JPH09108797A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH09108797A
JPH09108797A JP27215595A JP27215595A JPH09108797A JP H09108797 A JPH09108797 A JP H09108797A JP 27215595 A JP27215595 A JP 27215595A JP 27215595 A JP27215595 A JP 27215595A JP H09108797 A JPH09108797 A JP H09108797A
Authority
JP
Japan
Prior art keywords
mold
magnetic field
casting
molten steel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27215595A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
真 鈴木
Masayuki Nakada
正之 中田
Katsuhiko Murakami
勝彦 村上
Toshio Ishii
俊夫 石井
Noriko Kubo
典子 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27215595A priority Critical patent/JPH09108797A/en
Publication of JPH09108797A publication Critical patent/JPH09108797A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make surface flow speed of molten steel in a continuous casting mold proper and to obtain a continuously cast slab having good quality by arranging a shifting magnetic field type electromagnetic coil capable of accelerating and decelerating the spouting flow from an immersion nozzle and a static magnetic field type electromagnetic coil at the position in the range of a specific casting length. SOLUTION: At the time of continuously casting the steel by immersing the nozzle into the molten steel in the mold, casting is executed in such a manner while accelerating or decelerating the molten steel spouting flow from the immersion nozzle 1 with the shifting magnetic field type electromagnetic coils 7, that the electromagnetic coils 8 impressing the static magnetic field are arranged at a position on both sides of the immersion nozzle 1 in the range of 1/6-1/3 of the casting width from the center of the mold in the width direction of the mold and near a meniscus in the mold 2 in the casting direction and impressing the static magnetic field on a part of the meniscus. Therefore, such fluid pattern as to secure the flow rate of the molten steel to some extent and prevent the collision with the flow in the opposite direction and the variation of the flow rate, is achieved, and the fluid of the molten steel in the mold is properly attained and the development of the involving of mold powder, etc., is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋳型内の溶鋼流動
の適正化により連続鋳造スラブの表面および内部の品質
の改善を実現する鋼の連続鋳造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for steel for improving the quality of the surface and the inside of a continuously cast slab by optimizing the flow of molten steel in a mold.

【0002】[0002]

【従来の技術】鋼の連続鋳造において、鋳型内の溶鋼流
動は鋳片の表面および内部品質に大きな影響を与えてい
ることが知られている。特に、鋳型内のメニスカス(溶
鋼湯面)においては、溶鋼の表面流速が大きい場合や、
縦渦が生成する場合などに、溶鋼上のモールドパウダー
が溶鋼中に巻き込まれるという現象が発生し、巻き込ま
れたパウダーは、凝固シェルに捕捉されて、製品欠陥と
なることが多い。
2. Description of the Related Art In continuous casting of steel, it is known that the flow of molten steel in a mold has a great influence on the surface and internal quality of a slab. Especially in the meniscus (molten steel surface) in the mold, when the surface velocity of the molten steel is high,
When a vertical vortex is generated, a phenomenon that the mold powder on the molten steel is caught in the molten steel occurs, and the caught powder is trapped by the solidified shell and often becomes a product defect.

【0003】一方、メニスカスの溶鋼表面流速を必要以
上に沈静化させたような操業条件では、メニスカス部で
初期凝固シェルが発達して、溶鋼中の介在物や気泡を捕
捉したり、デッケル(メニスカスに発生し、未溶融パウ
ダーを大量に含んだ地金の塊をいう)が形成されて操業
に支障をきたしたりする。従って、メニスカスの溶鋼表
面流速はこれらの不具合を発生させないような条件に制
御する必要がある。
On the other hand, under operating conditions in which the molten steel surface flow velocity of the meniscus is calmed down more than necessary, an initial solidified shell develops in the meniscus portion to trap inclusions and bubbles in the molten steel, and to deckle (meniscus). Occurs, and refers to a lump of metal containing a large amount of unmelted powder) is formed, which interferes with the operation. Therefore, it is necessary to control the molten steel surface flow velocity of the meniscus under conditions that do not cause these problems.

【0004】しかし、このような溶鋼流動パターンを浸
漬ノズルの形状、浸漬ノズルの浸漬深さ等のみで制御す
ることは不可能であり、このため、従来から電磁力を利
用して溶鋼の流動制御をおこなう方法が多く提案されて
いる。
However, such a molten steel flow pattern cannot be controlled only by the shape of the immersion nozzle, the immersion depth of the immersion nozzle, etc. Therefore, conventionally, the flow control of the molten steel is performed by utilizing electromagnetic force. There are many proposed methods for performing.

