JPH1015648A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH1015648A
JPH1015648A JP17480896A JP17480896A JPH1015648A JP H1015648 A JPH1015648 A JP H1015648A JP 17480896 A JP17480896 A JP 17480896A JP 17480896 A JP17480896 A JP 17480896A JP H1015648 A JPH1015648 A JP H1015648A
Authority
JP
Japan
Prior art keywords
mold
molten steel
immersion nozzle
flow
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17480896A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
真 鈴木
Masayuki Nakada
正之 中田
Toshio Ishii
俊夫 石井
Noriko Kubo
典子 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17480896A priority Critical patent/JPH1015648A/en
Publication of JPH1015648A publication Critical patent/JPH1015648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the flow of molten steel in a mold and to improve the quality of a cast slab by using the mold having a specific rectangular cross sectional cavity and setting an immersion nozzle into a specific range from the inner wall of a short side. SOLUTION: The mold having the cavity of the rectangular cross section of >=0.8m width, is used and the immersion nozzle for continuous casting is set so as to shift from the center in the width direction of the mold, and a spouting hole is formed on the peripheral surface of this immersion nozzle so as to direct to the short side at the other side. The immersion nozzle 1 is set in the range within 300mm from the inside of the short side at the one side of the mold and an electromagnetic coil is set at long sides of the mold so as to position the range of the center of the electromagnetic coil in the casting direction from the spouting hole height to the height level of an intersection point of the center line of the spouting hole and the inner wall of the short side at the other side. A shifting magnetic field shifting the magnetic field to the width direction of the mold, is formed by conducting the current to this electromagnetic coil, and the electromagnetic force induced with this magnetic field, is acted to the molten steel spouting flow to control the spouting flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳型内の溶鋼流動
を適正化することにより、鋳片の表面および内部の品質
向上を図る鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel to improve the quality of the surface and inside of a slab by optimizing the flow of molten steel in a mold.

【0002】[0002]

【従来の技術】従来のスラブの連続鋳造方法において
は、鍋から受けた溶鋼を一時的に収容するタンディッシ
ュから、連続鋳造鋳型に溶鋼が注湯される。その際、注
湯には、図4に示すように、通常、鋳型内の溶鋼5中に
下端部が浸漬された耐火物製のノズル1が用いられてい
る。この浸漬ノズル1は、左右対称に鋳型短辺側の内壁
に向かって開口する2個もしくはそれ以上の溶鋼吐出孔
3をもつものであり、鋳型2のほぼ中央に設置されてい
る。
2. Description of the Related Art In a conventional continuous casting method of slab, molten steel is poured into a continuous casting mold from a tundish for temporarily storing molten steel received from a pot. At this time, as shown in FIG. 4, a refractory nozzle 1 whose lower end is immersed in molten steel 5 in a mold is usually used for pouring. The immersion nozzle 1 has two or more molten steel discharge holes 3 that open symmetrically toward the inner wall on the short side of the mold, and is installed substantially at the center of the mold 2.

【0003】浸漬ノズル1をこのような箇所に配置する
理由は、溶鋼吐出流が、鋳片内部深くまで侵入すること
を防止するとともに、溶鋼が左右にほぼ均等に流れて、
鋳片の品質にかたよりを生じないようにするためであ
る。
The reason for disposing the immersion nozzle 1 at such a location is to prevent the molten steel discharge flow from penetrating deep inside the slab, and to allow the molten steel to flow almost equally to the left and right.
This is to prevent the cast slab from being deflected.

【0004】しかしながら、浸漬ノズル1内における溶
鋼の流れは、注湯量を増減するためのスライディングゲ
ートの絞り方や、ノズル内壁へのアルミナの付着、さら
には、アルミナ付着防止のために吹き込んでいるアルゴ
ンガスなどの影響を受けて様々に変動する。これにより
吐出孔3から吐出される溶鋼の量や速度は、左右の吐出
孔3で必ずしも等しくない。このように左右吐出流のア
ンバランスが生じると、鋳型内溶鋼流動の左右での不均
一(偏流)を引き起こし、溶鋼メニスカス部(鋳型内の
溶鋼湯面)に縦渦流が生成され、湯面上のモールドパウ
ダー6を溶鋼中に巻き込むことがある。
However, the flow of molten steel in the immersion nozzle 1 depends on the way of narrowing the sliding gate to increase or decrease the amount of molten metal, the adhesion of alumina to the nozzle inner wall, and the argon blown to prevent the adhesion of alumina. It fluctuates variously under the influence of gas. Accordingly, the amount and speed of the molten steel discharged from the discharge holes 3 are not necessarily equal between the left and right discharge holes 3. When the left and right discharge flows are unbalanced as described above, the molten steel flow in the mold is caused to be non-uniform (drift) on the left and right sides, and a vertical vortex is generated in the molten steel meniscus portion (the molten steel surface in the mold). May be involved in molten steel.

