oxide of the present invention, an oxide film can be formed by using a gas such as AlCl 3 , H 2 , CO 2 , H 2 S, and it is necessary to use SO 2 gas having high toxicity and corrosiveness. And the amount of CO 2 gas is the normal flow rate 2
Since the film can be formed at 0 vol% or less, an oxide film mainly composed of α-type aluminum oxide can be stably formed.

【0020】本発明のα型酸化アルミニウムを主とする
酸化膜は、必ずしも最外層である必要はなく、α型酸化
アルミニウムを主とする酸化膜の上に更に少なくとも一
層のチタン化合物(例えばTiN層等。)を被覆しても
良い。
The oxide film mainly composed of α-type aluminum oxide of the present invention is not necessarily required to be the outermost layer, and at least one titanium compound (for example, a TiN layer) is formed on the oxide film mainly composed of α-type aluminum oxide. Etc.).

【0021】本発明における被覆方法には既知の成膜方
法を適用することが可能である。例えば、通常の化学蒸
着法(熱CVD)、プラズマを付加した化学蒸着法(P
ACVD)等を用いることができる。用途は切削工具に
限るものではなく、α型酸化アルミニウムを主とする酸
化膜を含む単層あるいは多層の硬質皮膜により被覆され
た耐摩耗材や金型、溶湯部品等でも良い。酸化膜はα型
酸化アルミニウム単相に限るものではなく、α型酸化ア
ルミニウムが主であれば、他の酸化物、例えばα型酸化
アルミニウムとκ型酸化アルミニウムとの混合膜やγ型
酸化アルミニウム、θ型酸化アルミニウム、δ型酸化ア
ルミニウム、χ型酸化アルミニウム等、他の酸化アルミ
ニウムとの混合膜あるいはα型酸化アルミニウムと酸化
ジルコニウム等他の酸化物との混合膜であっても同様の
効果が得られる。なお、本発明のα型酸化アルミニウム
を主とする酸化膜とは、80vol%以上のα型酸化ア
ルミニウムを含むものをいう。
A known film forming method can be applied to the coating method in the present invention. For example, a normal chemical vapor deposition method (thermal CVD) or a chemical vapor deposition method (P
ACVD) can be used. The application is not limited to cutting tools, but may be a wear-resistant material, a mold, a molten metal part or the like coated with a single-layer or multilayer hard film containing an oxide film mainly composed of α-type aluminum oxide. The oxide film is not limited to α-type aluminum oxide single phase, and if α-type aluminum oxide is mainly used, other oxides such as a mixed film of α-type aluminum oxide and κ-type aluminum oxide or γ-type aluminum oxide, The same effect can be obtained even with a mixed film of other aluminum oxides such as θ-type aluminum oxide, δ-type aluminum oxide, and χ-type aluminum oxide, or a mixed film of α-type aluminum oxide and other oxides such as zirconium oxide. Can be Note that the oxide film mainly containing α-type aluminum oxide of the present invention means a film containing 80 vol% or more of α-type aluminum oxide.

【0022】次に本発明による被覆工具を実施例によっ
て具体的に説明する。ただし、本発明はこれら実施例の
範囲に限定されるものでないことは言うまでもない。
Next, the coated tool according to the present invention will be specifically described with reference to examples. However, it goes without saying that the present invention is not limited to the scope of these examples.

【0023】(実施例1)WC72%,TiC8%,
(Ta,Nb)C11%,Co9%(%はいずれも重量
%を示す。)の組成よりなる切削工具用超硬基板をCV
D炉内にセットし、その表面に、化学蒸着法によりH2
キャリヤーガスとTiCl4ガスとN2ガスとを原料ガス
に用い0.3μm厚さのTiNを900℃でまず形成
し、次に、H2キャリヤーガスとTiCl4ガスとCH3
CNガスを原料ガスに用い6μm厚さのTiCN膜を9
00℃で成膜することにより非酸化膜(図4中の3)を
形成した後、950〜1020℃でH2キャリヤーガス
とTiCl4ガスとCH4ガスとをトータル2,200m
l/分を5〜30分間流してまず成膜し、そのまま連続
して本構成ガスに更に2.2〜110ml/分のCO2
ガスを追加して5〜30分間成膜することによりTiC
層とTiCO層とが薄く積層されたTiC/TiCO結
合層(図4中の2)を作製した。その後、続いてAl金
属小片を詰め350℃に保温した小筒中にH2ガスを流
量310ml/分とHClガス130ml/分とを流す
ことにより発生させたAlCl3ガスとH2ガス2l/分
とCO2ガス100ml/分とをCVD炉内に流し10
10〜1020℃で反応させることにより所定の厚さの
酸化アルミニウム膜(図4中の1)を成膜し本発明品を
作製した。酸化アルミニウム膜の成膜時にSO2ガスは
流さなかった。
(Example 1) WC 72%, TiC 8%,
A carbide substrate for a cutting tool having a composition of (Ta, Nb) C11%, Co9% (% indicates weight%) is CV
D furnace, and the surface was coated with H 2 by chemical vapor deposition.
Using a carrier gas, a TiCl 4 gas, and a N 2 gas as source gases, a 0.3 μm thick TiN is first formed at 900 ° C., and then a H 2 carrier gas, a TiCl 4 gas, and a CH 3 gas are formed.
Using a CN gas as a source gas, a 6 μm thick TiCN film
After forming a non-oxidized film (3 in FIG. 4) by forming the film at 00 ° C., a H 2 carrier gas, a TiCl 4 gas and a CH 4 gas are added at 950 to 1020 ° C. for a total of 2,200 m.
1 / min for 5 to 30 minutes to form a film first, and then continuously and further add 2.2 to 110 ml / min of CO 2
By adding a gas and forming a film for 5 to 30 minutes, TiC
A TiC / TiCO bonding layer (2 in FIG. 4) in which the layer and the TiCO layer were thinly laminated was prepared. Thereafter, AlCl 3 gas and H 2 gas 2 l / min were generated by flowing a H 2 gas at a flow rate of 310 ml / min and a HCl gas at 130 ml / min into a small cylinder packed with small pieces of Al metal and kept at 350 ° C. Flow 100 ml / min of CO 2 gas into the CVD furnace and
By reacting at 10 to 1020 ° C., an aluminum oxide film (1 in FIG. 4) having a predetermined thickness was formed to produce a product of the present invention. No SO 2 gas was supplied during the formation of the aluminum oxide film.

【0024】作製した膜のX線回折は理学電気(株)製
のX線回折装置(RU−300R)を用いて2θ−θ法
により2θが20〜90°の範囲内で測定した。X線源
にはKα1線のみを用い、装置に内蔵されたソフトによ
りKα2線とノイズとを除去して測定した。
The X-ray diffraction of the prepared film was measured using a X-ray diffractometer (RU-300R, manufactured by Rigaku Corporation) in the range of 20 to 90 ° by 2θ-θ method. Only the Kα1 ray was used as the X-ray source, and Kα2 ray and noise were removed by software built in the apparatus, and the measurement was performed.

