JPS62130752A - Continuous casting method for bloom or billet - Google Patents

Continuous casting method for bloom or billet

Info

Publication number
JPS62130752A
JPS62130752A JP27165485A JP27165485A JPS62130752A JP S62130752 A JPS62130752 A JP S62130752A JP 27165485 A JP27165485 A JP 27165485A JP 27165485 A JP27165485 A JP 27165485A JP S62130752 A JPS62130752 A JP S62130752A
Authority
JP
Japan
Prior art keywords
molten steel
magnetic field
field generator
immersion nozzle
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27165485A
Other languages
Japanese (ja)
Inventor
Kenji Murata
村田 賢治
Shoji Miyagawa
宮川 昌治
Kenichiro Suzuki
健一郎 鈴木
Masao Oguchi
征男 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27165485A priority Critical patent/JPS62130752A/en
Publication of JPS62130752A publication Critical patent/JPS62130752A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Abstract

PURPOSE:To prevent an increase of inclusions and to evade a breakout accident by limiting a range of magnetic field of a static magnetic field generator provided in a pouring direction from a bottom end of a single hole type submerged nozzle, and an intensity of a magnetic flux density to brake the molten steel flow from a delivering gate. CONSTITUTION:The static magnetic field generator 5 is positioned to magnetize statically for the pouring molten steel in the range of 20-30mm for advancing position from the delivering gate 3 of the single hole type submerged nozzle 2. Then, a length of the static magnetic field generator 5 is regulated to the same or more than a min. length of a section of the casting billet, and the magnetic flux density is regulated to >=1,200 gauss at the center of a mold 1. Here, the reason why the range influenced by the magnetic field is limited, is that non-metallic inclusions are easily trapped into the casting billet, as the amount of molten steel flowed to downward is increased, in case of shorter length than above-mentioned length for the static magnetic field generator. Furthermore, if the magnetic flux density is not >=1,200 gauss, the amount of non-metallic inclusions is increased as the molten steel flowed to downward is not braked.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単孔式浸漬ノズルを用いて、内部品質の良好
なブルーム、ビレットの高速鋳造と多連続鋳造を可能に
する技術に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a technology that enables high-speed casting and multi-continuous casting of blooms and billets with good internal quality using a single-hole immersion nozzle. be.

(従来の技術) 近年、連続鋳造技術の進歩により、造塊−分塊圧延法と
比較して製造コストの低い連続鋳造が大幅に増大してい
るが、さらに連続鋳造の生産性を向上させ、低コスト化
を図るために多連続鋳造率の向上と鋳造速度の一層の高
速化が図られている。
(Prior art) In recent years, due to advances in continuous casting technology, continuous casting, which has lower production costs than the ingot-blooming rolling method, has significantly increased. In order to reduce costs, efforts are being made to improve the multi-continuous casting rate and further increase the casting speed.

鋼の連続鋳造ではタンディツシュ内の溶鋼をモ=ルド内
に注湯するために、アルミナグラファイト質の浸漬ノズ
ルが用いられ、一般にブルームを鋳造する場合は吐出口
の形状が単孔あるいは4孔の浸漬ノズルを使用している
In continuous steel casting, an alumina graphite immersion nozzle is used to pour the molten steel in the tundish into the mold, and generally when casting blooms, the discharge outlet is immersed with a single hole or four holes. using a nozzle.

(発明が解決しようとする問題点) 単孔式浸漬ノズルを使用した場合は、吐出口の径が大き
いためにノズル閉塞に対して有利であるが、吐出溶鋼流
が、第2b図に示すように深く侵入するために、溶鋼と
一緒に持ち込まれる非金属介在物が鋳片内にトラップさ
れて品質の低下を招く。
(Problems to be Solved by the Invention) When a single-hole type immersion nozzle is used, the diameter of the discharge port is large, which is advantageous against nozzle clogging, but the discharged molten steel flow is as shown in Fig. 2b. As the non-metallic inclusions are brought in with the molten steel and penetrate deeply into the slab, they become trapped within the slab, resulting in a decrease in quality.

しかも、鋳造速度を高速化させるこの傾向を助長させる
ことから、鋳造速度は制限されて鋳造速度を高速化する
うえで障害となっている。
Moreover, this tendency to increase the casting speed is exacerbated, which limits the casting speed and becomes an obstacle to increasing the casting speed.