【0005】また、その構成上、浸漬ノズル1は鋳型の
中心に正確に設置される必要がある。ノズル1が鋳型2
の中心からずれていると、仮に左右の吐出孔3からの溶
鋼吐出量が等しくても、鋳型内の溶鋼、とくにパウダー
巻き込みに重要なメニスカス部での溶鋼表面流速が、左
右で異なってしまい、渦流の発生等をひきおこし、モー
ルドパウダー6を巻き込む原因となる。
In addition, due to its structure, the immersion nozzle 1 needs to be accurately set at the center of the mold. Nozzle 1 is mold 2
If it is shifted from the center of the molten steel, even if the molten steel discharge amount from the left and right discharge holes 3 is equal, the molten steel surface flow velocity in the mold, particularly in the meniscus part important for powder entrainment, differs between the left and right, This may cause eddy currents and the like, causing the mold powder 6 to be involved.

【0006】これらの問題に対処するために、これまで
に浸漬ノズルを鋳型の短辺寄りに設置し、鋳型内の広く
あいた領域に向かって、溶鋼を注湯する方法が特開平3
−138053号公報に開示されている。
To cope with these problems, Japanese Patent Laid-Open Publication No. Hei 3 (1999) discloses a method in which an immersion nozzle is installed near the short side of a mold and molten steel is poured toward a wide area in the mold.
No. 138053.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
従来方法においては、鋳型内溶鋼流動の不安定性を完全
に防止することは難しく、製造されるすべての鋳片の品
質を十分に満足できるレベルにまで改善することはでき
ない。
However, in the above-mentioned conventional method, it is difficult to completely prevent the instability of the flow of molten steel in the mold, and the quality of all the slabs to be produced is at a level that can be sufficiently satisfied. Can not be improved until.

【0008】すなわち、ノズルを短辺寄りに配置し、鋳
型内の広くあいた領域に向かって溶鋼を注湯する方法で
は、図4に示すように鋳型幅方向中心に設けたノズルか
ら鋳型左右に向けて注湯する場合に生じる鋳型左右での
通常の偏流は抑制することができるが、溶鋼流動を適正
な状態に制御維持することは難しい。この理由は、鋳型
幅や鋳造速度などの条件が変わると、それに応じて鋳型
内で溶鋼流動は大幅に変わり、また、同一鋳造条件下で
あってもノズル内壁へのアルミナの付着などによって、
溶鋼の吐出流速や吐出角度は変わるからである。
That is, in the method of disposing the nozzle near the short side and pouring molten steel toward a wide area in the mold, as shown in FIG. Although the normal drift between the mold left and right, which occurs when pouring the molten steel, can be suppressed, it is difficult to control and maintain the molten steel flow in an appropriate state. The reason is that when the conditions such as the mold width and casting speed change, the molten steel flow changes significantly in the mold accordingly, and even under the same casting conditions, due to the adhesion of alumina to the nozzle inner wall, etc.
This is because the discharge flow rate and the discharge angle of the molten steel change.

【0009】また、従来方法では溶鋼の軌跡自体が左右
非対称であるため、凝固シェルの発達や介在物の分布等
が左右非対称になる。例えば、鋳型内で凝固シェルの発
達に鋳片幅方向での不均一があると、それは2次冷却等
によっても解消せず、最終凝固部の形状にまで影響し、
偏析などの品質面に悪影響を与える。また、鋳片幅方向
で凝固シェルの厚さや温度が異なると、歪みが生じて、
割れなどの欠陥の原因にもなる。
Further, in the conventional method, since the trajectory of the molten steel itself is left-right asymmetric, the development of the solidified shell and the distribution of inclusions are left-right asymmetric. For example, if the development of solidified shell in the mold has unevenness in the slab width direction, it will not be resolved even by secondary cooling etc., and will affect the shape of the final solidified part,
It has an adverse effect on quality, such as segregation. Also, if the thickness and temperature of the solidified shell differ in the slab width direction, distortion occurs,
It also causes cracks and other defects.