【0025】実施例1において、TiC/TiCO結合
層まで成膜した後、AlCl3ガスとH2ガス2l/分と
CO2ガス100ml/分とを流し1020℃で酸化ア
ルミニウムを成膜したときの代表的な2つのX線回折測
定結果を図1、図2に示す。図中にはα−Al23のX
線ピークのみピーク面を表記し、他の形成化合物のピー
ク(例えばTiCN等。)のピーク名は表記していな
い。図1、2よりα(110)ピークが強く、α(01
2)やα(104)、α(030)等のピークは小さい
ことがわかる。図1の場合I(030)/I(104)
<1、I(012)/I(030)>1であり、図2の
場合I(030)/I(104)>1、I(012)/I
(030)>1となっている。同様に測定した実施例1
の本発明品のPR(110)とTC(012)およびI
(030)/I(104)、I(012)/I(030)
の評価結果を表1にまとめる。
In Example 1, after the film was formed up to the TiC / TiCO bonding layer, the aluminum oxide film was formed at 1020 ° C. by flowing AlCl 3 gas, H 2 gas 2 l / min and CO 2 gas 100 ml / min. FIGS. 1 and 2 show the results of two representative X-ray diffraction measurements. In the figure, X of α-Al 2 O 3 is shown.
Only the line peak is shown as a peak plane, and the peak names of other forming compound peaks (eg, TiCN) are not shown. 1 and 2, the α (110) peak is stronger and α (01)
It can be seen that peaks such as 2), α (104) and α (030) are small. In the case of FIG. 1, I (030) / I (104)
<1, I (012) / I (030)> 1, and in the case of FIG. 2, I (030) / I (104)> 1, I (012) / I
(030)> 1. Example 1 measured similarly
PR (110) and TC (012) and I
(030) / I (104), I (012) / I (030)
Table 1 summarizes the evaluation results.

【0026】[0026]

【表1】 [Table 1]

【0027】酸化アルミニウム膜の平均粒径は酸化アル
ミニウム膜表面を図6(a)に示す通り倍率5000倍
でSEM写真に撮り(写真上の倍率は5000×0.8
=4000倍)、この図6(a)に対応した図6(b)
の模式図に示すように寸法が70mm×85mmのSE
M写真上に上から16.5mm,35mm,52.5mm
の各位置に横方向に引いた直線と写真の対角線を結んだ
直線二本、計五本を引き、各直線内にある結晶粒の数か
ら次式により平均粒径を求めた。 平均粒径(μm)=(直線の総長さ(mm))/(直線
内の結晶粒の総数(ケ))×0.25 上記図6(a),図6(b)は上記平均粒径の測定の一
例を示したもので、直線の総長さは475mm、直線内
の結晶粒の総数は85ケであり、平均結晶粒径は1.4
μmであった。酸化アルミニウム膜表面の中心線平均面
粗さRaはVeeco Instrumens In
c.社製の触診型の表面粗さ計DEKTAK8000を
用いて測定長0.25mmで測定し、最大面粗さRma
xはLasertec(株)社製のレーザー顕微鏡1L
M11を用いて測定長18μmで測定した。その時の酸
化アルミニウム膜厚は表面粗さを測定した試料の破断面
を倍率5000倍でSEM写真に撮り測定した。上記測
定長18μmでRmaxを測定することにより異物等に
よる測定誤差を抑えアルミナ膜本来のRmaxを測定で
きた。これらの評価結果を表1にまとめる。
The average particle diameter of the aluminum oxide film was taken on a SEM photograph of the surface of the aluminum oxide film at a magnification of 5000 times as shown in FIG. 6A (magnification on the photograph was 5000 × 0.8).
= 4000 times), and FIG. 6B corresponding to FIG.
SE with dimensions of 70 mm x 85 mm as shown in the schematic diagram of
16.5mm, 35mm, 52.5mm from above on M-photo
A total of five lines were drawn by connecting a straight line drawn in the lateral direction to each position and a diagonal line of the photograph, and the average particle size was determined from the number of crystal grains in each straight line by the following formula. Average particle size (μm) = (total length of straight line (mm)) / (total number of crystal grains in straight line (q)) × 0.25 FIGS. 6 (a) and 6 (b) show the above average particle size. The total length of the straight line is 475 mm, the total number of crystal grains in the straight line is 85, and the average crystal grain size is 1.4.
μm. The center line average surface roughness Ra of the surface of the aluminum oxide film is Veeco Instruments Inc.
c. The maximum surface roughness Rma was measured with a measuring length of 0.25 mm using a palpation type surface roughness meter DEKTAK8000 manufactured by the company.
x is a laser microscope 1L manufactured by Lasertec Inc.
The measurement length was 18 μm using M11. The aluminum oxide film thickness at that time was measured by taking a fractured surface of the sample whose surface roughness was measured in a SEM photograph at a magnification of 5000 times. By measuring Rmax at the above measurement length of 18 μm, measurement errors due to foreign substances and the like were suppressed, and the original Rmax of the alumina film could be measured. Table 1 summarizes the results of these evaluations.

【0028】表1より本発明品はPR(110)が1以
上でありTC(012)は1.3以下であること、I
(030)/I(104)とI(012)/I(030)
とはPR(110)と相関が無くそれぞれ0.154〜
4.369と0.082〜11.693と値がばらつき
一貫性がないことがわかる。また、PR(110)が大
きくなるにつれて粒径/膜厚の比が若干大きくなってい
くことがわかる。また、表1より本発明品の平均粒径が
酸化膜の膜厚が2.5μm未満のときは2μm以下であ
り、膜厚が2.5μm以上のときは4μm以下であるこ
と、中心線平均面粗さRaは0.6μm以下であり、最
大面粗さRmaxは酸化膜の膜厚が2.5μm未満のと
きは2μm以下であり、膜厚が2.5μm以上のときの
Rmaxは3μm以下であることがわかる。
According to Table 1, the product of the present invention has PR (110) of 1 or more and TC (012) of 1.3 or less.
(030) / I (104) and I (012) / I (030)
Means that there is no correlation with PR (110)
It can be seen that the values vary from 4.369 to 0.082 to 11.693 and are not consistent. Also, it can be seen that the ratio of particle size / film thickness slightly increases as PR (110) increases. Also, from Table 1, the average particle size of the product of the present invention is 2 μm or less when the thickness of the oxide film is less than 2.5 μm, and 4 μm or less when the thickness is 2.5 μm or more. The surface roughness Ra is 0.6 μm or less, and the maximum surface roughness Rmax is 2 μm or less when the thickness of the oxide film is less than 2.5 μm, and Rmax is 3 μm or less when the thickness of the oxide film is 2.5 μm or more. It can be seen that it is.