【0005】例えば、特開昭57−17356号公報な
どで開示されている技術は鋳型に電磁石を設置し、浸漬
ノズルからの溶鋼吐出流に対してそれと垂直な方向の磁
界を印加して、吐出流を制動するものである。しかし、
この方法ではノズルからの吐出流が磁場帯を迂回する流
れになる場合があり、鋳型内の溶鋼流動はかえって複雑
なものとなり、鋳片品質を十分に向上させるには至らな
かった。
For example, in the technique disclosed in Japanese Patent Laid-Open No. 57-17356, an electromagnet is installed in a mold, and a magnetic field in a direction perpendicular to the molten steel discharge flow from the immersion nozzle is applied to discharge the molten steel. It is to brake the flow. But,
In this method, the discharge flow from the nozzle may be a flow that bypasses the magnetic field band, and the molten steel flow in the mold becomes rather complicated, and it has not been possible to sufficiently improve the slab quality.

【0006】特開平2−284750号公報で開示され
ている技術は鋳型の幅方向全域に磁場を印加するもので
ある。この場合は、上記のような吐出流の磁場帯迂回現
象は発生しないものの、鋳型内の溶鋼流動全体に磁場に
よる制動力が働くために、鋳型内流動のパターンを制御
することは困難であり、鋳造条件によっては十分な効果
を発揮することはできなかった。これは、メニスカスで
は幅方向全面にわたって溶鋼の流動を抑え込むと、パウ
ダー巻き込みに対しては防止効果が認められるが、溶鋼
中に含まれるアルミナ等の介在物や気泡の初期凝固シェ
ルへの捕捉が発生しやすくなる傾向があるためである。
The technique disclosed in Japanese Patent Laid-Open No. 2-284750 applies a magnetic field to the entire region of the mold in the width direction. In this case, although the magnetic field detour phenomenon of the discharge flow as described above does not occur, since the braking force by the magnetic field acts on the entire molten steel flow in the mold, it is difficult to control the pattern of the flow in the mold, Depending on the casting conditions, it was not possible to exert a sufficient effect. This is because when the flow of molten steel is suppressed over the entire width in the meniscus, the effect of preventing powder entrapment is recognized, but inclusions such as alumina and bubbles contained in molten steel are trapped in the initial solidified shell. This is because it tends to be easier.

【0007】特開平5−84550号公報で開示されて
いる技術はノズル吐出流に上向き進行磁場、メニスカス
に静磁場を印加するものであるが、静磁場は鋳型幅方向
全域に印加されており、前述の特開平2−284750
号公報で開示されている技術と同様の欠点があった。
The technique disclosed in Japanese Unexamined Patent Publication No. 5-84550 applies an upward traveling magnetic field to the nozzle discharge flow and a static magnetic field to the meniscus. The static magnetic field is applied across the entire width of the mold. The above-mentioned JP-A-2-284750.
It had the same drawbacks as the technique disclosed in the publication.

【0008】特開昭64−2771号公報で開示されて
いる技術は移動磁界方式の磁場印加装置を鋳型長辺側に
対向配置し、吐出流に移動磁界によって生じる流れを付
与して流動を制御するものである。この方式では吐出流
の減速だけではなく、鋳造条件によっては加速も可能で
あることが特徴で、鋳型内の溶鋼流動のパターンの適正
化が可能である。しかし、この技術によっても鋳型内の
溶鋼流動の不安定性まで制御することは難しく、常時、
理想的な流動パターンを維持するためには各種のセンサ
ーによって鋳型内の流動状況を検知し、これによって磁
場の移動方向・強度を制御するなどの技術が必要であっ
た。
In the technology disclosed in Japanese Patent Laid-Open No. 64-2771, a moving magnetic field type magnetic field applying device is arranged opposite to the long side of the mold, and a flow generated by a moving magnetic field is applied to the discharge flow to control the flow. To do. This method is characterized in that not only the discharge flow can be decelerated but also the acceleration can be achieved depending on the casting conditions, and the molten steel flow pattern in the mold can be optimized. However, even with this technique, it is difficult to control the instability of molten steel flow in the mold, and
In order to maintain the ideal flow pattern, it was necessary to use various sensors to detect the flow condition in the mold and control the direction and strength of the magnetic field.

【0009】[0009]

【発明が解決しようとする課題】このように、従来から
提案されている技術では鋳造条件の違いや、さまざまな
変動までも考慮に入れた鋳型内溶鋼流動制御の実施は困
難であった。
As described above, it has been difficult with the conventionally proposed techniques to carry out molten steel flow control in a mold in consideration of differences in casting conditions and various fluctuations.

【0010】特に、モールドパウダー巻き込みに対して
はこれまでに多くの解析がなされ、溶鋼表面流速が速い
場合には、パウダー層が溶鋼によって削り取られるよう
なかたちで溶鋼中へのパウダー巻き込みが発生すること
が、水モデル実験等により明らかになっており、このた
め、溶鋼表面流速をこのような巻き込みが発生しない速
度範囲内に制御するための技術がいくつか提案、実施さ
れているが、それだけではすべての欠陥発生を完全に防
止することは難しかった。
In particular, many analyzes have been conducted so far on the entrainment of mold powder, and when the molten steel surface flow velocity is high, entrainment of powder into molten steel occurs such that the powder layer is scraped off by the molten steel. It has been clarified by a water model experiment and so on.Therefore, some techniques for controlling the molten steel surface flow velocity within a velocity range in which such entrainment does not occur have been proposed and implemented. It was difficult to completely prevent all defects from occurring.

