JP2006150506A - Surface coated member and cutting tool - Google Patents

Surface coated member and cutting tool Download PDF

Info

Publication number
JP2006150506A
JP2006150506A JP2004344829A JP2004344829A JP2006150506A JP 2006150506 A JP2006150506 A JP 2006150506A JP 2004344829 A JP2004344829 A JP 2004344829A JP 2004344829 A JP2004344829 A JP 2004344829A JP 2006150506 A JP2006150506 A JP 2006150506A
Authority
JP
Japan
Prior art keywords
layer
covering member
surface covering
ticn
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004344829A
Other languages
Japanese (ja)
Other versions
JP4713137B2 (en
Inventor
Sakahito Tanibuchi
栄仁 谷渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004344829A priority Critical patent/JP4713137B2/en
Publication of JP2006150506A publication Critical patent/JP2006150506A/en
Application granted granted Critical
Publication of JP4713137B2 publication Critical patent/JP4713137B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated member high in hardness and toughness and excellent in defective resistance and abrasion resistance. <P>SOLUTION: This surface coated member 5 is furnished with a hard coating layer 4 having a part with at least an under layer 1, a connecting part 3 and an upper layer 2 sequentially and continuously laminated on a surface of a base body, and a tripe type contrast 3a can be observed on the connecting part 3 in a transmission electron microscope photograph for a cross-section of the hard coating layer 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、硬質被覆層を表面に被着形成した表面被覆部材に関し、中でも優れた耐チッピング性および耐欠損性を有する表面被覆切削工具に関する。   The present invention relates to a surface-coated member having a hard coating layer formed on a surface thereof, and more particularly to a surface-coated cutting tool having excellent chipping resistance and chipping resistance.

従来より、金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミックス等の基体の表面に、炭化チタン(TiC)層、窒化チタン(TiN)層、炭窒化チタン(TiCN)層および酸化アルミニウム(Al)層等の硬質被覆層を複数層被着形成した表面被覆切削工具が多用されている。 Conventionally, cutting tools widely used for metal cutting are titanium carbide (TiC) layers, titanium nitride (TiN) layers, titanium carbonitride (TiCN) layers on the surface of substrates such as cemented carbides, cermets, and ceramics. ) And a surface-coated cutting tool in which a plurality of hard coating layers such as an aluminum oxide (Al 2 O 3 ) layer are formed.

かかる表面被覆切削工具においては、最近の切削加工の高能率化に従って金属の重断続切削等の大きな衝撃が切刃にかかるような過酷な切削条件で使われるようになっており、従来の工具では硬質被覆層が突発的に発生する大きな衝撃に耐えきれず、チッピングや硬質被覆層が剥離にて基体が露出してしまい、これが引き金となって切刃に大きな欠損や異常摩耗が発生して工具寿命の長寿命化ができないという問題があった。   In such surface-coated cutting tools, in accordance with recent high-efficiency cutting, heavy impacts such as heavy interrupted cutting of metals are used under severe cutting conditions where the cutting blade is applied. In conventional tools, The hard coating layer cannot withstand the large impacts that occur suddenly, and the base is exposed due to chipping or peeling of the hard coating layer, which triggers a large chipping or abnormal wear on the cutting edge. There was a problem that the life could not be extended.

そこで、特許文献1には、下部層(TiCN層)上に結合部(強化層)を配して上部層(Al層)を積層した構造において、強化層とAl層間に所定の凹凸をつけることによってAl層の剥離を抑制できることが記載されている。 Therefore, in Patent Document 1, in a structure in which a bonding portion (strengthening layer) is arranged on a lower layer (TiCN layer) and an upper layer (Al 2 O 3 layer) is laminated, the reinforcing layer and the Al 2 O 3 layer are interposed. It is described that peeling of the Al 2 O 3 layer can be suppressed by applying predetermined irregularities.

また、特許文献2では、下部層(TiCN層)と結合部と上部層(Al層)の格子縞が連続する、さらにはエピタキシャルの関係であることにより、TiCN層−Al層間の密着性が高く機械強度に優れたAl層を作製できることが記載されている。
特開平11−229144号公報 特開平10−156606号公報
Further, in Patent Document 2, the lattice pattern of the lower layer (TiCN layer), the coupling portion, and the upper layer (Al 2 O 3 layer) is continuous, and further has an epitaxial relationship, so that the TiCN layer-Al 2 O 3 layer It is described that an Al 2 O 3 layer having high adhesiveness and excellent mechanical strength can be produced.
Japanese Patent Laid-Open No. 11-229144 JP-A-10-156606

しかしながら、上記特許文献1に記載された硬質被覆層の構成によっても、重断続切削等の突発的に大きな衝撃がかかるような切削においては硬質被覆層が衝撃に耐えきれずに被覆層内に大きなクラックが発生してしまい、切刃のチッピングによる異常摩耗や突発欠損等が発生して工具寿命が短くなっていた。また、鋼等の切削においても更なる耐欠損性および耐摩耗性の向上が求められていた。   However, even with the configuration of the hard coating layer described in Patent Document 1, the hard coating layer cannot withstand the impact and is large in the coating layer in cutting where a sudden large impact such as heavy interrupted cutting is applied. Cracks occurred, abnormal wear due to chipping of the cutting edge, sudden breakage, etc., and tool life was shortened. Further, even when cutting steel or the like, further improvement in fracture resistance and wear resistance has been demanded.

また、特許文献2のように下部層(TiCN層)−上部層(Al層)間がエピタキシャルの関係にある硬質層では、層間の密着性は向上するものの大きな衝撃に対する耐久性は低下してしまうという問題があった。 In addition, in a hard layer having an epitaxial relationship between the lower layer (TiCN layer) and the upper layer (Al 2 O 3 layer) as in Patent Document 2, the adhesion between layers is improved, but the durability against a large impact is reduced. There was a problem of doing.

従って、本発明は上記課題を解決するためになされたもので、その目的は、衝撃に対する耐久性を高めて、チッピングや欠損が発生することなく優れた耐チッピング性および耐欠損性を有するとともに、耐摩耗性にも優れる長寿命の切削工具等の表面被覆部材を提供することにある。   Therefore, the present invention has been made to solve the above-mentioned problems, and its purpose is to increase durability against impact, and has excellent chipping resistance and chipping resistance without occurrence of chipping or chipping, An object of the present invention is to provide a surface covering member such as a long-life cutting tool having excellent wear resistance.

本発明者は、上記課題に対して検討した結果、基体の表面に、3層以上の多層膜を積層した構造の硬質被覆層において、下部層と上部層との間の結合部の少なくとも一部にストライプ状のコントラスト(以下、ストライプ構造と略す。)を持つ構造とすることによって、加工時に硬質被覆層の表面から衝撃がかかっても上記結合部がその衝撃を吸収することができる結果、部材の耐欠損性が向上することを知見した。   As a result of studying the above problems, the present inventor has found that at least a part of the joint between the lower layer and the upper layer in the hard coating layer having a structure in which three or more multilayer films are laminated on the surface of the substrate. As a result of having a structure having a stripe-like contrast (hereinafter abbreviated as a stripe structure), the joint can absorb the impact even if an impact is applied from the surface of the hard coating layer during processing. It was found that the fracture resistance of the steel was improved.

すなわち、本発明の表面被覆部材は、基体の表面に、少なくとも下部層と、結合部と、上部層とを順次続けて積層した部分を有する硬質被覆層を具備する表面被覆部材であって、前記硬質被覆層の断面についての透過型電子顕微鏡写真において、前記結合部の少なくとも一部に前記基体表面に対して垂直な方向に延びたストライプ状のコントラストが観察されることを特徴とするものである。   That is, the surface coating member of the present invention is a surface coating member comprising a hard coating layer having a portion in which at least a lower layer, a bonding portion, and an upper layer are sequentially laminated on the surface of the substrate, In a transmission electron micrograph of a cross section of the hard coating layer, stripe-like contrast extending in a direction perpendicular to the substrate surface is observed in at least a part of the coupling portion. .