【0029】(実施例2)上記実施例1の手順で、0.
3μm厚さのTiNを900℃で、6μm厚さのTiC
N膜を900℃で形成した後、TiC/TiCO結合層
を950〜1010℃で成膜した。次いで、AlCl3
ガスとH2ガス2l/分とCO2ガス100ml/分およ
びH2Sガス8ml/分とをCVD炉内に流し1010
℃で酸化アルミニウムを成膜し、その後、H2ガス4l
/分とTiCl4ガス50ml/分とN2ガス1.3l/
分を流し1010℃で窒化チタニウム膜を形成した時の
本発明品の代表的な3つのX線回折測定結果を図7、図
8、図9に示す。また、この実施例2による本発明品の
評価結果を表2にまとめる。
(Embodiment 2) In the procedure of the above-mentioned embodiment 1, the same procedure as that of the embodiment of FIG.
3 μm thick TiN at 900 ° C., 6 μm thick TiC
After forming the N film at 900C, a TiC / TiCO bonding layer was formed at 950-1010C. Then, AlCl 3
The gas, 2 l / min of H 2 gas, 100 ml / min of CO 2 gas and 8 ml / min of H 2 S gas were flowed into a CVD furnace and 1010
Film of aluminum oxide at 4 ° C. and then 4 l of H 2 gas
/ Min, 50 ml / min of TiCl 4 gas and 1.3 l / min of N 2 gas
7, 8 and 9 show the results of three representative X-ray diffraction measurements of the product of the present invention when a titanium nitride film was formed at 1010 ° C. by flowing the components. Table 2 summarizes the evaluation results of the product of the present invention according to Example 2.

【0030】[0030]

【表2】 [Table 2]

【0031】図7、8、9よりα(110)ピークが強
く、α(012)やα(104)、α(030)等のピ
ークは小さいことがわかる。この相対的に弱いα(01
2)、α(104)、α(030)ピークに関し、図7
の場合I(030)/I(104)<1、I(012)/
I(030)>1であり、図8の場合I(030)/I
(104)>1、I(012)/I(030)<1であ
り、図9の場合I(030)/I(104)>1、I
(012)/I(030)>1となっていることがわか
る。
7, 8, and 9, it can be seen that the peak of α (110) is strong and the peaks of α (012), α (104), α (030) are small. This relatively weak α (01
2), α (104) and α (030) peaks are shown in FIG.
In the case of I (030) / I (104) <1, I (012) /
I (030)> 1, and in the case of FIG. 8, I (030) / I
(104)> 1, I (012) / I (030) <1, and in the case of FIG. 9, I (030) / I (104)> 1, I
It can be seen that (012) / I (030)> 1.

【0032】表2よりH2Sガスを用いて酸化アルミニ
ウム膜を成膜した本発明品はPR(110)が1以上で
ありTC(012)は1.3以下であること、I(03
0)/I(104)とI(012)/I(030)とはP
R(110)と相関が無くそれぞれ0.059〜7.5
80,0.082〜63.060と値がばらつき一貫性
がないことがわかる。また、表2より本発明品の平均粒
径が酸化膜の膜厚が2.5μm未満のときは2μm以下
であり、かつ膜厚が2.5μm以上のときは4μm以下
であること、中心線平均面粗さRaは0.6μm以下で
あり、最大面粗さRmaxは酸化膜の膜厚が2.5μm
未満のときは2μm以下であり、かつ膜厚が2.5μm
以上のときは3μm以下であることがわかる。
According to Table 2, the product of the present invention in which an aluminum oxide film was formed using H 2 S gas had PR (110) of 1 or more and TC (012) of 1.3 or less, and I (03)
0) / I (104) and I (012) / I (030) are P
No correlation with R (110), 0.059-7.5 respectively
It can be seen that the values vary from 80, 0.082 to 63.060 and are not consistent. From Table 2, the average particle size of the product of the present invention is 2 μm or less when the thickness of the oxide film is less than 2.5 μm, and 4 μm or less when the thickness is 2.5 μm or more. The average surface roughness Ra is 0.6 μm or less, and the maximum surface roughness Rmax is such that the thickness of the oxide film is 2.5 μm.
Is less than 2 μm and the film thickness is 2.5 μm
In the above case, it is understood that it is 3 μm or less.