【0010】さらに、浸漬ノズルを短辺寄りに偏心させ
て設置しても、その位置が鋳型中心に近いと、ノズルの
吐出孔のある側と反対側の領域が広くあきすぎて、その
領域の溶鋼が停滞しがちとなり、溶鋼温度の低下および
モールドパウダーの溶融不良などを生じる。また、溶鋼
湯面の流れがほぼ完全な一方向流になり、ノズルの下流
側近傍には、パウダー巻き込みの原因となる縦渦が発生
しやすくなる。とくに、流速が大きい場合には、この現
象は顕著である。
Further, even if the immersion nozzle is installed eccentrically on the short side, if the position is close to the center of the mold, the area on the side opposite to the side where the nozzle has the discharge holes is too wide, and the area is Molten steel tends to stagnate, causing a drop in molten steel temperature and poor melting of mold powder. Further, the flow of the molten steel surface becomes almost completely unidirectional, and a vertical vortex which causes powder entrainment is likely to be generated near the downstream side of the nozzle. This phenomenon is particularly remarkable when the flow velocity is large.

【0011】本発明は、このような事情を鑑みてなされ
たものであり、鋳型内溶鋼流動の制御を安定化させると
ともに、鋳片品質の向上を実現することができる鋼の連
続鋳造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and provides a continuous casting method of steel capable of stabilizing the control of the flow of molten steel in a mold and realizing an improvement in slab quality. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】本発明に係る鋼の連続鋳
造方法は、幅0.8m以上の矩形断面のキャビティをも
つ鋳型を使用し、連続鋳造用浸漬ノズルを鋳型幅方向中
心からずらせて配置し、この浸漬ノズルの周面に他方側
の短辺に向くように吐出孔を形成し、この吐出孔を介し
て鋳型のキャビティに溶鋼を吐出させる鋼の連続鋳造方
法であって、浸漬ノズルを鋳型の一方側の短辺内壁から
300mmまでの領域に配置し、かつ、電磁コイルを、鋳
造方向での電磁コイルの中心が前記吐出孔の高さレベル
から、吐出孔中心線と他方側の短辺内壁との交点の高さ
レベルまでの領域に位置するように鋳型長辺側に配置
し、この電磁コイルに通電して鋳型幅方向に磁界が移動
する移動磁場を形成し、この磁場により誘起される電磁
力を溶鋼吐出流に作用させることにより吐出流を制動す
ることを特徴とする。
The continuous casting method for steel according to the present invention uses a mold having a cavity having a rectangular cross section having a width of 0.8 m or more, and the immersion nozzle for continuous casting is shifted from the center in the mold width direction. A continuous casting method of steel in which a discharge hole is formed on the peripheral surface of the immersion nozzle so as to face the short side on the other side, and molten steel is discharged into the cavity of the mold through the discharge hole. Is arranged in a region up to 300 mm from the short side inner wall of one side of the mold, and the electromagnetic coil is arranged such that the center of the electromagnetic coil in the casting direction is at the discharge line center line and the other side from the height level of the discharge hole. It is arranged on the long side of the mold so as to be located in the region up to the height level of the intersection with the inner wall of the short side, and a current is supplied to this electromagnetic coil to form a moving magnetic field in which the magnetic field moves in the width direction of the mold. The induced electromagnetic force is applied to the molten steel discharge flow. Characterized by braking the discharge flow by.

【0013】このような浸漬ノズル及び電磁コイルの設
置条件下で、キャビティ内の溶鋼流に移動磁場を印加す
ると、浸漬ノズルからの吐出流を必要に応じて減速又は
加速することができ、鋳型内で溶鋼流動を制御すること
ができる。
[0013] When a moving magnetic field is applied to the molten steel flow in the cavity under the installation conditions of the immersion nozzle and the electromagnetic coil, the discharge flow from the immersion nozzle can be decelerated or accelerated as necessary. Can control the flow of molten steel.

【0014】本発明の方法では、図1に示すように、ノ
ズル1に形成する吐出孔3をただ1つのみとし、ノズル
1の設置位置を鋳型2の中心ではなく、鋳型2の左右い
ずれか一方側の短辺から300mmまでの範囲とし、その
ノズル1から吐出する溶鋼の流動を制御するために鋳型
長辺側に電磁コイルを配置する。
In the method of the present invention, as shown in FIG. 1, only one discharge hole 3 is formed in the nozzle 1, and the installation position of the nozzle 1 is not at the center of the mold 2 but at the left or right of the mold 2. An electromagnetic coil is disposed on the long side of the mold in order to control the flow of molten steel discharged from the nozzle 1 from the short side on one side to 300 mm.

【0015】なお、ノズル1の設置位置が短辺から30
0mmよりも中心寄りになると、ノズルと短辺の間の領域
が流動の停滞域になり、電磁力で流動を制御したとして
もメニスカスへの熱供給は不足し、介在物の捕捉等が発
生しやすくなる。
Note that the installation position of the nozzle 1 is 30
If it is closer to the center than 0 mm, the area between the nozzle and the short side becomes a flow stagnation area, and even if the flow is controlled by electromagnetic force, the heat supply to the meniscus will be insufficient, and trapping of inclusions will occur. It will be easier.

【0016】ここで、電磁コイルの設置位置について
は、吐出孔から出た溶鋼流を制御するために適した箇所
を選ぶ必要がある。すなわち、図5に示すように、ノズ
ル1からの斜め下向きの吐出流が磁場を横切るような位
置に電磁コイル7を配置すると、最も効果的である。つ
まり、溶鋼吐出流を、吐出流量や鋳型サイズなどの鋳造
条件によらず、最適な流動パターンに制御するために
は、鋳型幅方向に移動する移動磁場を用いることが必要
であり、その場合は電磁コイルの設置箇所を適正な位置
とすることが求められる。このような移動磁場を印加す
ることにより、浸漬ノズルからの吐出流が鋳型長手方向
にさらに勢いづけられ、メニスカス部における溶鋼流動
が改善され、縦渦流の発生が阻止される。
Here, as for the installation position of the electromagnetic coil, it is necessary to select a position suitable for controlling the flow of molten steel coming out of the discharge hole. That is, as shown in FIG. 5, it is most effective to arrange the electromagnetic coil 7 at a position where the obliquely downward discharge flow from the nozzle 1 crosses the magnetic field. In other words, to control the molten steel discharge flow to an optimal flow pattern regardless of the casting conditions such as the discharge flow rate and the mold size, it is necessary to use a moving magnetic field that moves in the mold width direction. It is required that the installation location of the electromagnetic coil be an appropriate position. By applying such a moving magnetic field, the discharge flow from the immersion nozzle is further urged in the longitudinal direction of the mold, the flow of molten steel in the meniscus portion is improved, and the generation of a vertical vortex is prevented.

【0017】発明者らがモデル実験及び数値解析によっ
て検討を重ねた結果、図2に示すように、電磁コイルは
鋳造方向での電磁コイル中心が吐出孔3の高さレベルか
ら、吐出孔中心線と他方側の短辺内壁との交点の高さレ
ベルまでの領域に位置するように鋳型長辺側に配置する
と最も効果的であることが判明した。
As a result of repeated studies by the inventors through model experiments and numerical analysis, as shown in FIG. 2, the center of the electromagnetic coil in the casting direction is shifted from the height level of the discharge hole 3 to the center line of the discharge hole. It has been found that it is most effective to arrange the mold on the long side of the mold so as to be located in a region up to the height level of the intersection with the inner wall of the other short side.

【0018】[0018]

【発明の実施の形態】以下、添付の図面を参照しながら
本発明の種々の実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the accompanying drawings.

【0019】(実施例1)鋳型寸法が220mm×16
00mmの連続鋳造機を用いて、極低低炭素鋼のスラブ
を浸漬ノズル1の設置位置などを変えて試験鋳造した。
鋳造速度は毎分2mであり、鋳造したスラブは払い出し
て品質評価に供したほか、一部については試験圧延して
製品相当の品質評価を行なった。タンディッシュを一定
時間間隔で移動させ、浸漬ノズル1をその中心軸が鋳型
2の片側の短辺から200mm,300mm,400mm,5
00mm,600mm,800mm(幅方向中心)の位置にな
るように種々変えて鋳造した。なお、吐出孔3は一方側
の短辺に向かうようにノズル1に1つだけ形成した。
(Example 1) A mold size is 220 mm × 16.
Using a 00 mm continuous casting machine, test casting of a slab of extremely low carbon steel was performed while changing the installation position of the immersion nozzle 1 and the like.
The casting speed was 2 m / min. The cast slab was paid out for quality evaluation, and a part of the slab was subjected to test rolling to evaluate the quality of the product. The tundish is moved at regular time intervals, and the center axis of the immersion nozzle 1 is set to 200 mm, 300 mm, 400 mm, 5 mm from one short side of the mold 2.
Various castings were performed so as to be at positions of 00 mm, 600 mm, and 800 mm (center in the width direction). In addition, only one discharge hole 3 was formed in the nozzle 1 so as to be directed to the short side on one side.

【0020】また、電磁コイル7を鋳造方向の電磁コイ
ル7の中心が浸漬ノズル1の吐出孔3よりも約150m
m下方に位置するように設置し、吐出された溶鋼流に対
して移動磁場を印加できるようにした。
The center of the electromagnetic coil 7 in the casting direction is about 150 m from the discharge hole 3 of the immersion nozzle 1.
m so that a moving magnetic field can be applied to the discharged molten steel flow.

【0021】このようにして製造したスラブの品質を、
鋳造条件ごとにスラブ段階の介在物調査および圧延後の
薄板での品質検査で評価したところ、図6に示すような
結果が得られた。図6は、横軸に浸漬ノズルの短辺から
の距離(mm)をとり、縦軸に鋼中介在物の品質評価指数
をとったグラフ図である。スラブ段階の断面観察および
圧延後の薄鋼板製品での表面品質検査で評価した。図中
にて黒丸は磁場を印加した実施例の結果を示し、白丸は
磁場を印加しない比較例の結果を示す。
The quality of the slab produced in this way is
The evaluation as shown in FIG. 6 was obtained by evaluating inclusions at the slab stage for each casting condition and evaluating the quality of the thin plate after rolling. FIG. 6 is a graph in which the horizontal axis represents the distance (mm) from the short side of the immersion nozzle, and the vertical axis represents the quality evaluation index of inclusions in steel. Evaluation was made by observing the cross section at the slab stage and inspecting the surface quality of the steel sheet product after rolling. In the figure, black circles show the results of the example where the magnetic field was applied, and white circles show the results of the comparative example where no magnetic field was applied.

【0022】ここで、鋼中介在物の品質評価指数とは、
スラブ断面の一定領域内にあらわれた介在物の個数及び
大きさの分布を指数関数近似で統計的に処理したものを
数値化してポイント換算によって求めたものである。こ
の指数が小さくなるほど品質が良好であり、逆に指数が
大きくなるほど品質が不良となる。
Here, the quality evaluation index of inclusions in steel is
The distribution of the number and size of inclusions appearing in a certain region of the slab cross section is statistically processed by exponential function approximation, and is numerically obtained by point conversion. The smaller the index is, the better the quality is. The larger the index is, the worse the quality is.

【0023】図から明らかなように、移動磁場の印加し
た場合に、浸漬ノズル1を短辺内壁から300mmまでの
領域に配置すると、鋼中介在物の品質評価指数が1.0
を下回るようになることが判明した。これにより薄鋼板
製品での表面欠陥発生率は、従来方法が1.7%である
のに対して、本実施例の方法では0.9%以下となっ
た。
As is apparent from the figure, when the moving magnetic field is applied, when the immersion nozzle 1 is arranged in a region from the inner wall of the short side to 300 mm, the quality evaluation index of inclusions in steel is 1.0.
It turned out to be below. As a result, the rate of occurrence of surface defects in a thin steel sheet product was 0.9% or less in the method of the present embodiment, whereas the rate of the conventional method was 1.7% in the conventional method.

【0024】上記実施例の方法では、このようなノズル
の閉塞や損耗によって鋳造の継続が困難になった場合に
は、図3に示すように、それまで使用していたノズル1
の位置とは反対側の短辺寄りに新たなノズル1aを設置
して、そのノズル1aを使用して鋳造を継続することが
できる。このように浸漬ノズルの交換を行なうことによ
り、連続鋳造を中断もしくは停止することなく継続して
連続的な連続鋳造(連々鋳)を実施することができる。
この場合に、新たなノズル1aは、それまでのノズル1
と同一のタンディッシュに設置されたものであってもよ
いし、別のタンディッシュに取り付けられたものであっ
てもよい。
In the method of the above embodiment, if it becomes difficult to continue casting due to such blockage or wear of the nozzle, as shown in FIG.
A new nozzle 1a is installed near the short side on the opposite side to the position, and casting can be continued using the nozzle 1a. By performing the replacement of the immersion nozzle in this manner, continuous continuous casting (continuous casting) can be performed without interrupting or stopping continuous casting.
In this case, the new nozzle 1a is
It may be installed on the same tundish as above, or may be installed on another tundish.

【0025】また、このように浸漬ノズルの設置位置が
反対側の短辺近傍に移った場合には、移動磁界方式の磁
場を印加している場合には、磁場の移動方向を逆転させ
ることによって、対応することができる。
When the installation position of the immersion nozzle is shifted to the vicinity of the short side on the opposite side, when the moving magnetic field type magnetic field is applied, the moving direction of the magnetic field is reversed. , Can respond.

【0026】また、従来の方式では、鋳型左右それぞれ
の流動を制御するために、鋳型幅方向に2分割もしくは
それ以上に区分された、複数の電磁コイルを必要とする
ことが多かったが、本発明の方式では、基本的に単一の
電磁コイルで流動制御が可能であり、設備投資の点でも
有利である。
Further, in the conventional method, in order to control the flow of each of the right and left sides of the mold, a plurality of electromagnetic coils divided into two or more in the width direction of the mold are often required. According to the method of the present invention, the flow can be basically controlled by a single electromagnetic coil, which is advantageous in terms of capital investment.

【0027】[0027]

【発明の効果】本発明によれば、鋳型内溶鋼流動、とく
に湯面における溶鋼流動を安定化することができ、縦渦
流が発生せず、モールドパウダー等を巻き込まなくなる
ので、鋳片品質の向上を実現することができ、極低炭素
アルミキルド鋼などの鋼種においても良好な品質の連続
鋳造スラブを得ることができる。
According to the present invention, it is possible to stabilize the flow of molten steel in a mold, especially the flow of molten steel on a molten metal surface, and no longitudinal vortex is generated, so that mold powder and the like are not involved. And a continuous cast slab of good quality can be obtained even in a steel type such as an ultra-low carbon aluminum killed steel.

【0028】また、従来の方法では、鋳造の進行に伴う
ノズル内壁へのアルミナの付着によって、ノズルが次第
に閉塞し、あるいは、モールドパウダーとの反応等によ
ってノズルが損耗することによって、連続鋳造の継続が
不可能になり、その場合には、連続鋳造を中断もしくは
停止して、ノズルの交換等を実施する必要があったが、
本発明の方法を用いることにより、連続鋳造を長期間に
わたり実施することが容易になる。
In the conventional method, the continuous casting is continued because the nozzle is gradually closed due to the adhesion of alumina to the inner wall of the nozzle as the casting proceeds, or the nozzle is worn out by reaction with mold powder or the like. Became impossible. In that case, continuous casting had to be interrupted or stopped, and the nozzle had to be replaced, etc.
The use of the method of the present invention facilitates continuous casting over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る鋼の連続鋳造方法に用
いられる連続鋳造用鋳型の概要を示す模式図。
FIG. 1 is a schematic diagram showing an outline of a continuous casting mold used in a steel continuous casting method according to an embodiment of the present invention.

【図2】本実施形態の方法を用いて鋳型内に溶鋼を連続
鋳造した場合における溶鋼吐出流の軌跡を示す模式図。
FIG. 2 is a schematic diagram showing a trajectory of a molten steel discharge flow when molten steel is continuously cast in a mold using the method of the present embodiment.

【図3】本実施形態の方法において浸漬ノズルを交換し
て連続的に連続鋳造を継続する場合を説明する模式図。
FIG. 3 is a schematic diagram illustrating a case where continuous casting is continuously performed by replacing an immersion nozzle in the method of the present embodiment.

【図4】従来の連続鋳造方法に用いられている鋳型及び
浸漬ノズルの概要を示す模式図。
FIG. 4 is a schematic view showing an outline of a mold and a dipping nozzle used in a conventional continuous casting method.

【図5】鋳型に対する浸漬ノズル及び電磁コイルの設置
位置を示す模式図。
FIG. 5 is a schematic diagram showing the installation position of an immersion nozzle and an electromagnetic coil with respect to a mold.