【0011】また、メニスカス部では幅方向全面にわた
って溶鋼の流動を抑え込むと、パウダー巻き込みに対し
ては防止効果が認められるが、溶鋼中に含まれるアルミ
ナ等の介在物や気泡の初期凝固シェルへの捕捉が発生し
やすくなる。これらを低減するためには、凝固シェル前
面の洗浄効果のための溶鋼流動が必要なことが、いくつ
かの研究によって報告されている(例えば、沢田ら;材
料とプロセス、vol.8(1995)-344)。
In addition, if the flow of molten steel is suppressed over the entire surface in the width direction in the meniscus portion, an effect of preventing powder entrainment is recognized, but inclusions such as alumina and bubbles contained in molten steel and bubbles in the initial solidified shell are recognized. Capture is likely to occur. In order to reduce these, molten steel flow is required for the cleaning effect on the front surface of the solidified shell, which has been reported by several studies (eg, Sawada et al .; Materials and Processes, vol.8 (1995)). -344).

【0012】以上のことから、鋳片品質の改善のために
は鋳型内のメニスカス部において、ある程度の溶鋼の流
速は確保しつつ、反対方向の流れの衝突や流速の著しい
変動を防止するような流動パターンを達成することが肝
要である。
From the above, in order to improve the quality of the cast slab, it is necessary to prevent the collision of the flow in the opposite direction and the remarkable fluctuation of the flow velocity while ensuring a certain flow velocity of the molten steel in the meniscus portion in the mold. Achieving a flow pattern is essential.

【0013】本発明は、鋳型内の溶鋼流動を適正化し、
モールドパウダーの巻き込み等の発生を防止し、良好な
品質の鋳片を得る方法を提供するものである。
The present invention optimizes the flow of molten steel in the mold,
It is intended to provide a method for obtaining a slab of good quality by preventing the entrainment of mold powder and the like.

【0014】[0014]

【課題を解決するための手段】本発明の鋼の連続鋳造方
法は、鋳型内の溶鋼にノズルを浸漬して鋼を連続鋳造す
る方法において、移動磁界方式の電磁コイルによって浸
漬ノズルからの溶鋼吐出流を加速又は減速しつつ、鋳造
方向で鋳型内のメニスカス近傍、鋳型幅方向で鋳型中心
から鋳造幅長さの1/6ないし1/3の範囲に、浸漬ノ
ズルをはさんで両側の位置に静磁場を印加する電磁コイ
ルを設置して、メニスカスの一部に静磁場を印加しつつ
鋳造することを特徴とする。
A method for continuously casting steel according to the present invention is a method for continuously casting steel by immersing a nozzle in molten steel in a mold, in which molten steel is discharged from an immersion nozzle by a moving magnetic field type electromagnetic coil. While accelerating or decelerating the flow, near the meniscus in the mold in the casting direction, in the range of 1/6 to 1/3 of the casting width length from the center of the mold in the casting width direction, to the positions on both sides with the immersion nozzle in between. An electromagnetic coil for applying a static magnetic field is installed, and casting is performed while applying a static magnetic field to a part of the meniscus.

【0015】浸漬ノズルの吐出流に移動磁界を印加する
理由は、鋳型内の流動を適正化するために、浸漬ノズル
からの吐出流の流速を制御する必要があり、そのために
は、移動磁界で加速・減速することが有効であるからで
あり、それに対し、静磁界による吐出流への印加では、
流速を減速することはできるが、吐出流速が遅い場合は
必要に応じて加速して制御することができないためであ
る。
The reason why the moving magnetic field is applied to the discharge flow of the immersion nozzle is that the flow speed of the discharge flow from the immersion nozzle must be controlled in order to optimize the flow in the mold. This is because it is effective to accelerate and decelerate. On the other hand, in the application of the static magnetic field to the discharge flow,
This is because the flow velocity can be reduced, but if the discharge flow velocity is slow, it cannot be accelerated and controlled as necessary.

【0016】また、メニスカスに静磁場を印加する理由
は、特に幅方向の特定領域のみでの流速を抑えるため、
その特定位置に静磁場を印加することが有効であるから
である。
The reason for applying a static magnetic field to the meniscus is to suppress the flow velocity only in a specific region in the width direction,
This is because it is effective to apply the static magnetic field to the specific position.