【0033】本発明品の表1中のα型酸化アルミニウム
を主とする酸化膜(図4中の1に対応。)及び結合層
(図4中の2に対応。)と非酸化膜(図4中の3に対
応。)近傍の破断面を電界放射型走査電子顕微鏡(FE
−SEM)で観察した写真を図10と図11に示す。図
10は倍率2万倍で、図11は5万倍で結合層付近を撮
影したものである。図10、図11を始めとする本発明
品の破断面のFE−SEM写真より、本発明品は、α型
酸化アルミニウムを主とする酸化膜と下地である非酸化
膜との間に厚さが100〜500nmで粒径が20〜1
60nmの結合層が形成されていることがわかる。図1
2は上記本発明品の結合層近傍の透過電子顕微鏡(TE
M)写真である。図中、非酸化膜であるTiCNの結晶
粒(図12中B4,B5はその一部)上に結合層(図1
2中B6,B7はその一部)が形成されその上にα型酸
化アルミニウムを主とする酸化膜が形成されている。図
3は図12のa部、即ち、α型酸化アルミニウムを主と
する酸化膜と結合層との界面近傍の格子像写真を示した
もので、写真の上方向から順に、α型酸化アルミニウム
を主とする酸化膜、α型酸化アルミニウムを主とする酸
化膜/結合層の界面、結合層が写っている。図3よりα
型酸化アルミニウムを主とする酸化膜と結合層との界面
において格子縞が連続していることがわかる。なお、図
3はα型酸化アルミニウムを主とする酸化膜/結合層の
界面がTEM写真面に垂直ではなく斜めに写っているも
のである。また、図12における結合層と下地の非酸化
膜との界面(図12中のb付近)を透過電子顕微鏡(T
EM)で同様に観測した結果、結合層と非酸化膜とは互
いにエピタキシャルの関係にあり、格子が連続的に成長
していることが確認された。図13は本発明品の表2中
の試料22について結合層とα型酸化アルミニウムを主
とする酸化膜との界面近傍を観察したものである。図1
3の上方向が酸化膜の上面方向で、図13の中央部に結
合層の格子面が見られ、その両側にα型酸化アルミニウ
ムを主とする酸化膜の格子面が見られる。結合層と図中
右側のα型酸化アルミニウムを主とする酸化膜の粒子及
び結合層と図中左側のα型酸化アルミニウムを主とする
酸化膜の粒子との両界面において格子縞が連続している
ことがわかる。なお、図13の左側の界面はα型酸化ア
ルミニウムを主とする酸化膜/結合層の界面がTEM写
真面に比較的垂直に写っているものである。
An oxide film (corresponding to 1 in FIG. 4), a binding layer (corresponding to 2 in FIG. 4) and a non-oxide film (corresponding to 2 in FIG. 4) mainly containing α-type aluminum oxide in Table 1 of the product of the present invention. (Corresponding to 3 out of 4.) The fracture surface in the vicinity was measured using a field emission scanning electron microscope (FE).
-SEM) are shown in FIGS. 10 and 11. FIG. 10 is an image of the vicinity of the binding layer at a magnification of 20,000, and FIG. From the FE-SEM photographs of the fracture surface of the product of the present invention including FIGS. 10 and 11, the product of the present invention has a thickness between the oxide film mainly composed of α-type aluminum oxide and the non-oxide film as the base. Is 100-500 nm and the particle size is 20-1.
It can be seen that a 60 nm bonding layer is formed. FIG.
2 is a transmission electron microscope (TE) near the bonding layer of the product of the present invention.
M) It is a photograph. In the figure, a bonding layer (FIG. 1) is formed on TiCN crystal grains (B4 and B5 in FIG.
2, B6 and B7 are partially formed), and an oxide film mainly composed of α-type aluminum oxide is formed thereon. FIG. 3 shows a lattice image photograph of the portion a in FIG. 12, that is, the vicinity of the interface between the oxide film mainly composed of α-type aluminum oxide and the bonding layer. The main oxide film, the interface of the oxide film / bonding layer mainly containing α-type aluminum oxide, and the bonding layer are shown. From FIG. 3, α
It can be seen that lattice fringes are continuous at the interface between the oxide film mainly composed of aluminum oxide and the bonding layer. In FIG. 3, the interface between the oxide film and the bonding layer mainly composed of α-type aluminum oxide is not perpendicular but obliquely shown on the TEM photograph surface. The interface between the bonding layer and the underlying non-oxide film (near b in FIG. 12) in FIG.
As a result of the same observation in (EM), it was confirmed that the bonding layer and the non-oxide film were in an epitaxial relationship with each other, and the lattice was continuously grown. FIG. 13 is an observation of the vicinity of the interface between the bonding layer and the oxide film mainly composed of α-type aluminum oxide for the sample 22 in Table 2 of the product of the present invention. FIG.
The upper direction of the oxide film 3 is the upper surface direction of the oxide film. The lattice plane of the coupling layer is seen in the center of FIG. 13, and the lattice plane of the oxide film mainly composed of α-type aluminum oxide is seen on both sides. The lattice fringes are continuous at both interfaces between the bonding layer and the particles of the oxide film mainly composed of α-type aluminum oxide on the right side of the figure and the interface between the bonding layer and the particles of oxide film mainly composed of α-type aluminum oxide on the left side of the figure. You can see that. The interface on the left side of FIG. 13 is an oxide film / bonding layer interface mainly composed of α-type aluminum oxide, which is relatively perpendicular to the TEM photograph surface.

【0034】次に、実施例1および実施例2の条件で製
作した本発明品の切削工具各5個を用いて、鋳物の被削
材を以下の条件で1時間連続切削した後にアルミナ膜の
剥離状況を倍率200倍の光学顕微鏡により観察し、評
価した。 被削材 FC25(HB230) 切削速度 300m/min 送り 0.3mm/rev 切り込み 2.0mm 水溶性切削油使用 この切削試験の結果、上記本発明品はいずれも1時間連
続切削後もアルミナ膜の剥離が見られず切削工具として
優れていること、また、PR(110)が1.5以上の
時は1.5時間連続切削後もアルミナ膜の剥離が見られ
ず更に優れていることが判明した。また、上記本発明品
の切削工具各5個を以下の条件で断続切削し、1,00
0回衝撃切削後に刃先先端の欠け状況を倍率50倍の実
体顕微鏡で観察し、評価した。 被削材 SCM材 切削条件 100 m/min 送り 0.3 mm/rev 切り込み 2.0 mm 切削試験後、上記本発明品はいずれも刃先に欠損不良を
発生すること無く使用でき、長寿命であった。また、P
R(110)が2以上で、中心線平均面粗さRaが0.
5μm以下の時は1,500回衝撃切削後にも刃先に欠
損不良を発生すること無く使用でき更に優れていること
が判明した。
Next, using a cutting tool of the present invention manufactured under the conditions of Examples 1 and 2, each of the five cutting tools of the present invention was used to continuously cut the cast workpiece for one hour under the following conditions. The state of peeling was observed and evaluated using an optical microscope with a magnification of 200 times. Work material FC25 (HB230) Cutting speed 300m / min Feed 0.3mm / rev Depth of cut 2.0mm Using water-soluble cutting oil As a result of this cutting test, all of the above-mentioned present invention products peel off the alumina film even after continuous cutting for 1 hour. No cutting was observed, and the cutting tool was excellent, and when PR (110) was 1.5 or more, the alumina film was not peeled even after continuous cutting for 1.5 hours. . In addition, each of the five cutting tools of the present invention was intermittently cut under the following conditions, and
After the zero-time impact cutting, the chipping state of the blade tip was observed and evaluated by a stereoscopic microscope with a magnification of 50 times. Work material SCM material Cutting conditions 100 m / min Feed 0.3 mm / rev Depth of cut 2.0 mm After the cutting test, any of the above-mentioned products of the present invention can be used without causing any defect in the cutting edge and have a long service life. Was. Also, P
R (110) is 2 or more, and the center line average surface roughness Ra is 0.5.
When the thickness is 5 μm or less, it can be used even after 1,500 times of impact cutting without causing any chipping defect on the cutting edge, and it is found that the cutting edge is more excellent.

【0035】(従来例1)結合層の作製方法の差異によ
るα型酸化アルミニウムを主とする酸化膜の諸特性及び
切削特性への影響を明らかにするために、本発明品と同
様にWC72%、TiC8%、(Ta、Nb)C11
%、Co9%(%はいずれも重量%を示す。)の組成よ
りなる切削工具用超硬基板の表面に0.3μm厚さのT
iN膜と6μm厚さのTiCN膜を形成した後、H2
ャリヤーガスとTiCl4ガスとCH4ガスを原料ガスに
用い1010℃で5〜30分間反応させTiC膜を成膜
した後、TiCl4ガスとCH4ガスとを止め、作製した
TiC膜上にH2キャリヤーガスとCO2ガスとを流して
1010℃で15分間TiC膜を酸化することにより結
合層を作製した。その後、実施例1と同一の条件で10
20℃でH2ガス、AlCl3ガスおよびCO2ガスによ
り所定の厚さの酸化アルミニウム膜を成膜した従来品を
作製した。
(Conventional Example 1) In order to clarify the influence on the various characteristics and the cutting characteristics of the oxide film mainly composed of α-type aluminum oxide due to the difference in the method of forming the bonding layer, WC 72% was used similarly to the product of the present invention. , TiC8%, (Ta, Nb) C11
%, Co 9% (% indicates weight%) on the surface of a carbide substrate for a cutting tool having a thickness of 0.3 μm.
After forming the iN film and 6μm thick TiCN film, after forming a TiC film of H 2 carrier gas and TiCl 4 gas and CH 4 gas are reacted for 5 to 30 minutes at 1010 ° C. using a raw material gas, TiCl 4 The gas and CH 4 gas were stopped, and a H 2 carrier gas and a CO 2 gas were allowed to flow on the produced TiC film to oxidize the TiC film at 1010 ° C. for 15 minutes to form a bonding layer. Then, 10 times under the same conditions as in Example 1.
A conventional product in which an aluminum oxide film having a predetermined thickness was formed at 20 ° C. using H 2 gas, AlCl 3 gas, and CO 2 gas.