一方、単孔式ノズルの欠点を解消するために考案された
4孔式浸漬ノズルは水平、上向、又は下向の四つの吐出
孔を有するので、第3a図に示すように吐出溶鋼流は深
く侵入せず、溶鋼と同時に侵入する非金属介在物はモー
ルド内で浮上分離することがら単孔式浸漬ノズルに比べ
て鋳片の品質が向上する。しかし、4孔式浸漬ノズルは
吐出口の口径が小さいために、アルミキルド綱あるいは
Ti、希土類金属を含有する鋼種を多連続鋳造した場合
、AI 、 Ti 、希土類金属の酸化物がノズル内面
に付着してノズル閉塞が生じるので多連続鋳造には適し
ていない。そこで、ノズル閉塞を防止するために浸漬ノ
ズルの材質を溶融凝固型のシリカとすることが考えられ
るが、シリカが溶損もしくは剥離して溶鋼を汚染したり
、この剥離および溶損により浸漬ノズルの形状が保たれ
ないという問題が生じる。さらに、この4孔式浸漬ノズ
ルは吐出口とモールド内の凝固シェルとの距離が小さい
丸めに、高速鋳造する際、吐出溶鋼流により凝固シェル
の再溶解が起こり、ブレークアウトの危険性が増大する
。また、ノズルが閉塞すると吐出溶鋼流のアンバランス
が生じて、下降流の増加に伴って非金属介在物が深く侵
入したり、上昇流の増加による湯面変動が生じる。
On the other hand, the four-hole immersion nozzle, which was devised to eliminate the drawbacks of the single-hole nozzle, has four discharge holes that are oriented horizontally, upwardly, or downwardly, so the discharged molten steel flow is as shown in Figure 3a. Since non-metallic inclusions that do not penetrate deeply and enter at the same time as the molten steel float up and separate within the mold, the quality of the slab is improved compared to a single-hole immersion nozzle. However, because the diameter of the discharge port of a four-hole immersion nozzle is small, when aluminum killed steel or steel containing Ti and rare earth metals is continuously cast, oxides of AI, Ti, and rare earth metals may adhere to the inner surface of the nozzle. This method is not suitable for multi-continuous casting because nozzle clogging occurs. Therefore, in order to prevent nozzle clogging, it is possible to use melt-solidified silica as the material for the immersion nozzle, but the silica may melt or peel off and contaminate the molten steel, and the silica may melt or peel off and contaminate the molten steel. A problem arises in that the shape is not maintained. Furthermore, this four-hole immersion nozzle has a small distance between the discharge port and the solidified shell in the mold, so during high-speed casting, the solidified shell will be remelted by the discharged molten steel flow, increasing the risk of breakout. . In addition, when the nozzle is blocked, the discharged molten steel flow becomes unbalanced, and as the downward flow increases, nonmetallic inclusions may penetrate deeply, and the molten metal level fluctuates due to the increase in the upward flow.

以上述べたような問題を抱えながら、より一層の鋳造速
度の高速化と多連続鋳造の実施が指向されている。本発
明は、クレータ−内の深部に非金属介在物が侵入して鋳
片の品質を低下させることを防止するとともに浸漬ノズ
ルに起るノズルの閉塞という問題を解決して、鋳造速度
の高速化と多連続鋳造を可能ならしめることを目的とし
ている。
Despite the above-mentioned problems, efforts are being made to further increase the casting speed and implement multiple continuous casting. The present invention prevents non-metallic inclusions from entering deep inside the crater and deteriorating the quality of slabs, solves the problem of nozzle clogging that occurs with submerged nozzles, and increases casting speed. The purpose is to make multi-continuous casting possible.

(問題点を解決するための手段) 本発明のブルームもしくはビレットの連続鋳造方法は、
第1a図および第1b図に示すように単孔式浸漬ノズル
2の吐出口3より鋳造方向に鋳片断面の最少長さと同等
以上の長さを有する静磁場発生装置5を設け、鋳型の中
心で1200ガウス以上の磁束密度を発生させることに
より、吐出溶鋼流に電磁制動力を与えることを特徴とす
る溶鋼の連続鋳造方法である。
(Means for solving the problems) The bloom or billet continuous casting method of the present invention includes:
As shown in FIGS. 1a and 1b, a static magnetic field generator 5 having a length equal to or longer than the minimum length of the slab cross section is installed in the casting direction from the discharge port 3 of the single-hole immersion nozzle 2, and This continuous casting method of molten steel is characterized by applying an electromagnetic braking force to the discharged molten steel flow by generating a magnetic flux density of 1200 Gauss or more.