【図6】本発明の効果を示すグラフ図である。FIG. 6 is a graph showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1,1a…浸漬ノズル、2…鋳型、3,3a…吐出孔、
4…溶鋼湯面(メニスカス)、5…溶鋼、6…モールド
パウダー、7…電磁コイル、8…溶鋼の軌跡。
1, 1a: immersion nozzle, 2: mold, 3, 3a: discharge hole,
4: molten steel surface (meniscus), 5: molten steel, 6: mold powder, 7: electromagnetic coil, 8: locus of molten steel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 典子 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Noriko Kubo 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 幅0.8m以上の矩形断面のキャビティ
をもつ鋳型を使用し、連続鋳造用浸漬ノズルを鋳型幅方
向中心からずらせて配置し、この浸漬ノズルの周面に他
方側の短辺に向くように吐出孔を形成し、この吐出孔を
介して鋳型のキャビティに溶鋼を吐出させる鋼の連続鋳
造方法であって、浸漬ノズルを鋳型の一方側の短辺内壁
から300mmまでの領域に配置し、かつ、電磁コイル
を、鋳造方向での電磁コイルの中心が前記吐出孔の高さ
レベルから、吐出孔中心線と他方側の短辺内壁との交点
の高さレベルまでの領域に位置するように鋳型長辺側に
配置し、この電磁コイルに通電して鋳型幅方向に磁界が
移動する移動磁場を形成し、この磁場により誘起される
電磁力を溶鋼吐出流に作用させることにより吐出流を制
動することを特徴とする鋼の連続鋳造方法。
1. A mold having a cavity having a rectangular cross section having a width of 0.8 m or more is used, and an immersion nozzle for continuous casting is displaced from a center in a width direction of the mold, and a short side on the other side is provided on a peripheral surface of the immersion nozzle. A continuous casting method of steel in which molten steel is discharged into a cavity of a mold through the discharge hole by forming a discharge hole so as to face the die, and an immersion nozzle is provided in an area up to 300 mm from a short side inner wall on one side of the mold. And the electromagnetic coil is positioned in a region where the center of the electromagnetic coil in the casting direction is from the height level of the discharge hole to the height level of the intersection of the discharge hole center line and the other short side inner wall. The electromagnetic coil is energized to form a moving magnetic field in which a magnetic field moves in the width direction of the mold, and the electromagnetic force induced by this magnetic field is applied to the molten steel discharge flow to discharge. Characterized by damping the flow Continuous casting method of steel.
JP17480896A 1996-07-04 1996-07-04 Method for continuously casting steel Pending JPH1015648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17480896A JPH1015648A (en) 1996-07-04 1996-07-04 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17480896A JPH1015648A (en) 1996-07-04 1996-07-04 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH1015648A true JPH1015648A (en) 1998-01-20

Family

ID=15985035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17480896A Pending JPH1015648A (en) 1996-07-04 1996-07-04 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH1015648A (en)

Similar Documents

Publication Publication Date Title
US5381857A (en) Apparatus and method for continuous casting
KR101239537B1 (en) Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
JP2005211936A (en) Method for continuously casting steel slab
JPH1015648A (en) Method for continuously casting steel
KR101277692B1 (en) Method for decreasing pin-hole defect in continuous casting process
KR100524613B1 (en) Method for controlling the magnetic field of width of continuous casting mold
CA1082421A (en) Single piece annular nozzle to prevent alumina buildup during continuous casting of al-killed steel
JPH09192802A (en) Method for continuously casting extra-low carbon steel slab
KR19990050906A (en) Method for Reducing Slab Surface Defects by Optimizing Immersion Nozzle Depth
JP5130489B2 (en) Molten metal continuous casting apparatus and molten metal continuous casting method
US4117959A (en) Method and single piece annular nozzle to prevent alumina buildup during continuous casting of al-killed steel
KR100513592B1 (en) Sliding gate for preventing the melted ingot steel from bias flow in continuous casting
KR101400047B1 (en) Control method for casting of ultra low carbon steel
USRE30343E (en) Method and single piece annular nozzle to prevent alumina buildup during continuous casting of Al-killed steel
JPH04238658A (en) Immersion nozzle for continuous casting
JPH05237621A (en) Continuous casting method
JPH06126409A (en) Method for supplying molten steel into slab continuous casting mold
JP2004082197A (en) Continuous casting method and sliding nozzle
JPH09108797A (en) Method for continuously casting steel
JP4421136B2 (en) Continuous casting method
JPH06134561A (en) Method for supplying molten steel into mold in slab continuous casting
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JPH0347654A (en) Continuous casting method and mold for continuous casting used to method thereof
KR101344902B1 (en) Control method for quality of steel
JPH02197356A (en) Method and apparatus for continuous casting