【0036】上記従来例1において、結合層を作製した
後、1020℃でH2ガス、AlCl3ガスおよびCO2
ガスにより酸化アルミニウム膜を作製した従来品をX線
回析したところ、図14に示されるX線回析パターンが
得られた。図14の場合、α−Al23のX線回析ピー
ク強度は(116)、(104)、(012)、(11
3)の順に強く、(110)ピークは弱いことがわか
る。作製したこの従来例品において、上記実施例と同様
に測定したPR(110)、TC(012)、I(03
0)/I(104)、I(012)/I(030)、結晶
の平均粒径、中心線平均面粗さRa、最大面粗さRma
xを表3にまとめる。
In the above conventional example 1, after forming the bonding layer, H 2 gas, AlCl 3 gas and CO 2
X-ray diffraction of a conventional product in which an aluminum oxide film was produced with a gas yielded the X-ray diffraction pattern shown in FIG. In the case of FIG. 14, the X-ray diffraction peak intensities of α-Al 2 O 3 are (116), (104), (012), and (11).
It can be seen that the peak is stronger in the order of 3) and the (110) peak is weaker. In this manufactured conventional example, PR (110), TC (012), and I (03) were measured in the same manner as in the above example.
0) / I (104), I (012) / I (030), average grain size of crystal, center line average surface roughness Ra, maximum surface roughness Rma
x is summarized in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】表3より、この従来例のものはPR(11
0)が1未満であり、I(030)/I(104)とI
(012)/I(030)とは0.122〜1.302
と0.268〜3.044と1前後でばらつき、その平
均粒径は酸化膜の膜厚が2.5μm未満のときも2μm
を越えることがあり、膜厚が2.5μm以上のときは4
μmを越えることがあることがわかる。また、中心線平
均面粗さRaは膜厚が2.5μm以上の領域で0.6μ
mを越えており、最大面粗さRmaxも酸化膜の膜厚が
2.5μm未満でも2μmを越え、かつ膜厚が2.5μ
m以上では3μmを越えることがあることがわかる。
From Table 3, it can be seen that the conventional example has a PR (11
0) is less than 1 and I (030) / I (104) and I
(012) / I (030) means 0.122 to 1.302.
And 0.268 to 3.044, which is around 1, and the average particle size is 2 μm even when the thickness of the oxide film is less than 2.5 μm.
And when the film thickness is 2.5 μm or more, 4
It can be seen that it may exceed μm. The center line average surface roughness Ra is 0.6 μm in a region where the film thickness is 2.5 μm or more.
m, and the maximum surface roughness Rmax exceeds 2 μm even when the thickness of the oxide film is less than 2.5 μm, and the maximum thickness is 2.5 μm.
It can be seen that if m is more than m, it may exceed 3 μm.

【0039】(従来例2)また、従来例1と同様にして
結合層を作製した後、1010℃でAlCl3ガス、H2
ガス、CO2ガス、H2Sガスとにより所定の厚さの酸化
アルミニウム膜を成膜し、その後、H2ガス4l/分と
TiCl4ガス50ml/分とN2ガス1.3l/分を流
し1010℃で窒化チタニウム膜を形成した従来品の代
表的なX線回折結果を図15に示す。図15のα−Al
23の場合、X線回析のピーク強度は(012)、(0
24)、(116)、(030)の順に強く、(11
0)ピークは弱いことがわかる。この作製した従来例品
を、上記実施例と同一条件で測定したPR(110)、
TC(012)、I(030)/I(104)、I(0
12)/I(030)、結晶の平均粒径、中心線平均面
粗さRa、最大面粗さRmaxを表4にまとめる。
(Conventional Example 2) Also, after forming a bonding layer in the same manner as in Conventional Example 1, AlCl 3 gas, H 2
An aluminum oxide film having a predetermined thickness is formed with a gas, a CO 2 gas, and a H 2 S gas. Thereafter, 4 l / min of H 2 gas, 50 ml / min of TiCl 4 gas, and 1.3 l / min of N 2 gas are formed. FIG. 15 shows a typical X-ray diffraction result of a conventional product in which a titanium nitride film is formed at a flow rate of 1010 ° C. Α-Al in FIG.
In the case of 2 O 3 , the peak intensity of X-ray diffraction is (012), (0
24), (116), and (030) in this order.
0) It can be seen that the peak is weak. PR (110), which was measured under the same conditions as the above example,
TC (012), I (030) / I (104), I (0
12) / I (030), the average grain size of the crystal, the center line average surface roughness Ra, and the maximum surface roughness Rmax are summarized in Table 4.

【0040】[0040]

【表4】 [Table 4]

【0041】表4より、H2ガス、AlCl3ガス、CO
2ガスおよびH2Sガスとを用いて1010℃で酸化アル
ミニウム膜を成膜した従来例2のものはいずれもPR
(110)が1未満であり、I(030)/I(10
4)、I(012)/I(030)はそれぞれ0.28
9〜1.547と3.184〜7.836と1を越えて
いることもあることがわかる。
According to Table 4, H 2 gas, AlCl 3 gas, CO
Conventional Example 2 in which an aluminum oxide film was formed at 1010 ° C. using 2 gas and H 2 S gas was PR
(110) is less than 1 and I (030) / I (10
4), I (012) / I (030) are each 0.28
9 to 1.547 and 3.184 to 7.836.

【0042】上記従来例品の切削工具各5個を用いて上
記実施例と同一の連続切削テストを行った結果、従来例品
はいずれも10分間連続切削後にアルミナ膜の剥離が見
られた。また、上記従来例品の切削工具各5個を上記実
施例と同一条件で断続切削し、1,000回衝撃切削後
に刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察
した結果、いずれにも大きな欠けが発生しており、切削
工具として劣っていることが判明した。
As a result of performing the same continuous cutting test as that of the above-mentioned embodiment using five cutting tools of the above-mentioned conventional example, the alumina film was peeled off after 10 minutes of continuous cutting. In addition, each of the five cutting tools of the conventional example was intermittently cut under the same conditions as in the above example, and after 1,000 times of impact cutting, the chipping state of the tip of the cutting edge was observed with a stereoscopic microscope with a magnification of 50 times. Also showed large chipping, which proved to be inferior as a cutting tool.