(作用) 本発明はノズル詰りのおこりにくい単孔式浸漬ノズルを
使用し、静磁場発生装置をこの単孔式浸漬ノズルからの
吐出溶鋼流が該ノズルの吐出口から20〜30寵進んだ
範囲内で静磁場に入るように位置決めする。また、吐出
溶鋼流の流動制御をするためには、磁場の及ぶ範囲とそ
の強さが重要であり、実験結果より、その範囲は鋳片断
面の最少長さと同等以上の長さが必要であり、かつ、磁
束密度が鋳型の中心で1200ガウス以上でないと効果
がないことが判明した。
(Function) The present invention uses a single-hole submerged nozzle that is less prone to nozzle clogging, and operates the static magnetic field generator within an area where the molten steel flow discharged from the single-hole submerged nozzle advances 20 to 30 degrees from the discharge port of the nozzle. position it within the static magnetic field. In addition, in order to control the flow of discharged molten steel, the range and strength of the magnetic field are important, and experimental results show that the range needs to be at least as long as the minimum length of the slab cross section. , and it was found that it is not effective unless the magnetic flux density is 1200 Gauss or more at the center of the mold.

即ち、磁場の及ぶ範囲を最低限鋳片断面の最少長さと同
等とした理由は、第1b図に示すような溶鋼の流動を実
現するためであり、これより短いと下向きに流れる溶鋼
流が多くなり、非金属介在物が鋳片内部にトラップされ
易いためである。また、磁束密度が1200ガウス以上
でないと下向きに流れる溶鋼流を完全に制動できないか
らやはり非金属介在物が多くなるためである。
In other words, the reason why the range covered by the magnetic field is at least equal to the minimum length of the cross section of the slab is to realize the flow of molten steel as shown in Figure 1b. This is because non-metallic inclusions are likely to be trapped inside the slab. Further, unless the magnetic flux density is 1200 Gauss or higher, the downward flowing flow of molten steel cannot be completely braked, which also results in a large number of nonmetallic inclusions.

前記したように設定された静磁場中に溶鋼が供給される
と、溶鋼の流れと静磁場との相互作用により、溶鋼は第
1b図に示すように溶鋼の吐出流7の方向に対して逆向
きの電磁力、即ち溶鋼の吐出流7を減速させる方向の電
磁制動力Fbを受ける。
When molten steel is supplied into the static magnetic field set as described above, the interaction between the flow of molten steel and the static magnetic field causes the molten steel to move in the opposite direction to the direction of the discharge flow 7 of the molten steel, as shown in Fig. 1b. It receives an electromagnetic force in a direction, that is, an electromagnetic braking force Fb in a direction that decelerates the discharge flow 7 of molten steel.

したがって吐出口3からの溶鋼の吐出流7は電磁制動力
pbにより同図に矢印で示すように強制的に分散される
ので、溶鋼の吐出流がクレータ−内に深く浸入すること
を防止でき、非金属介在物が鋳片内にトラップされるこ
とがない。また、同図にしめしたような溶鋼の流動があ
ることから鋳型内の溶鋼の表面に熱が供給されるために
、溶鋼表面の皮張りとそれに起因する介在物性欠陥が少
なくなる。
Therefore, the discharge flow 7 of molten steel from the discharge port 3 is forcibly dispersed as shown by the arrows in the figure by the electromagnetic braking force pb, so that the discharge flow of molten steel can be prevented from penetrating deeply into the crater. Non-metallic inclusions are not trapped within the slab. Furthermore, since heat is supplied to the surface of the molten steel in the mold due to the flow of the molten steel as shown in the figure, skinning on the surface of the molten steel and defects caused by inclusions caused by it are reduced.

また、本発明法では、ビレットもしくはブルームを対象
にして連続鋳造の高速化を図っているが、その理由は、
鋳型断面の広いスラブの場合には2孔ノズルを用いて鋳
造するとき側面まで再溶解が起こりブレークアウトを起
こす危険が小さい。
In addition, the method of the present invention aims to speed up continuous casting of billets or blooms, and the reason is that
In the case of a slab with a wide mold cross-section, when casting using a two-hole nozzle, there is little risk of re-melting to the sides and breakout.

したがって、単孔式ノズルを用いる本発明の効果は小さ
い。
Therefore, the effect of the present invention using a single-hole nozzle is small.

(実施例) 180 1−ン転炉で精錬した後、R1+脱ガス処理を
施したAIを0.030%含有したA1キルド鋼とTi
濃度0.25%のTi含有鋼を、湾曲型ブルーム連鋳機
により厚さ300龍、幅400鶴の断面寸法のブレーム
に鋳造する際、4孔式浸漬ノズル、単孔式浸漬ノズルお
よび本発明法により、それぞれ鋳造した。本発明法の鋳
造速度は、1.0〜1.8m/minとし、厚さ300
鰭、幅400mの鋳型に設けた長さ325龍の静磁場発
生装置により磁束密度が2000ガウスとなるように静
磁場を加えた状態で鋳造した。また、4孔式浸漬ノズル
を使用した場合と単孔式浸漬ノズルを使用した場合の鋳
造速度は1.0m/lll1nとした。
(Example) 180 A1 killed steel containing 0.030% AI and Ti that was refined in a 1-horn converter and subjected to R1+ degassing treatment
When casting Ti-containing steel with a concentration of 0.25% into a beam with a cross-sectional dimension of 300 mm thick and 400 mm wide using a curved bloom continuous casting machine, a four-hole immersion nozzle, a single-hole immersion nozzle, and the present invention are used. Each was cast according to the method. The casting speed of the method of the present invention is 1.0 to 1.8 m/min, and the thickness is 300 m/min.
The fin was cast in a mold with a width of 400 m and a static magnetic field generator with a length of 325 mm, applying a static magnetic field so that the magnetic flux density was 2000 Gauss. Further, the casting speed was set to 1.0 m/lll1n when a four-hole type immersion nozzle was used and when a single-hole type immersion nozzle was used.

鋳造速度1.0m/lll1nで鋳造した実験材の表面
から厚さ5I11のサンプルを切出し、X線透過法によ
り直径100μ以上の介在物を調査し、このときの鋳片
内の介在物分布を第4図に示す。この図より鋳片の表面
から約30龍の位置に介在物の集積帯が存在することが
判るが、本発明法を単孔式浸漬ノズルや4孔式浸漬ノズ
ルを使用した場合と比較した場合、この集積帯の介在物
が単孔式浸漬ノズルの115.4孔式浸漬ノズルの17
2に低減できた。
A sample with a thickness of 5I11 was cut from the surface of the experimental material cast at a casting speed of 1.0 m/lll1n, and inclusions with a diameter of 100 μ or more were investigated using the X-ray transmission method. Shown in Figure 4. From this figure, it can be seen that there is an accumulation zone of inclusions at a position of about 30 mm from the surface of the slab, but when comparing the method of the present invention with the case of using a single-hole immersion nozzle or a 4-hole immersion nozzle. , the inclusions in this accumulation zone are 115 for a single-hole immersion nozzle and 17 for a 4-hole immersion nozzle.
We were able to reduce it to 2.

また、この集積帯の介在物と鋳造速度との関係を第5図
に示すが、1.4m/minまでの鋳造速度では介在物
量は少なく、しかも安定している。これに対して、4孔
式浸漬ノズルを使用した場合、吐出溶鋼流が凝固シェル
に衝突した後下向き流と上昇流にわかれ、この上昇流に
より場面レベルが変動することがあるために、モールド
パウダーの一部がモールド内に巻き込まれ、介在物量の
ばらつきが大きくなっている。さらに、ノズルの閉塞に
よる場面レベルの変動が助長されて、連々数の増加に伴
い介在物が多くなる傾向があった。
Further, the relationship between the inclusions in this accumulation zone and the casting speed is shown in FIG. 5, and the amount of inclusions is small and stable at casting speeds up to 1.4 m/min. On the other hand, when a 4-hole immersion nozzle is used, the discharged molten steel flow splits into a downward flow and an upward flow after colliding with the solidified shell, and this upward flow may cause the scene level to fluctuate. Some of the inclusions are caught in the mold, and the amount of inclusions varies widely. Furthermore, fluctuations in the scene level due to nozzle blockage were facilitated, and as the number of consecutive shots increased, the number of inclusions tended to increase.

また、Alキルド鋼とTi含有鋼を4礼式浸漬ノズルを
使用して鋳造した場合と、本発明法により鋳造した場合
の連々数との関係を第6図に示す。4孔式浸清ノズルを
用いてAlキルド鋼を鋳造した場合は3連鋳終了時に浸
漬ノズルの閉塞を起し、3連鋳以上の連続鋳造は困難で
あった。また、Ti含有鋼の場合も3連鋳てほぼ浸漬ノ
ズルが閉塞するため、2連鋳が限度であった。これに対
して、本発明法は、4孔式浸漬ノズルの2〜3倍の6連
鋳までの鋳造が可能となり、ノズルの閉塞は両鋼種とも
殆ど問題とならない。しかし6連鋳以上の連続鋳造をす
るとタンディツシュ内の溶鋼中の非金属介在物が増加し
て溶鋼が次第に汚染されるので、6連鋳て止めた。
Further, FIG. 6 shows the relationship between the number of casts when Al-killed steel and Ti-containing steel are cast using a 4-type immersion nozzle and when they are cast by the method of the present invention. When Al-killed steel was cast using a four-hole type immersion nozzle, the immersion nozzle became clogged at the end of three consecutive castings, making continuous casting of three or more consecutive castings difficult. Furthermore, in the case of Ti-containing steel, the immersion nozzle was almost clogged after three consecutive castings, so two consecutive castings were the limit. On the other hand, the method of the present invention enables casting up to 6 continuous castings, which is 2 to 3 times as much as with a 4-hole immersion nozzle, and nozzle clogging is hardly a problem for both steel types. However, if six or more continuous castings were carried out, non-metallic inclusions in the molten steel in the tundish would increase and the molten steel would become gradually contaminated, so six continuous castings were stopped.

(発明の効果) 以上説明したように本発明の方法によれば、ノズル詰り
ゃ凝固殻の溶解を起さない単孔式浸漬ノズルを用いて、
その吐出口からの溶鋼流を静磁場発生装置により制動す
ることにより介在物量の増加を防止できるとともにブレ
ークアウトの危険性を回避できる。
(Effects of the Invention) As explained above, according to the method of the present invention, using a single-hole immersion nozzle that does not cause the solidified shell to dissolve if the nozzle is clogged,
By braking the molten steel flow from the discharge port using a static magnetic field generator, it is possible to prevent an increase in the amount of inclusions and to avoid the risk of breakout.

また、鋳造速度を高速化しても介在物量は増加せず、ノ
ズルの閉塞が起こらないので、多連続鋳造も可能となる
Further, even if the casting speed is increased, the amount of inclusions does not increase and nozzle clogging does not occur, so multiple continuous castings are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1a 、 Ib図は、本発明の方法を適用した場合の
鋳型、浸漬ノズルおよび静磁場発生装置との関係を示す
図である。 第2a 、 2b図は、単孔式浸漬ノズルを使用した場
合の吐出溶鋼流の流れを示す図であり、第3a +3b
図は4孔式浸漬ノズルを使用した場合の吐出溶鋼流の流
れを示す図である。 第4図は、鋳片内の介在物分布を示す図であり、第5図
は、鋳造速度と介在物の集積帯との関係を示す図である
。 第6図は、本発明法および4孔式浸漬ノズルと連々数と
の関係を示す図である。 1・・・鋳型        2・・・浸漬ノズル3.
4・・・吐出口     5・・・静磁場発生装置6・
・・モールドフラックス 7・・・吐出溶鋼流8・・・
凝固シェル
Figures 1a and 1b are diagrams showing the relationship between the mold, the immersion nozzle, and the static magnetic field generator when the method of the present invention is applied. Figures 2a and 2b are diagrams showing the flow of discharged molten steel when a single-hole immersion nozzle is used;
The figure shows the flow of discharged molten steel when a four-hole immersion nozzle is used. FIG. 4 is a diagram showing the distribution of inclusions in the slab, and FIG. 5 is a diagram showing the relationship between the casting speed and the accumulation zone of inclusions. FIG. 6 is a diagram showing the relationship between the method of the present invention, a four-hole type immersion nozzle, and the number of rows. 1... Mold 2... Immersion nozzle 3.
4...Discharge port 5...Static magnetic field generator 6.
...Mold flux 7...Discharged molten steel flow 8...
solidified shell