【0017】発明者等が実機において、浸漬ノズルから
の溶鋼吐出流に移動磁界を印加して、溶鋼流動を制御し
つつメニスカスの溶鋼表面流速を測定したところ、鋳型
幅方向で流速の分布があり、また、鋳造条件によっては
左右の短辺側から鋳型中央の浸漬ノズルに向かう順流だ
けではなく、鋳型中央から鋳型短辺側に向かう逆流も存
在することがわかった。
When the inventors measured the molten steel surface flow velocity of the meniscus while controlling the molten steel flow by applying a moving magnetic field to the molten steel discharge flow from the immersion nozzle in the actual machine, there was a distribution of the flow velocity in the mold width direction. It was also found that, depending on the casting conditions, there is not only a forward flow from the left and right short sides toward the immersion nozzle at the center of the mold, but also a backflow from the center of the mold toward the shorter side of the mold.

【0018】この点について、実機データに基づいて水
モデル実験および数値解析等により検討した結果、この
ような逆流現象は、吐出流に与える移動磁界の強度が不
適切な場合に発生するほか、適切な強度を与えた場合で
も発生し、その場合はノズルへのアルミナ付着防止のた
めに溶鋼中に吹き込まれているアルゴンガスの影響等に
よるものであることが見い出された。
As a result of studying this point by a water model experiment and numerical analysis based on actual machine data, such a backflow phenomenon occurs when the strength of the moving magnetic field given to the discharge flow is improper and It was found that even when a strong strength was given, it was caused by the influence of argon gas blown into the molten steel to prevent the adhesion of alumina to the nozzle.

【0019】すなわち、溶鋼中のアルゴンガス気泡は鋳
型内で浮上するときに溶鋼流に影響を与える。その際、
アルゴンガス気泡は主に浸漬ノズル近傍から鋳造幅長さ
の1/4付近までの領域で浮上し、これによって、鋳型
幅方向の中央領域で鋳型中心から短辺側へ向かう流れ
(逆流)を形成するほか、流速の時間的な変動を起こす
要因となっていた。
That is, the argon gas bubbles in the molten steel affect the molten steel flow when floating in the mold. that time,
Argon gas bubbles mainly float in the region from the vicinity of the immersion nozzle to about 1/4 of the casting width length, thereby forming a flow (backflow) from the center of the mold to the short side in the central region in the mold width direction. In addition, it was a factor causing the temporal fluctuation of the flow velocity.

【0020】図2は鋳型内の溶鋼流動パターンを示す模
式図である。鋳型内の溶鋼流動は図2に示すように鋳型
中央から短辺側に向かう逆流10と、浸漬ノズル1から
吐出流が鋳型短辺2側近傍で上昇流となってメニスカス
まで上昇し反転して形成される鋳型短辺側から鋳型中心
に向かう流れである順流9とが存在し、両者の大小関係
によっては両者の衝突等による縦渦の発生などが引き起
こされ、モールドパウダーの巻き込みが発生する。
FIG. 2 is a schematic view showing a molten steel flow pattern in the mold. As shown in FIG. 2, the molten steel flow in the mold is a reverse flow 10 from the center of the mold to the short side and a discharge flow from the immersion nozzle 1 rises to the meniscus near the short side 2 of the mold and rises up to the meniscus and is reversed. There is a forward flow 9 which is a flow from the short side of the mold to the center of the mold, and vertical vortices are generated due to collision between the two depending on the size relationship between the two, and entrainment of mold powder occurs.

【0021】これを防止するためには、その両者の流動
を衝突等を起こさずに減衰させる必要がある。
In order to prevent this, it is necessary to damp the flow of the two without causing collision or the like.

【0022】この場合、電磁コイルの設置位置はガス気
泡が主に浮上する位置が、浸漬ノズル近傍から鋳造幅長
さの1/4付近までであることを考慮して概略位置を決
定し、低融点合金を用いたモデル実験・数値解析等によ
って、その適正な範囲を決定した。
In this case, regarding the installation position of the electromagnetic coil, the approximate position is determined in consideration of the fact that the position where gas bubbles mainly float is from the vicinity of the immersion nozzle to the vicinity of 1/4 of the casting width length, and the low position is set. The appropriate range was determined by model experiments and numerical analysis using melting point alloys.

【0023】その結果、静磁場の電磁コイルの設置位置
が浸漬ノズルに近すぎる、すなわち、鋳型中心から鋳造
幅長さの1/6未満であると、浸漬ノズル近傍の上昇流
は、磁場帯を迂回してしまうため、本発明の目的の効果
は得られない。また、静磁場の電磁コイルが短辺近傍、
すなわち鋳型中心から鋳型幅長さの1/3よりも離れた
位置に設置された場合には、短辺側の上昇流が磁場帯を
迂回してしまう。
As a result, if the installation position of the electromagnetic coil for the static magnetic field is too close to the immersion nozzle, that is, if it is less than 1/6 of the casting width length from the center of the mold, the ascending flow in the vicinity of the immersion nozzle causes a magnetic field band. The effect of the object of the present invention cannot be obtained because of detouring. Also, the electromagnetic coil of the static magnetic field is near the short side,
That is, when it is installed at a position away from the center of the mold by more than 1/3 of the width of the mold, the ascending current on the short side bypasses the magnetic field band.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は本発明の連続鋳造設備の概要断面図
である。1は浸漬ノズル、2は短辺鋳型、3は浸漬ノズ
ルの吐出孔、4はメニスカス、5は溶鋼、6はモールド
パウダー、7は移動磁界を発生させる電磁コイル、8は
静磁場を発生させる電磁コイルである。
FIG. 1 is a schematic sectional view of the continuous casting equipment of the present invention. 1 is an immersion nozzle, 2 is a short-sided mold, 3 is a discharge nozzle of the immersion nozzle, 4 is meniscus, 5 is molten steel, 6 is mold powder, 7 is an electromagnetic coil for generating a moving magnetic field, and 8 is an electromagnetic for generating a static magnetic field. It is a coil.

【0026】本発明では、図1に示すように浸漬ノズル
1からの吐出流3に移動磁界による電磁コイル7で加速
ないし減速し、鋳造方向で鋳型内のメニスカス近傍、鋳
型幅方向で鋳型中心から鋳造幅長さの1/6ないし1/
3の範囲の浸漬ノズル1の両サイドのメニスカス4に静
磁場による電磁コイル8を設置した。
In the present invention, as shown in FIG. 1, the discharge flow 3 from the dipping nozzle 1 is accelerated or decelerated by the electromagnetic coil 7 by the moving magnetic field, and near the meniscus in the mold in the casting direction and from the center of the mold in the width direction of the mold. 1/6 to 1 / of casting width
Electromagnetic coils 8 with a static magnetic field were installed on the meniscus 4 on both sides of the immersion nozzle 1 in the range of 3.

【0027】[0027]

【実施例】【Example】

(実施例1)鋳造厚み220mm、鋳造幅1600mmの連
続鋳造機で、極低炭素鋼のスラブを、鋳造速度2.5m
/min で鋳造した。この時、鋳型幅方向に2分割された
移動磁界の電磁コイルを、鋳造方向の電磁コイル中心が
浸漬ノズルの吐出孔位置下150mmになるように設置
し、溶鋼吐出流に対し移動磁界を印加して、減速を行う
とともに、静磁場を印加する電磁コイルを電磁コイル中
心が鋳造方向で鋳型内のメニスカス近傍、鋳型幅方向で
鋳型中心から400mmで、浸漬ノズルをはさんで両側の
位置に設置してメニスカスの一部に静磁場を印加した。
なお、浸漬ノズル上部からアルゴンガスを9.5Nl/
min 吹き込んだ。
(Example 1) A continuous casting machine having a casting thickness of 220 mm and a casting width of 1600 mm was used to cast an extremely low carbon steel slab at a casting speed of 2.5 m.
Minted / min. At this time, an electromagnetic coil with a moving magnetic field divided into two in the mold width direction was installed so that the center of the electromagnetic coil in the casting direction was 150 mm below the discharge hole position of the immersion nozzle, and a moving magnetic field was applied to the molten steel discharge flow. Then, reduce the speed and apply a static magnetic field to the electromagnetic coil centered near the meniscus in the mold in the casting direction, 400 mm from the center of the mold in the width direction of the mold, and placed on both sides with the immersion nozzle in between. A static magnetic field was applied to a part of the meniscus.
Argon gas was introduced from the upper part of the immersion nozzle at 9.5 Nl /
min blown.

【0028】この時、耐火物製の棒を溶鋼中に浸漬させ
てメニスカスの溶鋼表面流速を求めたところ、鋳型短辺
近傍では、短辺側から鋳型中心に向かう流れが観察され
たのに対し、鋳型中心から400mmの位置(鋳造幅の1
/4;静磁場電磁コイル位置)では、流速はほぼ0であ
り、かつ、流速の変動もほとんどなくこの領域では静磁
場印加の効果で表面流速がほぼ抑制されていることがわ
かった。
At this time, when a refractory rod was immersed in molten steel to determine the molten steel surface flow velocity of the meniscus, a flow from the short side toward the center of the mold was observed in the vicinity of the short side of the mold. , 400mm from the center of the mold (casting width 1
/ 4; static magnetic field electromagnetic coil position), the flow velocity was almost 0, and there was almost no change in flow velocity, and it was found that the surface flow velocity was substantially suppressed by the effect of the static magnetic field application in this region.

【0029】これに対し、比較例として同一の鋳造条件
でメニスカスに静磁場を印加せずに鋳造を行い、上記と
同様の方法で表面流速を測定したところ、鋳造幅長さの
1/4位置でも最大30cm/secの流速が観察され、ま
た、しばしば逆流も発生し、時間的な流速変化が激しか
った。
On the other hand, as a comparative example, casting was performed under the same casting conditions without applying a static magnetic field to the meniscus, and the surface flow velocity was measured by the same method as described above. However, a maximum flow velocity of 30 cm / sec was observed, and backflow often occurred, and the temporal change in flow velocity was severe.

【0030】このようにして製造したスラブの品質を、
スラブの断面観察およびスラブを圧延後の薄板製品での
表面品質検査で評価したところ、スラブ断面での介在物
の個数と大きさ分布を指数関数近似で統計的に処理して
求めたスラブ介在物指数で、本発明の実施例は比較例の
場合のおよそ1/4で、薄板製品での表面欠陥発生率で
は、比較例が1.7%であるのに対し、本発明の実施例
では0.5%以下ときわめて良好であった。
The quality of the slab thus manufactured is
When the cross-section of the slab was observed and the slab was evaluated by surface quality inspection of the thin plate product after rolling, the slab inclusions were obtained by statistically processing the number and size distribution of inclusions in the slab cross-section with an exponential function approximation. The index of the present invention is about 1/4 of that of the comparative example, and the surface defect occurrence rate of the thin plate product is 1.7% in the comparative example, whereas it is 0 in the example of the present invention. It was extremely good at 0.5% or less.

【0031】(実施例2)実施例2では、鋳造厚み22
0mm、鋳造幅1200mmの連続鋳造機で、極低炭素鋼の
スラブを鋳造速度2.8m /min で鋳造した。この時、
鋳型幅方向に2分割された移動磁界の電磁コイルを、鋳
造方向の電磁コイル中心が浸漬ノズルの吐出孔位置下1
50mmになるように設置し、溶鋼吐出流に対し移動磁界
を印加して、加速を行うとともに、静磁場を印加する電
磁コイルを、電磁コイル中心が鋳造方向でメニスカス近
傍、鋳型幅方向で鋳型中心から400mmで、浸漬ノズル
をはさんで両側の位置に設置して、メニスカスの一部に
静磁場を印加した。浸漬ノズル上部からのアルゴンガス
吹き込み量は8Nl/min とした。
(Example 2) In Example 2, the casting thickness 22
A slab of ultra-low carbon steel was cast at a casting speed of 2.8 m / min by a continuous casting machine having 0 mm and a casting width of 1200 mm. At this time,
The electromagnetic coil with a moving magnetic field divided in two in the mold width direction is placed so that the center of the electromagnetic coil in the casting direction is below the discharge hole position of the immersion nozzle.
Installed so as to be 50 mm, apply a moving magnetic field to the molten steel discharge flow to accelerate and also apply a static magnetic field to the electromagnetic coil. The electromagnetic coil center is near the meniscus in the casting direction, and the mold center in the mold width direction. From 400 mm to 400 mm, the immersion nozzle was placed at both sides to apply a static magnetic field to a part of the meniscus. The amount of argon gas blown from the upper part of the immersion nozzle was 8 Nl / min.

【0032】耐火物製の棒を溶鋼中に浸漬させて、メニ
スカスの溶鋼表面流速を求めたところ、鋳型短辺近傍で
は、短辺側から鋳型中心に向かう流れが観察されたのに
対し、鋳型中心から400mmの位置(静磁場の電磁コイ
ル位置)では、流速はほぼ0、また、鋳型中心から30
0mmの位置(鋳造幅の1/4)でも、流速は最大5cm/
sec であり、かつ、流速の変化はほとんどなかった。
When a rod made of refractory was immersed in molten steel and the molten steel surface flow velocity of the meniscus was determined, a flow from the short side toward the center of the mold was observed in the vicinity of the short side of the mold. At a position 400 mm from the center (the position of the electromagnetic coil of the static magnetic field), the flow velocity is almost 0.
Even at the 0 mm position (1/4 of the casting width), the maximum flow velocity is 5 cm /
It was sec and there was almost no change in the flow velocity.

【0033】これに対し、比較例として、同一の鋳造条
件でメニスカスに静磁場を印加せずに鋳造を行い、上記
と同様の方法で表面流速を測定したところ、鋳造幅長さ
1/4位置でも最大30cm/secの流速が観察され、ま
た、逆流も発生し、時間的な流速変化が激しかった。
On the other hand, as a comparative example, casting was carried out under the same casting conditions without applying a static magnetic field to the meniscus, and the surface flow velocity was measured by the same method as described above. However, a maximum flow velocity of 30 cm / sec was observed, and backflow also occurred, which caused a dramatic change in the flow velocity over time.

【0034】このようにして製造したスラブの品質を実
施例1と同様の方法で評価したところ、スラブ介在物指
数で、本発明の実施例は比較例の場合のおよそ1/4、
薄板製品での表面欠陥発生率は比較例が1.6%である
のに対し、本発明の実施例では0.6%以下であった。
When the quality of the slab thus produced was evaluated in the same manner as in Example 1, the slab inclusion index shows that the example of the present invention is about 1/4 of the comparative example.
The surface defect occurrence rate of the thin plate product was 1.6% in the comparative example, but was 0.6% or less in the example of the present invention.

【0035】(実施例3)実施例3では、鋳造厚み22
0mm、鋳造幅2100mmの連続鋳造機で極低炭素鋼のス
ラブを鋳造速度1.6m /min で鋳造した。この時、鋳
型幅方向に2分割された移動磁界の電磁コイルを、鋳造
方向の電磁コイル中心が浸漬ノズルの吐出孔位置下15
0mmになるように設置し、溶鋼吐出流に対し移動磁界を
印加して減速を行うとともに、静磁場を印加する電磁コ
イルを、電磁コイル中心が鋳造方向でメニスカス近傍、
鋳型幅方向で鋳型中心から350mmの、浸漬ノズルをは
さんで両側の位置に設置してメニスカスの一部に静磁場
を印加した。なお、浸漬ノズル上部からアルゴンガスを
8Nl/min吹き込んだ。
(Example 3) In Example 3, the casting thickness 22
A slab of ultra-low carbon steel was cast at a casting speed of 1.6 m / min with a continuous casting machine having a casting width of 0 mm and a casting width of 2100 mm. At this time, the electromagnetic coil of the moving magnetic field divided into two in the mold width direction is placed at the center of the electromagnetic coil in the casting direction 15 below the discharge hole position of the immersion nozzle.
Installed so as to be 0 mm, apply a moving magnetic field to the molten steel discharge flow to decelerate, and place an electromagnetic coil that applies a static magnetic field in the center of the electromagnetic coil near the meniscus in the casting direction,
A static magnetic field was applied to a part of the meniscus by placing the dipping nozzles 350 mm from the center of the mold in the width direction of the mold with the immersion nozzles in between. Argon gas was blown at 8 Nl / min from the upper part of the immersion nozzle.

【0036】この時、実施例1、実施例2と同様に、メ
ニスカスの溶鋼表面流速を求めたところ、鋳型短辺近傍
では、鋳型短辺側から鋳型中心に向かう流れが観察され
たのに対し、鋳型中心から350mmの位置(静磁場電磁
コイル位置)では流速はほぼ0、また、鋳型中心から5
25mmの位置(鋳造幅長さの1/4)でも、流速は最大
5cm/sec であり、かつ、流速の変動もほとんどなく、
この領域では、静磁場印加の効果で、表面流がほぼ抑制
されていることがわかった。
At this time, when the molten steel surface flow velocity of the meniscus was determined in the same manner as in Examples 1 and 2, a flow from the short side of the mold to the center of the mold was observed in the vicinity of the short side of the mold. At a position 350 mm from the center of the mold (position of the static magnetic field electromagnetic coil), the flow velocity is almost 0, and 5 from the center of the mold.
Even at the position of 25 mm (1/4 of the casting width length), the maximum flow velocity was 5 cm / sec, and there was almost no change in flow velocity.
In this region, it was found that the surface flow was almost suppressed by the effect of the static magnetic field applied.

【0037】これに対し、比較例として、上記と同一の
鋳造条件でメニスカス部の静磁場を印加せずに鋳造を行
い、同様の方法で表面流速を測定したところ、鋳造幅長
さの1/4位置でも最大30cm/secの流速が観察さ
れ、また、しばしば逆流も発生し、時間的な流速変化が
激しかった。
On the other hand, as a comparative example, casting was carried out under the same casting conditions as above without applying a static magnetic field in the meniscus portion, and the surface velocity was measured by the same method. A maximum flow velocity of 30 cm / sec was observed even at 4 positions, and backflow often occurred, and the change in flow velocity with time was severe.

【0038】このようにして製造したスラブの品質を実
施例1、実施例2と同様の方法で評価したところ、スラ
ブ介在物指数で、本発明の実施例は比較例の場合のおよ
そ1/4、薄板製品での表面欠陥発生率は、比較例が
1.5%であるのに対し、本発明の実施例では0.4%
以下と、きわめて良好であった。
The quality of the slab thus manufactured was evaluated in the same manner as in Examples 1 and 2, and the slab inclusion index was obtained. The example of the present invention was about 1/4 of the comparative example. The surface defect occurrence rate in the thin plate product is 1.5% in the comparative example, whereas it is 0.4% in the example of the present invention.
The following was extremely good.

【0039】[0039]

【発明の効果】本発明による鋼の連続鋳造方法によれ
ば、浸漬ノズルからの吐出流を加速・減速できる移動磁
界方式の電磁コイルと、鋳造方向でメニスカス近傍、鋳
型幅方向で鋳型中心から鋳造幅長さの1/6〜し1/3
の範囲内の位置に静磁場の電磁コイルを設けることによ
り、連続鋳造鋳型内の溶鋼の表面流速を適正化すること
ができ、良好な品質の連続鋳造スラブを得ることができ
る。
According to the steel continuous casting method of the present invention, a moving magnetic field type electromagnetic coil capable of accelerating and decelerating the discharge flow from the dipping nozzle, and casting from the center of the mold in the vicinity of the meniscus in the casting direction and in the mold center in the mold width direction. 1/6 to 1/3 of width
By providing an electromagnetic coil with a static magnetic field at a position within the range, the surface velocity of the molten steel in the continuous casting mold can be optimized, and a continuous casting slab with good quality can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋳型内の電磁コイルの位置関係を示す
概要断面図である。
FIG. 1 is a schematic sectional view showing a positional relationship of electromagnetic coils in a mold of the present invention.

【図2】鋳型内の溶鋼流動パターンを示す模式図であ
る。
FIG. 2 is a schematic diagram showing a molten steel flow pattern in a mold.

【符号の説明】[Explanation of symbols]

1:浸漬ノズル 2:短辺鋳型 3:吐出孔 4:メニスカス 5:溶鋼 6:モールドパウダー 7:移動磁界を発生させる電磁コイル 8:静磁場を発生させる電磁コイル 1: Immersion nozzle 2: Short side mold 3: Discharge hole 4: Meniscus 5: Molten steel 6: Mold powder 7: Electromagnetic coil for generating moving magnetic field 8: Electromagnetic coil for generating static magnetic field

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 俊夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 久保 典子 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Ishii, Marunouchi 1-2-2, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Noriko Kubo 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋳型内の溶鋼にノズルを浸漬して鋼を連
続鋳造する方法において、移動磁界方式の電磁コイルに
よって浸漬ノズルからの溶鋼吐出流を加速又は減速しつ
つ、鋳造方向で鋳型内のメニスカス近傍、鋳型幅方向で
鋳型中心から鋳造幅長さの1/6ないし1/3の範囲
に、浸漬ノズルをはさんで両側の位置に静磁場を印加す
る電磁コイルを設置して、メニスカスの一部に静磁場を
印加しつつ鋳造することを特徴とする鋼の連続鋳造方
法。
1. A method of continuously casting steel by immersing a nozzle in molten steel in a mold, accelerating or decelerating the molten steel discharge flow from the immersion nozzle by a moving magnetic field type electromagnetic coil while In the vicinity of the meniscus, in the width direction of the mold from the center of the mold to a range of 1/6 to 1/3 of the casting width, electromagnetic coils for applying a static magnetic field are installed on both sides of the meniscus by sandwiching the immersion nozzle. A continuous casting method for steel, which comprises casting while applying a static magnetic field to part of the steel.
JP27215595A 1995-10-20 1995-10-20 Method for continuously casting steel Withdrawn JPH09108797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27215595A JPH09108797A (en) 1995-10-20 1995-10-20 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27215595A JPH09108797A (en) 1995-10-20 1995-10-20 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH09108797A true JPH09108797A (en) 1997-04-28

Family

ID=17509864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27215595A Withdrawn JPH09108797A (en) 1995-10-20 1995-10-20 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH09108797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074213A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
WO2008004969A1 (en) * 2006-07-06 2008-01-10 Abb Ab Method and apparatus for controlling the flow of molten steel in a mould
JP2008188644A (en) * 2007-02-06 2008-08-21 Jfe Steel Kk Continuous casting method for steel, equipment, and method for producing surface treated steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074213A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
WO2008004969A1 (en) * 2006-07-06 2008-01-10 Abb Ab Method and apparatus for controlling the flow of molten steel in a mould
US7975753B2 (en) 2006-07-06 2011-07-12 Abb Ab Method and apparatus for controlling the flow of molten steel in a mould
JP2008188644A (en) * 2007-02-06 2008-08-21 Jfe Steel Kk Continuous casting method for steel, equipment, and method for producing surface treated steel sheet

Similar Documents

Publication Publication Date Title
EP0401504A2 (en) Apparatus and method for continuous casting
JP2726096B2 (en) Continuous casting method of steel using static magnetic field
JP3188273B2 (en) Control method of flow in mold by DC magnetic field
JPH09108797A (en) Method for continuously casting steel
JP2003164947A (en) Continuous casting for steel
JP3129942B2 (en) Stirring method of molten steel in continuous casting mold
JPS63119959A (en) Discharge flow controller for immersion nozzle for continuous casting
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JP2990555B2 (en) Continuous casting method
JP2930448B2 (en) Continuous casting method of steel using static magnetic field
JPH09192802A (en) Method for continuously casting extra-low carbon steel slab
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
JPH0579430B2 (en)
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
Yamada et al. Simulation of coagulation of non-metallic inclusions in tundish and their trapping into solidified shell in continuous casting mould
JPS62130752A (en) Continuous casting method for bloom or billet
JPH08267197A (en) Method for controlling fluidity of molten steel in mold
JPH10263777A (en) Method for continuously casting steel
JP2695455B2 (en) Method of pouring molten metal into continuous casting mold
JPH09182943A (en) Continuous casting method of steel
JPS63260652A (en) Method for preventing involvement of mold powder in continuous casting
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JP2887625B2 (en) Continuous casting equipment
JPH09192803A (en) Method for continuously casting steel
KR100361612B1 (en) Method for manufacturing defectless slab in continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107