【0043】以上より、酸化アルミニウム膜自体の成膜
方法は同一であっても結合層の作成方法を変化させるこ
とによりその上に成膜される酸化アルミニウム膜の諸特
性を制御出来ることがわかる。また、結合層はTiC/
TiCOに限るものではなく、TiN/TiNO、Ti
CN/TiCNOのいずれかまたはこれらを組み合わせ
た複数層でも上記実施例と同様の作用効果が得られた。
また、下地膜はTiCNに限るものではなく、結合層中
の非酸化膜(図4中の2ー2、例えばTiC/TiCO
結合層中のTiC)と同一物(TiC)でも上記実施例
と同様の作用効果が得られた。
From the above, it can be seen that even if the method of forming the aluminum oxide film itself is the same, various characteristics of the aluminum oxide film formed thereon can be controlled by changing the method of forming the bonding layer. The bonding layer is made of TiC /
Not limited to TiCO, TiN / TiNO, Ti
The same operation and effect as those of the above embodiment were obtained with any of CN / TiCNO or a plurality of layers in which these were combined.
The underlying film is not limited to TiCN, but may be a non-oxide film (2-2 in FIG. 4, for example, TiC / TiCO) in the bonding layer.
Even with the same material (TiC) as in the bonding layer (TiC), the same operation and effect as in the above-described embodiment were obtained.

【0044】[0044]

【発明の効果】上述のように、本発明品によれば、基体
表面に周期律表のIVa、Va、VIa族金属の炭化物、窒
化物、炭窒化物、酸化物、酸炭化物、酸窒化物および酸
炭窒化物のいずれか一種の単層皮膜または二種以上から
なる多層皮膜上に、X線回析の(110)面ピーク強度
が強い、すなわち(110)面配向が強いα型酸化アル
ミニウムを主とする酸化膜が形成されていることにより
膜の密着性が良く、機械特性の優れた長寿命の酸化アル
ミニウム被覆工具が実現できる。
As described above, according to the product of the present invention, carbides, nitrides, carbonitrides, oxides, oxycarbides, oxynitrides of metals belonging to groups IVa, Va and VIa of the periodic table are formed on the surface of the substrate. Α-type aluminum oxide having a strong (110) plane peak intensity of X-ray diffraction, that is, a strong (110) plane orientation, on a single-layer film of at least one of oxycarbonitride and oxycarbonitride. By forming an oxide film mainly composed of aluminum oxide, the adhesion of the film is good, and a long-life aluminum oxide-coated tool having excellent mechanical properties can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる酸化アルミニウム被覆工具のX
線回析パターンを示す図である。
FIG. 1 shows the X of the aluminum oxide coated tool according to the present invention.
It is a figure which shows a line diffraction pattern.

【図2】本発明に係わる酸化アルミニウム被覆工具のX
線回析パターンを示す図である。
FIG. 2 shows the X of the tool coated with aluminum oxide according to the present invention.
It is a figure which shows a line diffraction pattern.

【図3】本発明に係わる酸化アルミニウム被覆工具の結
晶の構造を示す写真である。
FIG. 3 is a photograph showing a crystal structure of an aluminum oxide-coated tool according to the present invention.

【図4】酸化アルミニウム被覆工具の膜構成を説明する
ための模式図である。
FIG. 4 is a schematic diagram for explaining a film configuration of an aluminum oxide-coated tool.

【図5】本発明に係わる酸化アルミニウム被覆工具の膜
界面の格子像を説明するための模式図である。
FIG. 5 is a schematic diagram for explaining a lattice image of a film interface of the aluminum oxide-coated tool according to the present invention.

【図6】酸化アルミニウム表面の結晶粒径の測定方法に
係わるSEM写真(a)、および粒径測定方法を示す模
式図(b)である。
FIGS. 6A and 6B are an SEM photograph (a) relating to a method for measuring the crystal grain size on the surface of aluminum oxide, and a schematic diagram (b) showing the method for measuring the grain size.

【図7】本発明に係わる酸化アルミニウム被覆工具のX
線回析パターンを示す図である。
FIG. 7 shows the X of the aluminum oxide coated tool according to the present invention.
It is a figure which shows a line diffraction pattern.

【図8】本発明に係わる酸化アルミニウム被覆工具のX
線回析パターンを示す図である。
FIG. 8 shows the X of the aluminum oxide-coated tool according to the present invention.
It is a figure which shows a line diffraction pattern.

【図9】本発明に係わる酸化アルミニウム被覆工具のX
線回析パターンを示す図である。
FIG. 9 shows X of the tool coated with aluminum oxide according to the present invention.
It is a figure which shows a line diffraction pattern.

【図10】本発明に係わる酸化アルミニウム被覆工具の
セラミック材料の組織写真である。
FIG. 10 is a structural photograph of the ceramic material of the aluminum oxide-coated tool according to the present invention.

【図11】本発明に係わる酸化アルミニウム被覆工具の
セラミック材料の組織写真である。
FIG. 11 is a structural photograph of a ceramic material of an aluminum oxide-coated tool according to the present invention.

【図12】本発明に係わる酸化アルミニウム被覆工具の
セラミック材料の組織写真である。
FIG. 12 is a structural photograph of a ceramic material of the aluminum oxide-coated tool according to the present invention.

【図13】本発明に係わる酸化アルミニウム被覆工具の
結晶構造を示す写真である。
FIG. 13 is a photograph showing a crystal structure of an aluminum oxide-coated tool according to the present invention.

【図14】従来材に係わる酸化アルミニウム被覆工具の
X線回析パターンを示す図である。
FIG. 14 is a diagram showing an X-ray diffraction pattern of a tool coated with aluminum oxide according to a conventional material.

【図15】従来材に係わる酸化アルミニウム被覆工具の
X線回析パターンを示す図である。
FIG. 15 is a view showing an X-ray diffraction pattern of a tool coated with aluminum oxide according to a conventional material.