Claims (1)

【特許請求の範囲】[Claims] 1、単孔式浸漬ノズルを用いて、ブルームもしくはビレ
ットを連続鋳造するに際して、該単孔式浸漬ノズルの下
端から鋳造方向に鋳片断面の最少長さと同等以上の長さ
を有する静磁場発生装置を設け、かつ鋳型の中心で12
00ガウス以上の磁束密度を発生させて吐出溶鋼流に電
磁制動力を与えることを特徴とするブルームもしくはビ
レットの連続鋳造方法。
1. When continuously casting blooms or billets using a single-hole immersion nozzle, a static magnetic field generator having a length equal to or longer than the minimum length of the slab cross section from the lower end of the single-hole immersion nozzle in the casting direction. and 12 at the center of the mold.
A continuous bloom or billet casting method characterized by generating a magnetic flux density of 0.00 Gauss or more to apply an electromagnetic braking force to a discharged molten steel flow.
JP27165485A 1985-12-04 1985-12-04 Continuous casting method for bloom or billet Pending JPS62130752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27165485A JPS62130752A (en) 1985-12-04 1985-12-04 Continuous casting method for bloom or billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27165485A JPS62130752A (en) 1985-12-04 1985-12-04 Continuous casting method for bloom or billet

Publications (1)

Publication Number Publication Date
JPS62130752A true JPS62130752A (en) 1987-06-13

Family

ID=17503046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27165485A Pending JPS62130752A (en) 1985-12-04 1985-12-04 Continuous casting method for bloom or billet

Country Status (1)

Country Link
JP (1) JPS62130752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265665A (en) * 1991-06-05 1993-11-30 Kawasaki Steel Corporation Continuous casting method of steel slab
US5570736A (en) * 1991-09-25 1996-11-05 Kawasaki Steel Corporation Process of continuously casting steel using electromagnetic field
JP2001205137A (en) * 2000-01-28 2001-07-31 Snow Brand Milk Prod Co Ltd Cyclone type dust collector
US6460606B2 (en) * 1996-09-19 2002-10-08 Corus Staal Bv Continuous casting machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855157A (en) * 1981-09-28 1983-04-01 Sumitomo Metal Ind Ltd Method and device for controlling charged flow in continuous casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855157A (en) * 1981-09-28 1983-04-01 Sumitomo Metal Ind Ltd Method and device for controlling charged flow in continuous casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265665A (en) * 1991-06-05 1993-11-30 Kawasaki Steel Corporation Continuous casting method of steel slab
US5570736A (en) * 1991-09-25 1996-11-05 Kawasaki Steel Corporation Process of continuously casting steel using electromagnetic field
US6460606B2 (en) * 1996-09-19 2002-10-08 Corus Staal Bv Continuous casting machine
JP2001205137A (en) * 2000-01-28 2001-07-31 Snow Brand Milk Prod Co Ltd Cyclone type dust collector

Similar Documents

Publication Publication Date Title
CA2015573C (en) Apparatus and method for continuous casting
JPH02284750A (en) Method for continuously casting steel using static magnetic field
EP0265235B1 (en) Continuous casting of composite metal material
US5265665A (en) Continuous casting method of steel slab
JPS62130752A (en) Continuous casting method for bloom or billet
JP3566904B2 (en) Steel continuous casting method
JPH0114386Y2 (en)
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
JPS623857A (en) Continuous casting method using single hole type immersion nozzle
JPS6272458A (en) Electromagnetic stirring method
JP2990555B2 (en) Continuous casting method
JPH0577007A (en) Method for continuously casting steel slab using static magnetic field
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JPS6114051A (en) Immersion nozzle for continuous casting
JPH05104218A (en) Method for continuous casting steel slab using progressive magnetic field
JPS6331817Y2 (en)
JPH01113159A (en) Submerged nozzle for continuous casting
JPS63230258A (en) Method and apparatus for continuously casting steel by using static magnetic field
JPH04197553A (en) Method for continuously casting steel slab using static magnetic field
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JPH0525588B2 (en)
JPH09108797A (en) Method for continuously casting steel
JP3095710B2 (en) Continuous casting method using static magnetic field
JP2888155B2 (en) Continuous casting method of ultra low carbon steel containing Ti
JPH01180763A (en) Method for continuously casting steel