ここで、前記結合部が前記下部層から前記上部層内に向かって伸びる突出粒子が点在した状態であることが、下部層−上部層間の層間密着性を高める上で望ましい。   Here, it is desirable that the bonding portion is in a state where projecting particles extending from the lower layer toward the upper layer are scattered in order to increase the interlayer adhesion between the lower layer and the upper layer.

また、前記突出粒子が、コランダム構造をなしていることが、耐衝撃性をさらに高めることができる点で望ましい。   In addition, it is desirable that the protruding particles have a corundum structure because the impact resistance can be further improved.

ここで、前記下部層が前記基板表面に対して垂直に成長した筋状晶からなるTiCN層であり、前記突出粒子が(TiAl1−v)C(x+y+z+w=1、0≦v≦1、0≦w≦1、0≦x≦1、0≦y≦1、0≦z≦1)であり、前記上部層がAl層であることが、高い耐摩耗性と高い耐欠損性を達成できる点で望ましい。 Here, the lower layer is a TiCN layer made of streaks grown perpendicularly to the substrate surface, and the protruding particles are (Ti v Al 1-v ) C x N y O z S w (x + y + z + w = 1, 0 ≦ v ≦ 1, 0 ≦ w ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1), and it is high that the upper layer is an Al 2 O 3 layer It is desirable in that it can achieve wear resistance and high fracture resistance.

さらに、前記筋状晶TiCN粒子の幅方向の平均粒径が100〜1000nmであり、かつ前記TiCxNyOz突出粒子の幅方向の平均粒径が5〜70nmであることが、層間密着性と耐衝撃性をバランスよく両立できる点で望ましい。   Furthermore, the average particle size in the width direction of the streaky TiCN particles is 100 to 1000 nm, and the average particle size in the width direction of the TiCxNyOz protruding particles is 5 to 70 nm. Is desirable in that both can be balanced.

また、前記結合部が膜厚0.1〜1μmの層状をなす層状結合部が存在することが、高い耐衝撃性を維持するために望ましい。   In addition, it is desirable for the joint portion to have a layered joint portion with a film thickness of 0.1 to 1 μm in order to maintain high impact resistance.

さらに、前記表面被覆部材の表面に硬質球を接触させた状態で該硬質球をころがすように回転させて前記表面被覆部材の前記硬質球接触部分を局所的に摩耗させて、中心に前記基体が露出するように前記硬質被覆層に球曲面の摩耗痕を形成させるカロテストを行い、前記摩耗痕を観察した際、前記上部層の前記結合部との界面から前記上部層の内部に向かってクラックが観察されることが耐衝撃性を高める点で望ましい。   Further, in a state where the hard sphere is in contact with the surface of the surface covering member, the hard sphere is rotated so as to roll to locally wear the hard sphere contact portion of the surface covering member, and the base body is centered. When performing a calotest to form a spherically curved wear mark on the hard coating layer so as to be exposed, and observing the wear mark, a crack is generated from the interface with the joint of the upper layer toward the inside of the upper layer. Observation is desirable in terms of enhancing impact resistance.

ここで、前記上部層が前記下部層の表面から剥離し始める剥離荷重をF、前記下部層が前記基体の表面から剥離し始める剥離荷重をFとしたとき、その比(F/F)が1.1〜30であることが、実用上必要な硬度を損なうことなく硬度と靭性、さらに耐摩耗性と耐欠損性とが向上する点で望ましい。 Here, when the peeling load upper layer begins to peel from the surface of the lower layer F U, the peeling load the lower layer begins to peel from the surface of the substrate was set to F L, the ratio (F L / F U ) is preferably from 1.1 to 30 in terms of improving hardness and toughness, and further improving wear resistance and fracture resistance without impairing practically necessary hardness.

さらに、上記構成からなる表面被覆部材は、摺動部品や金型等の耐摩部品、切削工具、掘削工具、刃物等の工具、耐衝撃部品等の各種用途へ応用可能である。すくい面と逃げ面との交差稜線部に形成された切刃を被切削物に当てて切削加工する切削工具として用いた場合には上述した優れた効果を発揮することができ、他の用途に用いた場合であっても優れた機械的信頼性を有するものである。   Furthermore, the surface covering member having the above-described configuration can be applied to various applications such as wear-resistant parts such as sliding parts and dies, cutting tools, excavation tools, tools such as blades, and impact-resistant parts. When used as a cutting tool that cuts the cutting edge formed at the intersection ridge line between the rake face and the flank surface against the workpiece, the above-mentioned excellent effects can be exhibited, and it can be used for other purposes. Even if it is used, it has excellent mechanical reliability.

本発明の表面被覆切削工具は、基体の表面に3層以上の多層膜を積層した構造の硬質被覆層において、下部層と上部層との間の層に衝撃に対する耐久性をより優れたものとすることができる結合層を配することによって、加工時に硬質被覆層の表面から衝撃がかかっても前記結合層のストライプ構造部分がその衝撃を吸収することができる結果、部材の耐欠損性が向上する。   The surface-coated cutting tool according to the present invention is a hard coating layer having a structure in which three or more multilayer films are laminated on the surface of a substrate, and has a higher durability against impact on the layer between the lower layer and the upper layer. By providing a bonding layer that can be applied, even if an impact is applied from the surface of the hard coating layer during processing, the stripe structure portion of the bonding layer can absorb the impact, resulting in improved fracture resistance of the member To do.

したがって、例えば、切削工具の用途の場合、耐欠損性が求められる加工においても層間のわずかな剥離やクラックの発生によって衝撃を吸収して、大きな剥離や被覆層全体のチッピングを防止できる。さらに、例え層間が剥離しても、残存する下部層の基体との密着力が高いことから摩耗や欠損の抑制に貢献して、被覆層全体として耐摩耗性および耐欠損性が高いものである。また、上部層と下部層の剥離荷重をさらに最適化することによって、耐摩耗性が要求される加工において被覆層が剥離することなく高い耐摩耗性を有するものとなる。   Therefore, for example, in the case of use of a cutting tool, even in processing where fracture resistance is required, impact can be absorbed by slight peeling between layers or generation of cracks, and large peeling or chipping of the entire coating layer can be prevented. Furthermore, even if the layers are peeled off, the adhesion of the remaining lower layer to the substrate is high, contributing to the suppression of wear and chipping, and the coating layer as a whole has high wear resistance and chipping resistance. . Further, by further optimizing the peeling load between the upper layer and the lower layer, the coating layer has high wear resistance without being peeled off in processing where wear resistance is required.

特に、ねずみ鋳鉄(FC材)やダクタイル鋳鉄(FCD材)のような高硬度黒鉛粒子が分散した鋳鉄等の金属の重断続切削等のような工具切刃に強い衝撃がかかる過酷な切削条件や、連続切削条件、さらにはこれら断続切削と連続切削とを組み合わせた複合切削条件において、例え突発的に大きな衝撃が硬質被覆層にかかったときであっても新たに大きなクラックが発生して硬質被覆層がチッピングしたり欠損したりすることなく衝撃を吸収できる結果、硬質被覆層全体のチッピングや剥離を防止できるとともに、硬質被覆層全体の耐摩耗性が維持される優れた耐チッピング性および耐欠損性を有する切削工具が得られる。もちろん、鋼の切削においても従来工具に対して耐欠損性および耐摩耗性に優れた工具となる。   In particular, severe cutting conditions such as heavy interrupted cutting of metal such as cast iron in which high-hardness graphite particles are dispersed such as gray cast iron (FC material) and ductile cast iron (FCD material) In continuous cutting conditions, and also in combined cutting conditions combining these intermittent cutting and continuous cutting, even if a sudden large impact is applied to the hard coating layer, a new large crack is generated and the hard coating As a result of the impact absorption without chipping or chipping of the layer, the chipping and peeling of the entire hard coating layer can be prevented, and the wear resistance of the entire hard coating layer is maintained. A cutting tool having properties can be obtained. Of course, even in steel cutting, the tool is superior in fracture resistance and wear resistance to conventional tools.

本発明の表面被覆部材は、基体11の表面に、少なくとも下部層1と、結合部3と、上部層2とを順次続けて積層した部分を有する硬質被覆層を具備し、前記硬質被覆層の断面の要部についての透過型電子顕微鏡(TEM)写真の一例である図1から明らかなように、下部層1と、上部層2との間に存在する結合部3内に積層欠陥に由来するストライプ状のコントラスト(ストライプ構造)3aが観察されることを特徴とするものである。   The surface covering member of the present invention comprises a hard covering layer having a portion in which at least the lower layer 1, the bonding portion 3, and the upper layer 2 are successively laminated on the surface of the base 11, As is apparent from FIG. 1 which is an example of a transmission electron microscope (TEM) photograph of the main part of the cross section, it originates from stacking faults in the joint 3 existing between the lower layer 1 and the upper layer 2. A stripe-shaped contrast (stripe structure) 3a is observed.

上記結合部3がTEM写真にてストライプ構造3aが観察される程多数の積層欠陥を含んでいることによって、加工時に硬質被覆層4の表面から衝撃がかかっても結合部3の積層欠陥部分がその衝撃を吸収することができる結果、表面被覆部材(以下、単に部材と略す。)5の耐欠損性が向上する。   Since the coupling portion 3 includes a large number of stacking faults such that the stripe structure 3a is observed in the TEM photograph, even if an impact is applied from the surface of the hard coating layer 4 during processing, As a result of being able to absorb the impact, the fracture resistance of the surface covering member (hereinafter simply referred to as “member”) 5 is improved.

ここで、結合部3が下部層1から上部層2内に向かって微細柱状晶の突出粒子6が点在したものであることが、下部層1−上部層2間の層間密着性を高める上で望ましい。なお、ストライプ構造3aの方向は、突出粒子6の突出方向に向かって平行となるように伸びていることが望ましく、つまり基体11の表面に平行とはならず、硬質被覆層4の表面に向かって伸びていることが衝撃を効果的に吸収できる点で望ましい。   Here, the bonding portion 3 is dotted with the protruding particles 6 of fine columnar crystals from the lower layer 1 into the upper layer 2 to improve the interlayer adhesion between the lower layer 1 and the upper layer 2. Is desirable. Note that the direction of the stripe structure 3a preferably extends so as to be parallel to the protruding direction of the protruding particles 6, that is, not parallel to the surface of the substrate 11, but toward the surface of the hard coating layer 4. It is desirable that it is stretched to effectively absorb the impact.

また、突出粒子6が、ストライプ構造3aの部分でc軸長の長いコランダム構造をなしていることが、耐衝撃性をさらに高めることができる点で望ましい。なお、上記ストライプ構造3aの構造は基本的にコランダム構造をなしているものが含まれ、例えばBaAlOx化合物と類似の結晶構造をなすものであってもよい。   In addition, it is desirable that the protruding particles 6 have a corundum structure having a long c-axis length in the stripe structure 3a in terms of further improving impact resistance. The structure of the stripe structure 3a basically includes a structure having a corundum structure. For example, the stripe structure 3a may have a crystal structure similar to a BaAlOx compound.

さらに、下部層1が基板(図1のTEM写真では観察されず。)表面に対して垂直に成長した筋状晶からなるTiCN層7であり、突出粒子6が(TiAl1−v)C(x+y+z+w=1、0≦v≦1、0≦w≦1、0≦x≦1、0≦y≦1、0≦z≦1)8であり、上部層2がAl層9であることが、高い耐摩耗性と高い耐欠損性を達成できる点で望ましい。 Furthermore, the lower layer 1 is a TiCN layer 7 made of streaks grown perpendicular to the surface of the substrate (not shown in the TEM photograph of FIG. 1), and the protruding particles 6 are (Ti v Al 1-v ). C x N y O z S w (x + y + z + w = 1, 0 ≦ v ≦ 1, 0 ≦ w ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1) 8 and upper layer 2 Is an Al 2 O 3 layer 9 from the viewpoint of achieving high wear resistance and high fracture resistance.

なお、結合部3は層状であってもよいが、上記のように層状構造部8に加えて突出粒子6が点在した構造からなることが衝撃によるクラックの進展等を防止してより耐衝撃性に優れる点で望ましい。また、結合部3が突出粒子6のみからなるものであってもよい。   The coupling portion 3 may be layered. However, as described above, the structure in which the protruding particles 6 are scattered in addition to the layered structure portion 8 prevents cracks due to impact and the like, and is more resistant to shock. It is desirable in terms of superiority. Further, the connecting portion 3 may be composed only of the protruding particles 6.

ここで、前記Al層9はα型結晶構造からなることが、構造的に安定で高温になっても優れた耐摩耗性を維持できる点で望ましい。従来ではα型結晶構造をもつAlは優れた耐摩耗性を持つが、核生成を行う際の粒径が大きいため、TiCN層7との接触面積が小さくなり、付着力が弱くなってしまい、膜剥離を起こしやすいという問題があった。しかし、上述した組織調整によってAl層9とTiCN層7との付着力を所定の範囲内に制御することができるため、Al層9をα型結晶構造としても十分な付着力を得ることができる。よって、α型結晶構造のAlの持つ、優れた耐摩耗性をAl層4の付着力を低下させることなく得ることができるため、部材5の寿命のより延命することができる。 Here, it is desirable that the Al 2 O 3 layer 9 has an α-type crystal structure because it is structurally stable and can maintain excellent wear resistance even at high temperatures. Conventionally, Al 2 O 3 having an α-type crystal structure has excellent wear resistance. However, since the particle size at the time of nucleation is large, the contact area with the TiCN layer 7 is reduced, and the adhesion is weakened. As a result, there is a problem that film peeling is likely to occur. However, it is possible to control the adhesion between the Al 2 O 3 layer 9 and the TiCN layer 7 by the organization adjusted as described above within a predetermined range, with even enough to the Al 2 O 3 layer 9 as α-type crystal structure It is possible to gain strength. Therefore, the excellent wear resistance of Al 2 O 3 having the α-type crystal structure can be obtained without reducing the adhesion of the Al 2 O 3 layer 4, so that the life of the member 5 can be further extended. it can.

なお、Al結晶の一部をα型結晶構造以外のκ型結晶構造として、すなわちAl層4の結晶構造をα型結晶構造とκ型結晶構造との混晶としてAl層9の付着力を調整することも可能である。また、Al層9をα型結晶構造とする場合には、結合部3の層状結合部8がTiC(x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)からなり、特にz≧0.1とすることが安定してα型結晶構造を成長させることができる点で望ましい。 Incidentally, Al 2 a part of Al 2 O 3 crystal as a κ-type crystal structure other than α-type crystal structure, i.e. the crystal structure of the Al 2 O 3 layer 4 as mixed crystals of α-type crystal structure and κ-type crystal structure It is also possible to adjust the adhesion of the O 3 layer 9. When the Al 2 O 3 layer 9 has an α-type crystal structure, the layered joint 8 of the joint 3 is TiC x N y O z (x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1). , 0 ≦ z ≦ 1), and in particular, z ≧ 0.1 is desirable in that the α-type crystal structure can be grown stably.

一方、基体11表面に対して垂直に伸びる筋状組織のTiCN粒子10とは、基体11との界面に対して垂直な方向の結晶長さ/平均結晶幅=アスペクト比が2以上の結晶組織を指す。また、図3に示すような硬質被覆層5の断面組織観察(図3は走査型電子顕微鏡(SEM)写真)にて、粒状TiCN結晶が30面積%以下の割合で混合した混晶であってもよい。   On the other hand, the TiCN particles 10 having a streak structure extending perpendicularly to the surface of the substrate 11 have a crystal structure in a direction perpendicular to the interface with the substrate 11 / average crystal width = a crystal structure having an aspect ratio of 2 or more. Point to. Moreover, in cross-sectional structure observation of the hard coating layer 5 as shown in FIG. 3 (FIG. 3 is a scanning electron microscope (SEM) photograph), it is a mixed crystal in which granular TiCN crystals are mixed at a ratio of 30 area% or less. Also good.

さらに、TiCN層7をなす筋状晶TiCN粒子10の幅方向の平均粒径wが0.1〜1μmであり、かつ突出粒子6の幅方向のコントラスト幅wが5〜70nmであることが、層間密着性と耐衝撃性をバランスよく両立できる点で望ましい。 Further, the average particle diameter w 1 in the width direction of the streaky TiCN particles 10 forming the TiCN layer 7 is 0.1 to 1 μm, and the contrast width w 2 in the width direction of the protruding particles 6 is 5 to 70 nm. However, it is desirable in terms of achieving a balance between interlayer adhesion and impact resistance.

なお、本発明において筋状結晶からなるTiCN粒子10の断面方向から見た平均結晶幅、および突出粒子の断面方向から見たストライプ幅を測定する方法としては、硬質被覆層3を含む断面について走査型電子顕微鏡(SEM)写真(図3)または透過型電子顕微鏡(TEM)写真(図1)より、各層において基体11と硬質被覆層4との界面と平行な直線を引き(図3の線分A、B参照)、この線分上にある各粒子の幅の平均値、すなわち線分長さに対する線分上を横切る粒界の数で割った値wとする。   In the present invention, as a method of measuring the average crystal width seen from the cross-sectional direction of the TiCN particles 10 made of streak-like crystals and the stripe width seen from the cross-sectional direction of the protruding particles, a cross section including the hard coating layer 3 is scanned. From the scanning electron microscope (SEM) photograph (FIG. 3) or the transmission electron microscope (TEM) photograph (FIG. 1), a straight line parallel to the interface between the substrate 11 and the hard coating layer 4 is drawn in each layer (the line segment in FIG. 3). A and B), the average value of the width of each particle on this line segment, that is, the value w divided by the number of grain boundaries crossing the line segment with respect to the line segment length.

また、結合部3の層状結合部8としては、TiCN、TiC、TiCO、TiNO、TiCNOの少なくとも1種にて構成され、2種以上であってもよい。さらに、結合部3の高さ領域(結合部3が突出粒子からなる場合には硬質被覆層3の高さ方向への平均粒径、結合部3が層状結合部8のみからなる場合にはその膜厚、両者を含む場合はそれらの総計)は0.1〜1μmであることが、高い耐衝撃性を維持するために望ましい。なお、層状結合部8が多層からなる場合、層状結合部8の膜厚は総膜厚が0.1〜1μmであることが望ましい。   The layered joint 8 of the joint 3 is composed of at least one of TiCN, TiC, TiCO, TiNO, and TiCNO, and may be two or more. Further, the height region of the joint portion 3 (when the joint portion 3 is made of protruding particles, the average particle diameter in the height direction of the hard coating layer 3, and when the joint portion 3 is made only of the layered joint portion 8, In order to maintain high impact resistance, it is desirable that the total thickness of the film thickness and the total when including both is 0.1 to 1 μm. In addition, when the layered coupling | bond part 8 consists of a multilayer, as for the film thickness of the layered coupling | bond part 8, it is desirable that the total film thickness is 0.1-1 micrometer.

さらに、図2に示すように、部材5の表面に硬質球12を接触させた状態で硬質球12をころがすように回転させて部材5の硬質球12接触部分を局所的に摩耗させて、中心に基体11が露出するように硬質被覆層5に球曲面の摩耗痕を形成させるカロテストを行い、このカロテストの摩耗痕観察において、上部層2の結合部3との界面から上部層2の内部に向かってクラックが観察されることが耐衝撃性を高める点で望ましい。   Further, as shown in FIG. 2, the hard sphere 12 is rotated so that the hard sphere 12 is rolled in a state where the hard sphere 12 is in contact with the surface of the member 5, and the hard sphere 12 contact portion of the member 5 is locally worn. Then, a calotest is performed to form a spherical curved wear mark on the hard coating layer 5 so that the base 11 is exposed. In the observation of the wear mark of this calotest, the upper layer 2 is connected to the inside of the upper layer 2 from the interface with the joint 3. From the viewpoint of improving the impact resistance, it is desirable that cracks are observed.

なお、露出した基体2の大きさが大きすぎたり、小さすぎたりすると、硬質被覆層4中のクラックを正確に観察することができない場合があるため、摩耗痕中に露出する基体11の直径が摩耗痕全体の直径の0.1倍〜0.6倍になるようにカロテストの摩耗条件(時間、硬質球の種類、研磨剤等)を調節するのがよい。   If the size of the exposed substrate 2 is too large or too small, cracks in the hard coating layer 4 may not be observed accurately, so the diameter of the substrate 11 exposed in the wear scar is small. It is preferable to adjust the wear conditions (time, type of hard sphere, abrasive, etc.) of the calo test so that the diameter of the entire wear scar is 0.1 to 0.6 times.

ここで、上部層2が下部層1の表面から剥離し始める剥離荷重をF、下部層1が基体11の表面から剥離し始める剥離荷重をFとしたとき、その比(F/F)が1.1〜30であることが、実用上必要な硬度を損なうことなく硬度と靭性、さらに耐摩耗性と耐欠損性とが向上する点で望ましい。 Here, when the upper layer 2 is a peel load begins to peel from the surface of the lower layer 1 F U, the peeling load lower layer 1 starts to peel from the surface of the substrate 11 was set to F L, the ratio (F L / F U ) is preferably from 1.1 to 30 in terms of improving hardness and toughness, and further improving wear resistance and fracture resistance without impairing practically necessary hardness.

また、部材5の基体11は、炭化タングステン(WC)と、所望により周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)等の鉄属金属からなる結合相にて結合させた超硬合金や、Ti基サーメット、またはSi、Al、ダイヤモンド、立方晶窒化ホウ素(cBN)等のセラミックスのいずれかが好適に使用でき、中でも切削工具として用いる場合には、超硬合金またはサーメットからなることが耐欠損性および耐摩耗性の点で望ましい。また、基体11としては用途によっては炭素鋼、高速度鋼、合金鋼等の金属からなるものであっても良い。 The base 11 of the member 5 is composed of tungsten carbide (WC) and, if desired, a hard phase comprising at least one selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals of the periodic table. Cemented carbide in which a binder phase composed of an iron group metal such as cobalt (Co) and / or nickel (Ni) is bonded, Ti-based cermet, Si 3 N 4 , Al 2 O 3 , diamond, cubic crystal Any of ceramics such as boron nitride (cBN) can be suitably used. Among them, when used as a cutting tool, it is desirable that it is made of cemented carbide or cermet in terms of fracture resistance and wear resistance. Further, the substrate 11 may be made of a metal such as carbon steel, high-speed steel, or alloy steel depending on the application.

さらに、TiCN層7と基体11との間、およびAl層9の上層に、TiN層、TiC層、TiCNO層、TiCO層、TiNO層の群から選ばれる少なくとも1層(他のTi系被覆層)を形成することが望ましい。ここで、TiCN層7と基体11との間に下地層として上記他のTi系被覆層を形成することによって、基体成分の拡散を抑制する効果およびTiCN層9の結晶構造を容易に制御できる効果がある。また、Al層9の表面に表層として上記他のTi系被覆層を形成することによって、被覆層表面の摺動性、外観等の調整が可能となる。 Further, at least one layer selected from the group consisting of a TiN layer, a TiC layer, a TiCNO layer, a TiCO layer, and a TiNO layer (other Ti-based layers) is provided between the TiCN layer 7 and the substrate 11 and on the Al 2 O 3 layer 9. It is desirable to form a coating layer. Here, by forming the other Ti-based coating layer as a base layer between the TiCN layer 7 and the substrate 11, the effect of suppressing the diffusion of the substrate component and the effect of easily controlling the crystal structure of the TiCN layer 9 There is. Further, by forming the other Ti-based coating layer as a surface layer on the surface of the Al 2 O 3 layer 9, it is possible to adjust the slidability, appearance, and the like of the coating layer surface.

この時、Al膜4の上層、すなわち硬質被覆膜3の表面にTiN層からなる表層16を形成することによって、工具が金色を呈するため、部材5を使用したときに表層16が摩耗して使用済みかどうかの判別がつきやすく、また、摩耗の進行を容易に確認できるため望ましい。さらには、表層12はTiN層に限定されるものではなく、摺動性を高めるためにDLC(ダイヤモンドライクカーボン)層やCrN層を形成する場合もある。表層16をなすTiN層の膜厚は1μm以下であることが望ましく、かかる表層16の剥離強度はAl膜9の剥離強度よりも低くなることが使用の有無を目視で確認しやすくなる点で望ましい。 At this time, by forming the surface layer 16 made of the TiN layer on the upper layer of the Al 2 O 3 film 4, that is, the surface of the hard coating film 3, the tool exhibits a gold color. It is desirable because it is easy to determine whether it has been worn and used, and the progress of wear can be easily confirmed. Furthermore, the surface layer 12 is not limited to a TiN layer, and a DLC (diamond-like carbon) layer or a CrN layer may be formed in order to improve slidability. The film thickness of the TiN layer constituting the surface layer 16 is preferably 1 μm or less, and the peel strength of the surface layer 16 is lower than the peel strength of the Al 2 O 3 film 9, which makes it easy to visually confirm whether or not it is used. Desirable in terms.

さらに、上記構成からなる表面被覆部材5は、摺動部品や金型等の耐摩部品、切削工具、掘削工具、刃物等の工具、耐衝撃部品等の各種用途へ応用可能である。切削工具として用いた場合には上述した優れた効果を発揮することができ、他の用途に用いた場合であっても優れた機械的信頼性を有するものである。   Furthermore, the surface covering member 5 having the above-described configuration can be applied to various uses such as sliding parts, wear-resistant parts such as dies, cutting tools, tools such as excavation tools, blades, and impact-resistant parts. When used as a cutting tool, the above-described excellent effects can be exhibited, and even when used for other purposes, it has excellent mechanical reliability.

(製造方法)
また、本発明の表面皮覆部材の一例である上述した表面被覆切削工具を製造する方法について説明する。
(Production method)
Moreover, the method to manufacture the surface covering cutting tool mentioned above which is an example of the surface covering member of this invention is demonstrated.

まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体2を作製する。そして、上記基体2の表面に所望によって研磨加工や切刃部のホーニング加工を施す。   First, metal powder, carbon powder, etc. are appropriately added to and mixed with inorganic powders such as metal carbides, nitrides, carbonitrides, and oxides that can be formed by firing the hard alloy described above, press molding, cast molding, After forming into a predetermined tool shape by a known forming method such as extrusion molding or cold isostatic pressing, the substrate 2 made of the above-described hard alloy is produced by firing in a vacuum or non-oxidizing atmosphere. . Then, the surface of the base 2 is subjected to polishing or honing of the cutting edge as desired.

なお、基体2の表面粗さは、被覆層の付着力を制御する点で、すくい面における算術平均粗さ(Ra)が0.1〜1.5μm、逃げ面における算術平均粗さ(Ra)が0.5〜3.0μmとなるように原料粉末の粒径、成形方法、焼成方法、加工方法を制御する。   The surface roughness of the substrate 2 is such that the arithmetic average roughness (Ra) on the rake face is 0.1 to 1.5 μm and the arithmetic average roughness (Ra) on the flank face is that the adhesion force of the coating layer is controlled. The particle size, the forming method, the firing method, and the processing method of the raw material powder are controlled so that the value becomes 0.5 to 3.0 μm.

次に、その表面に例えば化学気相蒸着(CVD)法によって被覆層5を成膜する。   Next, the coating layer 5 is formed on the surface by, for example, chemical vapor deposition (CVD).

まず、反応ガス組成として塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを10〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1000℃、10〜30kPaの条件で下地層であるTiN層を成膜する。 First, as a reaction gas composition, a mixed gas composed of 0.1 to 10% by volume of titanium chloride (TiCl 4 ) gas, 10 to 60% by volume of nitrogen (N 2 ) gas, and the balance of hydrogen (H 2 ) gas is prepared. Then, it is introduced into the reaction chamber, and a TiN layer as a base layer is formed in the chamber under conditions of 800 to 1000 ° C. and 10 to 30 kPa.

次に、反応ガス組成として、体積%で塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを0〜60体積%、アセトニトリル(CHCN)ガスを0.1〜0.4体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を780〜880℃、5〜25kPaにてTiCN層を成膜する。 Next, as a reaction gas composition, titanium chloride (TiCl 4 ) gas is 0.1 to 10% by volume, nitrogen (N 2 ) gas is 0 to 60% by volume, and acetonitrile (CH 3 CN) gas is 0.1% by volume. A mixed gas consisting of 1 to 0.4% by volume and the remainder consisting of hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber, and a TiCN layer is formed at a film formation temperature of 780 to 880 ° C. and 5 to 25 kPa. To do.

ここで、上記成膜条件のうち、反応ガス中のアセトニトリルガスの割合が0.1〜0.4体積%に調整することによって、TiCN層7中の筋状晶TiCN粒子10の組織を上述した範囲に確実に成長させることができる。また、上記成膜温度についても、780℃〜880℃とすることが、断面観察において微細な筋状晶をなすTiCN層7を形成できるために望ましい。   Here, the structure of the streak-like TiCN particles 10 in the TiCN layer 7 has been described above by adjusting the ratio of acetonitrile gas in the reaction gas to 0.1 to 0.4% by volume among the above film forming conditions. Can grow reliably to range. Also, the film forming temperature is preferably 780 ° C. to 880 ° C. because the TiCN layer 7 forming fine streaks can be formed in the cross-sectional observation.

なお、本実施形態例では、TiCN層の成膜前期(TiCN下部組織の成膜)に使用する反応ガス中のCHCNの割合よりもTiCN層の成膜後期(TiCN上部組織の成膜)に使用する反応ガス中のアセトニトリル(CHCN)ガスの混合割合を増やすことによって、TiCN下部組織よりもTiCN上部組織中のTiCN粒子の平均結晶幅を大きくする。具体的には、TiCN層の成膜前期に使用するアセトニトリルガスの導入割合に対してTiCN層の成膜後期時に導入するアセトニトリルガスの割合を1.5倍以上とすることにより確実な制御が可能である。 In this embodiment, the TiCN layer is formed late (TiCN superstructure) rather than the proportion of CH 3 CN in the reaction gas used in the first stage of TiCN film formation (TiCN substructure). By increasing the mixing ratio of acetonitrile (CH 3 CN) gas in the reaction gas used for the above, the average crystal width of TiCN particles in the TiCN upper structure is made larger than that in the TiCN lower structure. Specifically, reliable control is possible by setting the ratio of acetonitrile gas introduced at the later stage of TiCN layer deposition to 1.5 times or more of the ratio of acetonitrile gas introduced at the first stage of TiCN layer deposition. It is.

ここで、上記成膜条件のうち、筋状TiCN結晶の成長過程では、CHCN(アセトニトリル)ガスの割合Vを0.1〜3体積%に制御するとともに、キャリアガスであるHガスの割合VとCHCNガスの割合Vとの比(V/V)が0.03以下となるように低濃度に制御することによって、微細な核生成ができてTiCN層の付着力を向上させることができる。 Here, among the film forming conditions, in the growth process of the streak TiCN crystal, the CH 3 CN (acetonitrile) gas ratio V A is controlled to 0.1 to 3% by volume and the carrier gas H 2 gas is used. By controlling the concentration to be low so that the ratio (V A / V H ) of the ratio V H to the CH 3 CN gas ratio VA is 0.03 or less, fine nucleation can be achieved and the TiCN layer Adhesion can be improved.

また、TiCN層の上部組織を成膜する際は、反応ガス中のCHCNガス導入量を上述したように変えて、所望により成膜温度を調整することによって、TiCN結晶の平均結晶幅を所定の構成に制御することが可能である。 When forming the upper structure of the TiCN layer, the amount of CH 3 CN gas introduced into the reaction gas is changed as described above, and the film formation temperature is adjusted as desired, so that the average crystal width of the TiCN crystal is increased. It is possible to control to a predetermined configuration.

次いで結合部を成膜する。結合部11を成膜するには、塩化チタン(TiCl)ガスを0.1〜3体積%、メタン(CH)ガスを0.1〜10体積%、二酸化炭素(CO)ガスを0.1〜5体積%、窒素(N)ガスを0〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、5〜30kPaとする。この時、本実施態様によれば、結合部形成時点で成膜される基体11表面の温度が成膜される混合ガスの温度に比べて20〜80℃高くなるように成膜装置を調整することによって中間部中に所定のストライプ構造を導入することができる。 Next, a bonding portion is formed. In order to form the bonding part 11, titanium chloride (TiCl 4 ) gas is 0.1 to 3% by volume, methane (CH 4 ) gas is 0.1 to 10% by volume, and carbon dioxide (CO 2 ) gas is 0%. 0.1 to 5% by volume, nitrogen (N 2 ) gas in an amount of 0 to 60% by volume, and the remaining mixed gas consisting of hydrogen (H 2 ) gas was prepared and introduced into the reaction chamber. 5-30 kPa. At this time, according to this embodiment, the film forming apparatus is adjusted so that the temperature of the surface of the substrate 11 formed at the time of forming the coupling portion is 20 to 80 ° C. higher than the temperature of the mixed gas to be formed. Thus, a predetermined stripe structure can be introduced into the intermediate portion.

そして、引き続き、Al層4を成膜する。Al層4の成膜方法としては、塩化アルミニウム(AlCl)ガスを3〜20体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.01〜5.0体積%、硫化水素(HS)ガスを0〜0.5体積%、残りが水素(H)ガスからなる混合ガスを用い、950〜1100℃、5〜10kPaとすることが望ましい。 Subsequently, an Al 2 O 3 layer 4 is formed. As a method of forming the Al 2 O 3 layer 4, aluminum chloride (AlCl 3 ) gas is 3 to 20% by volume, hydrogen chloride (HCl) gas is 0.5 to 3.5% by volume, carbon dioxide (CO 2 ). Using a mixed gas composed of 0.01 to 5.0% by volume of gas, 0 to 0.5% by volume of hydrogen sulfide (H 2 S) gas, and the remainder of hydrogen (H 2 ) gas, 950 to 1100 ° C., 5 It is desirable to set it to 10 kPa.

また、表層(TiN層)12を成膜するには、反応ガス組成として塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを0〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、50〜85kPaとすればよい。 Further, in order to form the surface layer (TiN layer) 12, the reaction gas composition is 0.1 to 10% by volume of titanium chloride (TiCl 4 ) gas, 0 to 60% by volume of nitrogen (N 2 ) gas, and the rest A mixed gas composed of hydrogen (H 2 ) gas may be adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 800 to 1100 ° C. and 50 to 85 kPa.

このとき、上述した方法に加えて、上記化学蒸着法にて被覆層4を成膜した後700℃までのチャンバの冷却速度を12〜30℃/分に制御することによって、上部層5および下部層4の付着力を上述した所定の範囲に制御することができる。   At this time, in addition to the above-described method, the upper layer 5 and the lower layer 5 are formed by controlling the cooling rate of the chamber up to 700 ° C. to 12 to 30 ° C./min after forming the coating layer 4 by the chemical vapor deposition method. The adhesion force of the layer 4 can be controlled within the predetermined range described above.

そして、所望により、成膜した被覆層3表面の少なくとも切刃部を研磨加工する。この研磨加工により、切刃部における被覆層3中に残存する残留応力が開放されてさらに耐欠損性に優れた工具となる。   Then, if desired, at least the cutting edge portion on the surface of the formed coating layer 3 is polished. By this polishing process, the residual stress remaining in the coating layer 3 at the cutting edge portion is released, and the tool is further excellent in fracture resistance.

なお、本発明は上記実施態様に限定されるものではなく、例えば、被覆層の一部または全部を物理蒸着(PVD)法によって形成したものであってもよい。   In addition, this invention is not limited to the said embodiment, For example, one part or all part of the coating layer may be formed by the physical vapor deposition (PVD) method.

平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%、平均粒径2.0μmの炭化チタン(TiC)粉末を0.5質量%、TaC粉末を5質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMA120412)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラシ加工にてすくい面側について刃先処理(ホーニングR)を施した。得られた基体の逃げ面においてJISB0601−2001に準じた算術平均粗さ(Ra)は1.1μm、すくい面における算術平均粗さ(Ra)は0.4μmであった。   6% by mass of metallic cobalt (Co) powder with an average particle size of 1.2 μm and 0% of titanium carbide (TiC) powder with an average particle size of 2.0 μm with respect to tungsten carbide (WC) powder with an average particle size of 1.5 μm. .5% by mass, TaC powder was added and mixed at a rate of 5% by mass, formed into a cutting tool shape (CNMA120204) by press molding, and then subjected to binder removal treatment at 1500 ° C. in a vacuum of 0.01 Pa. A cemented carbide was prepared by firing for 1 hour. Further, the prepared cemented carbide was subjected to cutting edge processing (Honing R) on the rake face side by brushing. The arithmetic average roughness (Ra) according to JISB0601-2001 on the flank face of the obtained substrate was 1.1 μm, and the arithmetic average roughness (Ra) on the rake face was 0.4 μm.

次に、上記超硬合金に対して、CVD法により各種の被覆層を表1、表2に示す成膜条件および膜構成にて成膜した。そして、被覆層の表面をすくい面側から30秒間ブラシ加工して試料No.1〜7の表面被覆切削工具を作製した。なお、結合部を成膜する際の基体の温度は1020℃で一定とした。

Figure 2006150506
Next, various coating layers were formed on the cemented carbide by the CVD method under the film formation conditions and film configurations shown in Tables 1 and 2. Then, the surface of the coating layer was brushed for 30 seconds from the rake face side, and sample No. 1 to 7 surface-coated cutting tools were prepared. Note that the temperature of the substrate when forming the bonding portion was constant at 1020 ° C.
Figure 2006150506

得られた工具について、透過型電子顕微鏡(TEM)を用いて表2に記載する被覆層が観察できるように研磨加工して各層の断面方向からみたミクロな組織状態を観察し、結合部の状態、突出粒子の有無およびその幅等を観察した。また、被覆層の断面を含む任意破断面5ヵ所について走査型電子顕微鏡(SEM)写真を撮り、各写真おいてTiCN層、結合部、Al層の組織状態を観察し、写真5ヶ所についてそれぞれ算出した結晶幅の平均値を算出した。 About the obtained tool, it grind | polished so that the coating layer described in Table 2 could be observed using a transmission electron microscope (TEM), the micro structure state seen from the cross-sectional direction of each layer was observed, and the state of a joint part The presence or absence of protruding particles and the width thereof were observed. Also, a scanning electron microscope (SEM) photograph was taken at five arbitrary fractured surfaces including the cross section of the coating layer, and the structure of the TiCN layer, the bonding portion, and the Al 2 O 3 layer was observed in each photograph, and five photographs were taken. The average value of the crystal widths calculated for each was calculated.

また、上記表面被覆切削工具の硬質被覆層のクラック状態を、下記条件で行ったカロテスト試験によって生じた摩耗痕を金属顕微鏡またはSEMにて観察し、クラックの有無および進行方向をそれぞれ測定した。結果は表2に示した。   Moreover, the crack state of the hard coating layer of the said surface coating cutting tool was observed with the metal microscope or SEM for the abrasion trace produced by the Calotest test performed on the following conditions, and the presence or absence of a crack and the advancing direction were measured, respectively. The results are shown in Table 2.

装置:ナノテック社製CSEM−CALOTEST
鋼球
直径30mm球形鋼玉
ダイヤモンドペースト 1/4MICRON
さらに、摩耗痕中に露出する基体の直径が摩耗痕全体の直径に対して0.1〜0.6倍、(今回の測定では0.3〜0.7mm)となるように摩耗させた状態でクラックを観察した。
Equipment: CSEM-CALOTEST manufactured by Nanotech
Steel balls 30 mm diameter spherical steel balls Diamond paste 1/4 MICRON
Further, the substrate is exposed so that the diameter of the substrate exposed in the wear mark is 0.1 to 0.6 times the diameter of the entire wear mark (0.3 to 0.7 mm in this measurement). The cracks were observed.

また、硬質被覆層の付着力を、下記条件のスクラッチ試験によって測定した。結果は表2に示した。   Moreover, the adhesive force of the hard coating layer was measured by a scratch test under the following conditions. The results are shown in Table 2.

装置:ナノテック社製CSEM−REVETEST
測定条件
テーブルスピード:0.17mm/sec
荷重スピード100N/min
圧子
円錐形ダイヤモンド圧子(東京ダイヤモンド工具製作所社製ダイヤモンド接触子:N2−1487)
曲率半径:0.2mm
稜線角度:120°
結果は表2に示した。

Figure 2006150506
Apparatus: CSEM-REVETEST manufactured by Nanotech
Measurement conditions Table speed: 0.17 mm / sec
Load speed 100N / min
Indenter Conical diamond indenter (Diamond contactor manufactured by Tokyo Diamond Tool Mfg. Co., Ltd .: N2-1487)
Curvature radius: 0.2mm
Ridge angle: 120 °
The results are shown in Table 2.
Figure 2006150506

そして、この切削工具を用いて下記の条件により、連続切削試験および断続切削試験を行い、耐摩耗性および耐欠損性を評価した。   Then, using this cutting tool, a continuous cutting test and an intermittent cutting test were performed under the following conditions to evaluate the wear resistance and fracture resistance.

(連続切削条件)
被削材 :ダクタイル鋳鉄4本溝付スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:250m/分
送り速度:0.4mm/rev
切り込み:2.5mm
切削時間:25分
その他 :水溶性切削液使用
評価項目:顕微鏡にて切刃を観察し、フランク摩耗量・先端摩耗量を測定
(断続切削条件)
被削材 :ダクタイル鋳鉄4本溝付スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:250m/分
送り速度:0.3〜0.5mm/rev
切り込み:2.5mm
その他 :水溶性切削液使用
評価項目:欠損に至る衝撃回数
衝撃回数1200回時点で顕微鏡にて切刃の被覆層の剥離状態を観察
結果は表3に示した。

Figure 2006150506
(Continuous cutting conditions)
Work material: Ductile cast iron 4-slot sleeve material (FCD700)
Tool shape: CNMA120204
Cutting speed: 250 m / min Feed speed: 0.4 mm / rev
Cutting depth: 2.5mm
Cutting time: 25 minutes Others: Use of water-soluble cutting fluid Evaluation item: Observe the cutting edge with a microscope and measure the amount of flank wear and tip wear (intermittent cutting conditions)
Work material: Ductile cast iron 4-slot sleeve material (FCD700)
Tool shape: CNMA120204
Cutting speed: 250 m / min Feeding speed: 0.3 to 0.5 mm / rev
Cutting depth: 2.5mm
Other: Use of water-soluble cutting fluid Evaluation item: Number of impacts leading to breakage
Table 3 shows the results of observing the peeling state of the coating layer of the cutting edge with a microscope at the time of impact of 1200 times.
Figure 2006150506

表1〜3より、結合部中に格子欠陥がない試料No.5、6ではチッピングが発生して耐欠損性に劣るものであった。   From Tables 1 to 3, sample no. In Nos. 5 and 6, chipping occurred and the chipping resistance was poor.

これに対して、本発明に従い、結合部中に格子欠陥が存在する試料1〜4では、連続切削においても断続切削においても長寿命であり、耐欠損性および耐チッピング性とも優れた切削性能を有するものであった。   On the other hand, according to the present invention, Samples 1 to 4 in which lattice defects exist in the joint portion have a long life both in continuous cutting and intermittent cutting, and have excellent cutting performance in both chipping resistance and chipping resistance. I had it.

本発明の表面被覆部材の硬質被覆層の要部についての透過型電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph about the principal part of the hard coating layer of the surface coating member of this invention. 本発明の表面被覆部材について評価するカロテストの模式図である。It is a schematic diagram of the Calotest evaluated about the surface covering member of this invention. 図1の表面被覆部材の硬質被覆層の要部についての走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph about the principal part of the hard coating layer of the surface coating member of FIG.

符号の説明Explanation of symbols

1 下部層
2 上部層
3 結合部
3a ストライプ構造
4 硬質被覆層
5 表面被覆部材(部材)
6 突出粒子
7 TiCN層
8 層状結合部
9 Al
10 筋状晶TiCN粒子
11 基体
12 硬質球
TiCN層の平均結晶幅
突出粒子の平均ストライプ幅
15 下地層
16 表層
DESCRIPTION OF SYMBOLS 1 Lower layer 2 Upper layer 3 Joint part 3a Stripe structure 4 Hard coating layer 5 Surface coating member (member)
6 Protruding particles 7 TiCN layer 8 Layered joint 9 Al 2 O 3 layer 10 Streaked TiCN particles 11 Base 12 Hard sphere w 1 Average crystal width of TiCN layer w 2 Average stripe width of protruding particles 15 Underlayer 16 Surface layer

Claims (9)

基体の表面に、少なくとも下部層と、結合部と、上部層とを順次続けて積層した部分を有する硬質被覆層を具備する表面被覆部材であって、前記硬質被覆層の断面組織観察において、前記結合部の少なくとも一部にストライプ状のコントラストを有する表面被覆部材。 A surface coating member comprising a hard coating layer having a portion in which at least a lower layer, a bonding portion, and an upper layer are sequentially laminated on the surface of a substrate, and in the cross-sectional structure observation of the hard coating layer, A surface covering member having a stripe-like contrast in at least a part of a coupling portion. 前記結合部の前記ストライプ状のコントラストを有する部分が、前記下部層から前記上部層内に向かって伸びる突出粒子内で観察されるとともに、該突出粒子が点在した状態である請求項1記載の表面被覆部材。 The portion having the stripe-like contrast of the coupling portion is observed in protruding particles extending from the lower layer toward the upper layer, and the protruding particles are scattered. Surface covering member. 前記突出粒子がコランダム構造をなしている請求項2記載の表面被覆部材。 The surface covering member according to claim 2, wherein the protruding particles have a corundum structure. 前記下部層が前記基板表面に対して垂直に成長した筋状晶からなるTiCN層であり、前記突出粒子が(TiAl1−v)C(x+y+z+w=1、0≦v≦1、0≦w≦1、0≦x≦1、0≦y≦1、0≦z≦1)であり、前記上部層がAl層である請求項1乃至3のいずれか記載の表面被覆部材。 The lower layer is a TiCN layer made of streaks grown perpendicular to the substrate surface, and the protruding particles are (Ti v Al 1-v ) C x N y O z S w (x + y + z + w = 1, 0) 4... ≦ v ≦ 1, 0 ≦ w ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1), and the upper layer is an Al 2 O 3 layer. A surface covering member as described above. 前記筋状晶TiCN粒子の幅方向の平均粒径が0.1〜1μmであり、かつ前記突出粒子の幅方向の平均コントラスト幅が5〜70nmである請求項4記載の表面被覆部材。 The surface covering member according to claim 4, wherein an average particle size in the width direction of the streaky TiCN particles is 0.1 to 1 µm, and an average contrast width in the width direction of the protruding particles is 5 to 70 nm. 前記結合部が膜厚0.1〜1μmの層状をなす層状結合部と前記突出粒子とが順次積層された構成からなる請求項1乃至5のいずれか記載の表面被覆部材。 The surface covering member according to any one of claims 1 to 5, wherein the bonding portion has a configuration in which a layered bonding portion having a layer thickness of 0.1 to 1 µm and the protruding particles are sequentially laminated. 前記表面被覆部材の表面に硬質球を接触させた状態で該硬質球をころがすように回転させて前記表面被覆部材の前記硬質球接触部分を局所的に摩耗させて、中心に前記基体が露出するように前記硬質被覆層に球曲面の摩耗痕を形成させるカロテストを行い、前記摩耗痕を観察した際、前記上部層の前記結合部との界面から前記上部層の内部に向かってクラックが観察される請求項1乃至6のいずれか記載の表面被覆部材。 With the hard sphere in contact with the surface of the surface covering member, the hard sphere is rotated so as to roll to locally wear the hard sphere contact portion of the surface covering member, and the base body is exposed at the center. Thus, when performing a calotest to form a spherical curved wear mark on the hard coating layer and observing the wear mark, cracks are observed from the interface with the joint of the upper layer toward the inside of the upper layer. The surface covering member according to claim 1. 前記上部層が前記下部層の表面から剥離し始める剥離荷重をF、前記下部層が前記基体の表面から剥離し始める剥離荷重をFとしたとき、その比(F/F)が1.1〜30である請求項1乃至7のいずれか記載の表面被覆部材。 The upper layer is peeled off load the F U begins to peel from the surface of the lower layer, when the peeling load the lower layer begins to peel from the surface of the substrate was set to F L, the ratio (F L / F U) are It is 1.1-30, The surface covering member in any one of Claims 1 thru | or 7. 請求項1乃至8のいずれか記載の表面被覆部材を具備する切削工具。 A cutting tool comprising the surface covering member according to claim 1.
JP2004344829A 2004-11-29 2004-11-29 Surface covering member and cutting tool Active JP4713137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344829A JP4713137B2 (en) 2004-11-29 2004-11-29 Surface covering member and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344829A JP4713137B2 (en) 2004-11-29 2004-11-29 Surface covering member and cutting tool

Publications (2)

Publication Number Publication Date
JP2006150506A true JP2006150506A (en) 2006-06-15
JP4713137B2 JP4713137B2 (en) 2011-06-29

Family

ID=36629391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344829A Active JP4713137B2 (en) 2004-11-29 2004-11-29 Surface covering member and cutting tool

Country Status (1)

Country Link
JP (1) JP4713137B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049470A (en) * 2006-07-24 2008-03-06 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer showing superior chipping resistance
JP2008073821A (en) * 2006-09-22 2008-04-03 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2009166216A (en) * 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd Coated tool
JP2012157916A (en) * 2011-01-31 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool and its manufacturing method
JP2012157915A (en) * 2011-01-31 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156606A (en) * 1996-11-29 1998-06-16 Hitachi Metals Ltd Aluminum oxide coating tool and manufacture thereof
JP2000234172A (en) * 1998-12-09 2000-08-29 Seco Tools Ab Coated cemented carbide body and method for cutting cast iron using it
JP2004332004A (en) * 2003-04-30 2004-11-25 Kobe Steel Ltd Alumina protective film, and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156606A (en) * 1996-11-29 1998-06-16 Hitachi Metals Ltd Aluminum oxide coating tool and manufacture thereof
JP2000234172A (en) * 1998-12-09 2000-08-29 Seco Tools Ab Coated cemented carbide body and method for cutting cast iron using it
JP2004332004A (en) * 2003-04-30 2004-11-25 Kobe Steel Ltd Alumina protective film, and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010066316, 石井敏夫, 権田正幸, "「Ti(C,N)膜への結合膜とα−Al2O3膜のエピタキシャル成長機構の研究」", 日本金属学会誌, 200108, 第65巻 第8号, p714−719, JP, 日本金属学会 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049470A (en) * 2006-07-24 2008-03-06 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer showing superior chipping resistance
JP2008073821A (en) * 2006-09-22 2008-04-03 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2009166216A (en) * 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd Coated tool
JP2012157916A (en) * 2011-01-31 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool and its manufacturing method
JP2012157915A (en) * 2011-01-31 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool and its manufacturing method

Also Published As

Publication number Publication date
JP4713137B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4994367B2 (en) CUTTING TOOL, MANUFACTURING METHOD THEREOF, AND CUTTING METHOD
KR100983551B1 (en) Surface coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
JP4805819B2 (en) Surface covering member and cutting tool
JP5841170B2 (en) Coated tool
JP2006305714A (en) Surface coated cutting tool
JP5383259B2 (en) Cutting tools
JP4711714B2 (en) Surface coated cutting tool
JP2012144766A (en) Coated member
JP4711691B2 (en) Surface covering member and cutting tool
JP4942326B2 (en) Surface covering member and cutting tool using surface covering member
JP4713137B2 (en) Surface covering member and cutting tool
JP4284201B2 (en) Surface covering member and cutting tool
JP4351521B2 (en) Surface coated cutting tool
JP4360618B2 (en) Surface coated cutting tool
JP2006205300A (en) Surface-coated member and cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP6522985B2 (en) Coated tools
JP4284144B2 (en) Surface coated cutting tool
JP4593952B2 (en) Surface coated cutting tool
JP4593937B2 (en) Surface covering member and cutting tool
JP4936741B2 (en) Surface coating tools and cutting tools
JP4845490B2 (en) Surface coated cutting tool
JP2006123079A (en) Surface coated member and surface coated cutting tool
JP2005153099A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150