【符号の簡単な説明】[Brief description of reference numerals]

1 酸化膜、2 結合層、3 非酸化膜(下地膜)。 1 oxide film, 2 bonding layer, 3 non-oxide film (underlying film).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 広志 千葉県成田市新泉13番地の2日立ツール株 式会社成田工場内 (72)発明者 島 順彦 千葉県成田市新泉13番地の2日立ツール株 式会社成田工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Ueda 13 Hitachi Tools Co., Ltd., 13-13 Shinsen, Narita City, Chiba Prefecture (72) Inventor Norihiko Shima Nobuhiko Shima 13 Hitachi Tools Co., Ltd., 13 Shinsen, Narita City, Chiba Prefecture Narita Plant

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基体表面に周期律表のIVa、Va、VIa
族金属の炭化物、窒化物、炭窒化物、酸化物、酸炭化
物、酸窒化物および酸炭窒化物のいずれか一種の単層皮
膜または二種以上からなる多層皮膜、並びに少なくとも
一層のα型酸化アルミニウムを主とする酸化膜が形成さ
れている酸化アルミニウム被覆工具において、前記酸化
膜のX線回析最強ピーク面が(110)面であることを
特徴とする酸化アルミニウム被覆工具。
1. The method according to claim 1, wherein the surface of the substrate is made of IVa, Va, VIa of the periodic table.
A single-layer coating or a multilayer coating composed of two or more of any one of a group III metal carbide, nitride, carbonitride, oxide, oxycarbide, oxynitride and oxycarbonitride, and at least one α-type oxidation An aluminum oxide-coated tool on which an oxide film mainly composed of aluminum is formed, wherein the strongest X-ray diffraction peak surface of the oxide film is a (110) plane.
【請求項2】 基体表面に周期律表のIVa、Va、VIa
族金属の炭化物、窒化物、炭窒化物、酸化物、酸炭化
物、酸窒化物および酸炭窒化物のいずれか1種の単層皮
膜または二種以上からなる多層皮膜、並びに少なくとも
一層のα型酸化アルミニウムを主とする酸化膜が形成さ
れている酸化アルミニウム被覆工具において、前記酸化
膜のX線回析の(110)面による等価ピーク強度PR
(110)が1以上であることを特徴とする酸化アルミ
ニウム被覆工具。
2. The substrate of the periodic table, IVa, Va, VIa,
Group 1 metal carbide, nitride, carbonitride, oxide, oxycarbide, oxynitride and oxycarbonitride any one single-layer coating or multilayer coating comprising two or more thereof, and at least one α-type coating In an aluminum oxide-coated tool on which an oxide film mainly composed of aluminum oxide is formed, the equivalent peak intensity PR by the (110) plane of the X-ray diffraction of the oxide film.
(110) is 1 or more, The aluminum oxide coating tool characterized by the above-mentioned.
【請求項3】 前記α型酸化アルミニウムを主とする酸
化膜の膜厚が2.5μm未満のときの酸化膜の平均粒径
が2μm以下であり、前記膜厚が2.5μm以上のとき
の平均粒径が4μm以下であることを特徴とする請求項
1又は請求項2に記載の酸化アルミニウム被覆工具。
3. The method according to claim 1, wherein when the thickness of the oxide film mainly composed of α-type aluminum oxide is less than 2.5 μm, the average particle size of the oxide film is 2 μm or less, and when the thickness is 2.5 μm or more. The aluminum oxide-coated tool according to claim 1 or 2, wherein the average particle size is 4 µm or less.
【請求項4】 前記α型酸化アルミニウムを主とする酸
化膜の中心線平均面粗さRaが0.6μm以下であるこ
とを特徴とする請求項1乃至請求項3のいずれかに記載
の酸化アルミニウム被覆工具。
4. The oxidation according to claim 1, wherein the oxide film mainly composed of α-type aluminum oxide has a center line average surface roughness Ra of 0.6 μm or less. Aluminum coated tool.
【請求項5】 前記α型酸化アルミニウムを主とする酸
化膜の膜厚が2.5μm未満のときのその酸化膜の最大
面粗さRmaxが2μm以下であり、前記膜厚が2.5
μm以上のときの最大面粗さRmaxが3μm以下であ
ることを特徴とする請求項1乃至請求項4のいずれかに
記載の酸化アルミニウム被覆工具。
5. When the thickness of the oxide film mainly composed of α-type aluminum oxide is less than 2.5 μm, the maximum surface roughness Rmax of the oxide film is 2 μm or less, and the thickness is 2.5 μm or less.
The aluminum oxide-coated tool according to any one of claims 1 to 4, wherein the maximum surface roughness Rmax at 3 m or more is 3 m or less.
【請求項6】 前記各膜間の密着性が高まるように、前
記α型酸化アルミニウムを主とする酸化膜の格子縞と結
合層の格子縞とが界面において連続していることを特徴
とする請求項1乃至請求項5のいずれかに記載の酸化ア
ルミニウム被覆工具。
6. The lattice fringes of the oxide film mainly composed of the α-type aluminum oxide and the lattice fringes of the coupling layer are continuous at the interface so that the adhesion between the films is enhanced. An aluminum oxide-coated tool according to any one of claims 1 to 5.
【請求項7】 前記α型酸化アルミニウムを主とする前
記酸化膜の表面にチタンの窒化膜が形成されていること
を特徴とする請求項1乃至請求項6のいずれかに記載の
酸化アルミニウム被覆工具。
7. The aluminum oxide coating according to claim 1, wherein a titanium nitride film is formed on a surface of the oxide film mainly composed of the α-type aluminum oxide. tool.
【請求項8】 周期律表のIVa、Va、VIa族金属の炭
化物、窒化物、炭窒化物の一種以上とFe、Ni、C
o、W、Mo、Crの一種以上とよりなる超硬質合金を
基体とすることを特徴とする請求項1乃至請求項7のい
ずれかに記載の酸化アルミニウム被覆工具。
8. A material selected from the group consisting of carbides, nitrides and carbonitrides of metals of groups IVa, Va and VIa of the periodic table and Fe, Ni, C
The aluminum oxide-coated tool according to any one of claims 1 to 7, wherein the base is a super-hard alloy comprising at least one of o, W, Mo, and Cr.
【請求項9】 周期律表のIVa、Va、VIa族金属の炭
化物、窒化物、炭窒化物のいずれか一種または二種以上
からなる非酸化膜層と、前記非酸化膜層の成膜時に用い
たガス構成を主として更に0.1〜5vol%の酸化性
ガスを加え成膜温度950〜1020℃で成膜した周期
律表のIVa、Va、VIa族金属の酸化物、酸炭化物、酸
窒化物および酸炭窒化物のいずれか一種または二種以上
からなる薄層との組み合わせからなる結合層を成膜し、
その上にα型酸化アルミニウムを主とする酸化膜を成膜
することを特徴とする酸化アルミニウム被覆工具の製造
方法。
9. A non-oxide film layer made of one or more of carbides, nitrides, and carbonitrides of metals belonging to groups IVa, Va and VIa of the periodic table, and The gas composition used is mainly 0.1 to 5 vol% oxidizing gas, and oxides, oxycarbides, and oxynitrides of metals of Group IVa, Va, and VIa of the periodic table formed at a film formation temperature of 950 to 1020 ° C. A bonding layer consisting of a combination of a thin layer consisting of one or more of a material and an oxycarbonitride,
A method for manufacturing an aluminum oxide-coated tool, comprising forming an oxide film mainly composed of α-type aluminum oxide thereon.
JP33494896A 1996-11-29 1996-11-29 Aluminum oxide coated tool and method of manufacturing the same Expired - Fee Related JP3560303B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33494896A JP3560303B2 (en) 1996-11-29 1996-11-29 Aluminum oxide coated tool and method of manufacturing the same
DE1997152644 DE19752644C2 (en) 1996-11-29 1997-11-27 Tool coated with alumina and manufacturing process therefor
SE9704370A SE521672C2 (en) 1996-11-29 1997-11-27 Aluminum-coated cutting tool and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33494896A JP3560303B2 (en) 1996-11-29 1996-11-29 Aluminum oxide coated tool and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001249788A Division JP3901477B2 (en) 2001-08-21 2001-08-21 Aluminum oxide coated tool

Publications (2)

Publication Number Publication Date
JPH10156606A true JPH10156606A (en) 1998-06-16
JP3560303B2 JP3560303B2 (en) 2004-09-02

Family

ID=18283033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33494896A Expired - Fee Related JP3560303B2 (en) 1996-11-29 1996-11-29 Aluminum oxide coated tool and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP3560303B2 (en)
DE (1) DE19752644C2 (en)
SE (1) SE521672C2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333103B1 (en) 1998-11-05 2001-12-25 Hitachi Metals, Ltd. Aluminum oxide-coated article
JP2006150506A (en) * 2004-11-29 2006-06-15 Kyocera Corp Surface coated member and cutting tool
US7736733B2 (en) 2004-03-12 2010-06-15 Sumitomo Electric Hardmetal Corp. Coated cutting tool
JP2010201575A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with excellent chipping resistance and wear resistance of hard coating layer
JP2011068960A (en) * 2009-09-28 2011-04-07 Kyocera Corp Surface-coated member
US8007929B2 (en) 2004-07-29 2011-08-30 Kyocera Corporation Surface coated cutting tool
WO2011105420A1 (en) * 2010-02-24 2011-09-01 京セラ株式会社 Cutting tool
CN102380629A (en) * 2010-09-01 2012-03-21 三菱综合材料株式会社 Surface-coated cutting tool with hard coating layer having excellent cutting resistance and wear resistance
WO2012153438A1 (en) 2011-05-10 2012-11-15 住友電工ハードメタル株式会社 Surface-coated cutting tool
JP2014166657A (en) * 2013-02-28 2014-09-11 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
US11014166B2 (en) 2018-01-26 2021-05-25 Tungaloy Corporation Coated cutting tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031907B2 (en) 1998-03-16 2000-04-10 日立ツール株式会社 Multilayer coating member
SE529023C2 (en) 2005-06-17 2007-04-10 Sandvik Intellectual Property Coated carbide cutter
KR101700700B1 (en) * 2011-08-29 2017-01-31 쿄세라 코포레이션 Cutting tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535866B2 (en) * 1987-02-10 1996-09-18 三菱マテリアル株式会社 Surface coated hard alloy cutting tool
JP2556101B2 (en) * 1988-07-15 1996-11-20 三菱マテリアル株式会社 Surface coated tungsten carbide based cemented carbide cutting tool
JP3136778B2 (en) * 1992-06-11 2001-02-19 三菱マテリアル株式会社 Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JPH0631053A (en) * 1992-07-20 1994-02-08 Ooizumi:Kk Replenishment control method for medal, coin or the like
SE501527C2 (en) * 1992-12-18 1995-03-06 Sandvik Ab Methods and articles when coating a cutting tool with an alumina layer
JP3236903B2 (en) * 1993-10-13 2001-12-10 三菱マテリアル株式会社 Surface coated cutting tool
US5652045A (en) * 1994-10-20 1997-07-29 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
SE514181C2 (en) * 1995-04-05 2001-01-15 Sandvik Ab Coated carbide inserts for milling cast iron

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333103B1 (en) 1998-11-05 2001-12-25 Hitachi Metals, Ltd. Aluminum oxide-coated article
US7736733B2 (en) 2004-03-12 2010-06-15 Sumitomo Electric Hardmetal Corp. Coated cutting tool
US8007929B2 (en) 2004-07-29 2011-08-30 Kyocera Corporation Surface coated cutting tool
JP2006150506A (en) * 2004-11-29 2006-06-15 Kyocera Corp Surface coated member and cutting tool
JP2010201575A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with excellent chipping resistance and wear resistance of hard coating layer
JP2011068960A (en) * 2009-09-28 2011-04-07 Kyocera Corp Surface-coated member
WO2011105420A1 (en) * 2010-02-24 2011-09-01 京セラ株式会社 Cutting tool
JP5414883B2 (en) * 2010-02-24 2014-02-12 京セラ株式会社 Cutting tools
CN102380629A (en) * 2010-09-01 2012-03-21 三菱综合材料株式会社 Surface-coated cutting tool with hard coating layer having excellent cutting resistance and wear resistance
WO2012153438A1 (en) 2011-05-10 2012-11-15 住友電工ハードメタル株式会社 Surface-coated cutting tool
US8968866B2 (en) 2011-05-10 2015-03-03 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2014166657A (en) * 2013-02-28 2014-09-11 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
US11014166B2 (en) 2018-01-26 2021-05-25 Tungaloy Corporation Coated cutting tool
DE102019200984B4 (en) 2018-01-26 2023-11-23 Tungaloy Corporation Coated cutting tool

Also Published As

Publication number Publication date
SE521672C2 (en) 2003-11-25
JP3560303B2 (en) 2004-09-02
DE19752644C2 (en) 2003-06-26
DE19752644A1 (en) 1998-06-10
SE9704370D0 (en) 1997-11-27
SE9704370L (en) 1998-05-30

Similar Documents

Publication Publication Date Title
JP3418066B2 (en) Alumina-coated tool and manufacturing method thereof
JP3678924B2 (en) Aluminum oxide coated tool
US8449992B2 (en) Surface-coated member and cutting tool
JP5715570B2 (en) Coated tool
JP4004133B2 (en) Titanium carbonitride coated tool
JP3560303B2 (en) Aluminum oxide coated tool and method of manufacturing the same
JP3901477B2 (en) Aluminum oxide coated tool
JP3808648B2 (en) Titanium carbonitride film coating tool
JP3962300B2 (en) Aluminum oxide coated tool
JP3678945B2 (en) Titanium carbonitride coated tool
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP2004148503A (en) Aluminum oxide coated tool
JP3544450B2 (en) Aluminum oxide coated tool
JP2002273607A (en) Multilayer coat tool
JPH11114704A (en) Titanium-carbide-covered tool
JP2005264194A (en) alpha-TYPE ALUMINUM OXIDE COATED MEMBER
JP3818961B2 (en) Aluminum oxide coated tools
JPH10263903A (en) Titanium carbide coating tool
JP2974285B2 (en) Manufacturing method of coated carbide tool
JP3347031B2 (en) Titanium carbide coated tool
JP3781006B2 (en) Aluminum oxide coated tools
JP2004148502A (en) Aluminum oxide coated tool
JP2004148504A (en) Aluminum oxide coated tool
JP2002205204A (en) Multilayer covering tool
JP2974284B2 (en) Manufacturing method of coated carbide tool

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees