JPS63230258A - Method and apparatus for continuously casting steel by using static magnetic field - Google Patents

Method and apparatus for continuously casting steel by using static magnetic field

Info

Publication number
JPS63230258A
JPS63230258A JP913487A JP913487A JPS63230258A JP S63230258 A JPS63230258 A JP S63230258A JP 913487 A JP913487 A JP 913487A JP 913487 A JP913487 A JP 913487A JP S63230258 A JPS63230258 A JP S63230258A
Authority
JP
Japan
Prior art keywords
static magnetic
molten steel
magnetic field
flow
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP913487A
Other languages
Japanese (ja)
Other versions
JPH0790339B2 (en
Inventor
Koji Hosoya
浩二 細谷
Masao Oguchi
征男 小口
Tomoo Kayano
萱野 朋生
Kenji Saito
斉藤 健志
San Nakato
中戸 参
Kenichi Tanmachi
反町 健一
Sho Yao
八百 升
Katsuo Kinoshita
勝雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPS63230258A publication Critical patent/JPS63230258A/en
Publication of JPH0790339B2 publication Critical patent/JPH0790339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To surely prevent entrapping phenomenon of non-metallic inclusion and to stably and continuously cast a cast slab having good quality by pouring molten steel in center part of static magnetic field in a mold of continuous casting machine and immediately controlling flow of the molten steel by the static magnetic field, to reduce the flowing speed. CONSTITUTION:In the continuous casting apparatus, one pair of first static magnetic poles 3 are arranged almost at the center part of wide width side face of upper part of the mold 1 for the continuous casting machine. The center line linking the centers C of the magnetic poles almost coincides with the discharging hole 8 of a submerged nozzle 7 for pouring the molten steel. The max. magnetic flux density of the above static magnetic pole 3 is to be >=about 1000G and desirably >=1700G under condition of about 1-4 ton/min practically pouring speed of the molten steel. By this method, the molten steel 5 poured in the mold 1 is smoothly flowed immediately by reducing flow speed without development of turbulent flow at the high magnetic flux density part 9. Speed of this flow is further reduced at the equal density line 11 to become uniform dispersing molten steel flow 12. By this method, the entrapment of generated non-metallic inclusion is prevented by the high speed molten steel flow as showing by the broken line arrow, and held to the top part of the meniscus part in the mold 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼の鋳造方法および装置、特に静磁場を用い
て酸化物系非金属介在物の少ない清浄鋼を得る連続鋳造
方法および装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method and apparatus for casting steel, particularly a continuous casting method and apparatus for obtaining clean steel with few oxide-based nonmetallic inclusions using a static magnetic field. It is something.

(従来の技術) 従来、鋼の連続鋳造に際して、注入溶鋼中に含まれてい
る酸化物系非金属介在物が注入溶鋼流によって鋳片内部
に深く巻きこまれることが問題となっており、特に、湾
曲型の連鋳機では、一旦深く巻き込まれた非金属介在物
がメニスカス部分にまで浮上することがなく、凝固殻の
下面に把えられ、圧延後の鋼板の表面にスリバー、ブリ
スター等の欠陥が発生ずるという問題が生じている。
(Prior Art) Conventionally, during continuous casting of steel, it has been a problem that oxide-based nonmetallic inclusions contained in the injected molten steel are deeply engulfed inside the slab by the injected molten steel flow. In a curved continuous casting machine, non-metallic inclusions that have been deeply rolled up do not float up to the meniscus area and are caught on the lower surface of the solidified shell, causing defects such as slivers and blisters on the surface of the rolled steel sheet. The problem is that the problem occurs.

上述した問題を解決する方法として、特開昭57−17
356号公報には、少なくとも1個以上の静磁場を鋳型
内に配設し、注入溶鋼を静磁場に流すことによって注入
溶鋼流の速度を減速するとともに流れ方向を制御するこ
とが記載されている。
As a method to solve the above-mentioned problem,
Publication No. 356 describes that at least one static magnetic field is provided in the mold, and by causing the injected molten steel to flow through the static magnetic field, the speed of the injected molten steel flow is reduced and the flow direction is controlled. .

(発明が解決しようとする問題点) しかしながら、上記公報に開示されているように、注入
溶鋼を静磁場の外側から静磁場に向は流す場合には、注
入溶鋼が静磁場の磁束分布の等密度線に沿って流れよう
とする傾向があるため、溶鋼流の速度を減速させる方向
への溶′A:]の流れ方向の制御がカ〔シ<、極めて微
妙な制御を行うことが必要であり、制御が完全に行われ
ない場合には、酸化物系非金属介在物を鋳片中に深く巻
き込んでしまうという問題があり、良質の鋳片を安定し
て得ることが困難であるという問題がある。
(Problems to be Solved by the Invention) However, as disclosed in the above publication, when the injected molten steel is caused to flow in the direction of the static magnetic field from outside the static magnetic field, the injected molten steel has a uniform magnetic flux distribution of the static magnetic field. Since the molten steel tends to flow along the density line, it is necessary to control the flow direction of the molten steel in a direction that slows down the velocity of the molten steel. If the control is not carried out completely, there is a problem that oxide-based nonmetallic inclusions will be deeply involved in the slab, making it difficult to stably obtain high quality slabs. There is.

本発明の主目的は、溶鋼を浸漬ノズルから静磁場の中心
部に吐出させることによって注入された溶鋼の流れを直
ちに静磁場によって制御して減速し、これにより非金属
介在物の巻き込み現象を確実に防止し得る連続鋳造方法
を提供しようとするものである。
The main purpose of the present invention is to discharge molten steel from a submerged nozzle into the center of a static magnetic field, so that the flow of the injected molten steel is immediately controlled and decelerated by the static magnetic field, thereby ensuring the entrainment of non-metallic inclusions. The purpose of the present invention is to provide a continuous casting method that can prevent such problems.

本発明の他の目的は、溶鋼を浸漬ノズルから第1の静磁
場の中心に吐出させてこの第1静磁場によって直ちに減
速させ、この第1静磁場からの減速下降流を第2の静磁
場によってさらに減速させ、これによって浸漬ノズルか
ら第1静磁場内に吐出された溶鋼の初速または注入速度
が大であっても、非金属介在物の巻き込み現象を確実に
防止し得る連続鋳造方法を提供しようとするものである
Another object of the present invention is to discharge molten steel from a submerged nozzle into the center of a first static magnetic field, to immediately decelerate the molten steel by the first static magnetic field, and to direct the decelerated downward flow from the first static magnetic field to the second static magnetic field. Provided is a continuous casting method that can reliably prevent entrainment of nonmetallic inclusions even if the initial velocity or injection velocity of molten steel discharged from a submerged nozzle into a first static magnetic field is high. This is what I am trying to do.

また、本発明の他の目的は、上述した方法を実施するた
めの連続鋳造装置を提供しようとするも゛のである。
Another object of the present invention is to provide a continuous casting apparatus for carrying out the above-mentioned method.

(問題点を解決するための手段) 本発明によれば、第1図に示すように、連鋳機の鋳型1
内に注入された溶鋼の流れを静磁場によって制御する鋼
の連続鋳造方法において、溶鋼を第1静磁場4の中心部
に注入して注入溶鋼5の流速を減速させる分散溶鋼流1
2を生ぜしめることを特徴とする。
(Means for Solving the Problems) According to the present invention, as shown in FIG.
In a continuous steel casting method in which the flow of molten steel injected into the first static magnetic field is controlled by a static magnetic field, the molten steel is injected into the center of the first static magnetic field 4 to reduce the flow velocity of the injected molten steel 5.
It is characterized by causing 2.

また、本発明によれば、第3図に示すように溶鋼を第1
静磁場4の中心部に注入して注入溶鋼5の流速を減速さ
せ、第1静磁場4からの溶鋼の減速下降流A1の方向を
少なくとも1個の第2静磁場14によって所定方向に制
御して溶鋼の減速下降流A、の速度をさらに低下させて
分散溶鋼流16を生ぜしめることを特徴とする。
Further, according to the present invention, as shown in FIG.
The flow rate of the injected molten steel 5 is decelerated by injecting it into the center of the static magnetic field 4, and the direction of the decelerated downward flow A1 of the molten steel from the first static magnetic field 4 is controlled in a predetermined direction by at least one second static magnetic field 14. The method is characterized in that the speed of the decelerated downward flow A of molten steel is further reduced to produce a dispersed molten steel flow 16.

本発明によれば、上述した方法を実施するための連続鋳
造装置として、第1図に示すように、連鋳機の鋳型1の
上部の、例えば、広幅側面2のほぼ中央位置に1組の一
対の第1静磁極3を設置し、この第1静磁極組3の磁極
中心Cを結ぶ中心線6(第2図参照)を溶鋼注入用浸漬
ノズル7の吐出孔8にほぼ一致させたことを特徴とする
According to the present invention, as a continuous casting apparatus for carrying out the above-mentioned method, as shown in FIG. A pair of first static magnetic poles 3 are installed, and a center line 6 (see FIG. 2) connecting the magnetic pole centers C of the first static magnetic pole set 3 is made to almost coincide with the discharge hole 8 of the immersion nozzle 7 for injecting molten steel. It is characterized by

また、本発明による装置の他の特徴として、第3図に示
すように、連鋳機の鋳型lの上部の、例えば、広幅側面
2のほぼ中央位置に1組の一対の第1静磁極3を設置し
、この第1静磁極組3の磁極中心Cを結ぶ中心線6を溶
鋼注入用浸漬ノズル7の吐出孔8にほぼ一致させ、第1
静磁極3より下方位置で、例えば鋳型広幅側面2の下端
部の両側端部に各短辺側面15に接して、少なくとも1
組の対の第2静磁極13を設けたことを特徴とする。
Further, as another feature of the apparatus according to the present invention, as shown in FIG. The center line 6 connecting the magnetic pole centers C of the first static magnetic pole set 3 is almost aligned with the discharge hole 8 of the molten steel injection immersion nozzle 7, and the first
At a position below the static magnetic pole 3, for example, at least one
It is characterized by providing a pair of second magnetostatic poles 13.

本発明を実施するに当っては、第1静磁極3を鋳型広幅
側面の上部中央部に設置し、第2静磁極13を下部両側
端部に設置するのが良い。
In carrying out the present invention, it is preferable to install the first magnetostatic pole 3 at the upper center of the wide side surface of the mold, and to install the second magnetostatic pole 13 at both ends of the lower part.

また、本発明を実施するに当っては、溶鋼の実用注入速
度1〜4 tonノminの場合に、第1静磁場4の最
高磁束密度を1000ガウス以上、特に好ましくは17
00ガウス以上とするのが良い。特に、第1静磁場4と
第2静磁場14とを用い、第1静磁場4の磁束密度を2
500ガウス、第2静磁場14の磁束密度を1000ガ
ウス以上とするのが好ましい。また、注入溶鋼の初速を
l m/sec以下、好ましくは0.5m/sec以下
とするのが良い。
Further, in carrying out the present invention, when the practical injection rate of molten steel is 1 to 4 tons min, the maximum magnetic flux density of the first static magnetic field 4 is set to 1000 Gauss or more, particularly preferably 17
It is preferable to set it to 00 Gauss or more. In particular, by using the first static magnetic field 4 and the second static magnetic field 14, the magnetic flux density of the first static magnetic field 4 is reduced to 2.
It is preferable that the magnetic flux density of the second static magnetic field 14 be 500 Gauss or more, and the magnetic flux density of the second static magnetic field 14 be 1000 Gauss or more. Further, the initial velocity of the injected molten steel is preferably 1 m/sec or less, preferably 0.5 m/sec or less.

(作 用) 第1図に5で示すように浸漬ノズル7の吐出孔8から第
1静磁極3.3の中心Cを結ぶ中心線6近傍で鋳型1内
に注入された溶鋼は第1静磁場4の高磁束密度部分9の
作用を受けて乱流を殆ど生じることなく、直しに減速さ
れて滑らかに流れる。
(Function) As shown by 5 in FIG. 1, the molten steel injected into the mold 1 near the center line 6 connecting the discharge hole 8 of the submerged nozzle 7 and the center C of the first static magnetic pole 3.3 is Under the action of the high magnetic flux density portion 9 of the magnetic field 4, the flow is directly decelerated and flows smoothly, with almost no turbulence.

この滑らかな流れが等密度線11を横切って進もうどす
ると、この流れを阻止する力が働き、等密度線11に沿
って流れる傾向が生じ、この結果、流れは減速されて、
分散溶鋼流12で示ずように均一に分散される。
When this smooth flow proceeds across the isopycnal line 11, a force acts to block this flow, causing a tendency to flow along the isopycnal line 11, and as a result, the flow is decelerated.
As shown in the dispersed molten steel flow 12, the molten steel is uniformly dispersed.

これにより、第1図に破線矢で示すような高速の注入溶
鋼流は発生せず、従来このような高速の注入溶鋼流によ
って生じた非金属介在物の巻き込み現象をなくし、非金
属介在物は鋳型内のメニスカス部分の上側に保持される
As a result, the high-speed injection molten steel flow shown by the broken line arrow in Fig. 1 does not occur, and the entrainment phenomenon of non-metallic inclusions that conventionally occurred due to such high-speed injection molten steel flow is eliminated, and the non-metallic inclusions are removed. It is held above the meniscus in the mold.

磁場の強さは1000ガウス以上であることが望ましく
、好ましくは1700ガウス程度とし、強ければ強いほ
ど良い。1000ガウスより低いと実用的な注入速度1
〜4 t/minのときに十分な流れの分散作用が期待
できない。
The strength of the magnetic field is preferably 1000 Gauss or more, preferably about 1700 Gauss, and the stronger the better. Practical injection rate below 1000 Gauss1
-4 t/min, sufficient flow dispersion effect cannot be expected.

磁場と流れの相互作用であるから流れがあまり速い場合
も効果が小さい。これは、短時間に磁場の範囲を通りす
ぎるからである。したがって、力積の効果から、100
0ガウスのときは、初速を0.5m/Sより低くし、1
700ガウスのときは初速を1. Om/sより低くす
るのが好ましい。
Since it is an interaction between the magnetic field and the flow, the effect is small if the flow is too fast. This is because it passes through the range of the magnetic field in a short time. Therefore, from the effect of impulse, 100
When it is 0 Gauss, the initial velocity is lower than 0.5 m/s, and 1
When the velocity is 700 Gauss, the initial velocity is 1. It is preferable to make it lower than Om/s.

上述したように、溶鋼を第1静磁極3.3間の第1静磁
場4の中央部に浸漬ノズル7の吐出口8から吐出させて
注入する場合、第1静磁場4の強さに対して吐出孔8か
ら吐出される溶鋼の吐出流5の初速または注入速度が十
分低い場合には、溶鋼の吐出流は第1静磁場4によって
直ちに分散、減速され、破線矢で示すような高速下降流
は発生しない。
As mentioned above, when molten steel is discharged from the discharge port 8 of the submerged nozzle 7 into the center of the first static magnetic field 4 between the first static magnetic poles 3.3, the strength of the first static magnetic field 4 is If the initial velocity or injection speed of the molten steel discharge flow 5 discharged from the discharge hole 8 is sufficiently low, the molten steel discharge flow is immediately dispersed and decelerated by the first static magnetic field 4, and descends at a high speed as shown by the dashed arrow. No flow occurs.

しかし、吐出流5の初速または注入速度が第1静磁場4
の強さに対して十分低くない場合は、吐出流は十分に減
速されず、第1静磁場4から鋳型短辺側面に沿って下降
する減速下降流AI(第3図参照)が発生する。
However, if the initial velocity or injection velocity of the discharge flow 5 is the first static magnetic field 4
If the strength is not sufficiently low compared to the strength of , the discharge flow is not decelerated sufficiently, and a decelerated downward flow AI (see FIG. 3) is generated that descends from the first static magnetic field 4 along the short sides of the mold.

したがって、本発明によれは、例えば、高い溶鋼注入速
度で連続鋳造を行う場合には、第3図に示すように、鋳
型lの上方中央部に設置される第1静磁場4より下方位
置で鋳型広幅面の両端部、すなわち鋳型短辺側面にそれ
ぞれ隣接する位置に第2の静磁場14を設置する。この
第2静磁場14は、減速された下降流人、に対して非接
触の堰として作用する。これがため、減速下降流人1は
第2静磁場14の内部深く進入することなく、第2静磁
場[4によって矢16で示すように減速分散される。こ
のようにして、第1静磁場4の強さに対して吐出流の初
速または注入速度が十分低くない場合でも、鋳片内部に
非金属介在物が深く持ち込まれるのを防止することがで
きる。
Therefore, according to the present invention, when performing continuous casting at a high molten steel injection rate, for example, as shown in FIG. The second static magnetic field 14 is installed at both ends of the wide side of the mold, that is, at positions adjacent to the short sides of the mold. This second static magnetic field 14 acts as a non-contact weir on the decelerated descending person. Therefore, the decelerated downdraft person 1 is decelerated and dispersed by the second static magnetic field [4, as shown by arrows 16, without deeply entering the second static magnetic field 14. In this way, even if the initial velocity or injection velocity of the discharge flow is not sufficiently low with respect to the strength of the first static magnetic field 4, it is possible to prevent nonmetallic inclusions from being brought deep into the slab.

本発明により第1静磁場4と第2静磁場14とを用いる
場合には、第1静磁場4の強さを2500ガウス、第2
静磁場14の強さを1oooガウス以上とすることによ
って実用的な注入速度1〜4 Lon/minで非金属
介在物の進入を防止できる。
When using the first static magnetic field 4 and the second static magnetic field 14 according to the present invention, the strength of the first static magnetic field 4 is set to 2500 Gauss, and the strength of the second static magnetic field 4 is
By setting the strength of the static magnetic field 14 to 100 Gauss or more, it is possible to prevent nonmetallic inclusions from entering at a practical injection rate of 1 to 4 Lon/min.

また、モールドフラックスの巻き込みを防止するだめに
、小型の静磁極をメニスカス近傍に配置するのが好まし
い。
Further, in order to prevent mold flux from being entangled, it is preferable to arrange a small static magnetic pole near the meniscus.

(実施例) 実施例(1) 厚さ220 mm、幅1350〜1500mmのスラブ
を連続鋳造する湾曲型スラブ連鋳機において、縦325
 mm、横500 mmの磁極を鋳型広幅面にその磁極
中心を浸漬ノズルの吐出孔の中心にほぼ一致させて設置
し、磁場中央での磁場の強さを1700ガウスにした。
(Example) Example (1) In a curved slab continuous casting machine that continuously casts slabs with a thickness of 220 mm and a width of 1350 to 1500 mm,
A magnetic pole with a width of 500 mm and a width of 500 mm was placed on the wide side of the mold so that the center of the magnetic pole almost coincided with the center of the discharge hole of the immersion nozzle, and the strength of the magnetic field at the center of the magnetic field was set to 1700 Gauss.

吐出孔断面積が総和で150 cm2の浸漬ノズルによ
り溶鋼を注入速度3,2t/minで注入した(溶鋼の
みでの初速50cm/sec )。冷延用層キルド鋼5
ヒート合計14ootを鋳造したが、冷間圧延製品は最
後までスリバー、ブリスターのほとんど!!1(い良好
な表面品質を保った。
Molten steel was injected at an injection rate of 3.2 t/min using a submerged nozzle with a total discharge hole cross-sectional area of 150 cm2 (initial velocity of molten steel alone was 50 cm/sec). Layer killed steel for cold rolling 5
A total of 14oot was cast, but most of the cold-rolled products were slivers and blisters! ! 1 (maintained good surface quality.

実施例(2) 吐出孔での流速を70 cm / secにした以外は
、他の条件を実施例(1)と同じにして実験した。冷間
圧延製品にはブリスターがわずかに生じた。
Example (2) An experiment was conducted under the same conditions as Example (1) except that the flow rate at the discharge hole was 70 cm/sec. Slight blistering occurred in the cold rolled product.

実施例(3) 磁場中央での磁場の強さを1000ガウスにし、その他
の条件は実施例(1)と同じにして実験した。冷間圧延
後の製品にはブリスターとスリバーがわずかに生じた。
Example (3) An experiment was conducted with the magnetic field strength at the center of the magnetic field set to 1000 Gauss, and other conditions being the same as in Example (1). Slight blisters and slivers were generated in the product after cold rolling.

実施例(4) 厚さ220胴、幅1350〜1500mmのスラブを連
続鋳造する湾曲型スラブ連鋳機において、縦、l:jl
!、325mmの磁極を鋳型広幅面にその磁極中心を浸
漬ノズルの吐出孔の中心にほぼ一致させて設置し、さら
に縦160 mm、 tj4325 mmの磁極を広幅
面の端部に底面が鋳型の底辺に一致するよう設置;lシ
た。広幅面中央の第1靜磁場の強さを2500ガウス、
第2静磁場の強さを1000ガウスにした。吐出孔断面
積が総和で150 cm2の浸漬ノズルにより溶鋼を注
入速度3.5L/+ninで注入した。
Example (4) In a curved slab continuous casting machine that continuously casts slabs with a thickness of 220 mm and a width of 1350 to 1500 mm, vertical, l:jl
! , a 325 mm magnetic pole was installed on the wide side of the mold with the center of the magnetic pole almost matching the center of the discharge hole of the immersion nozzle, and a magnetic pole of 160 mm long and 4325 mm was placed on the end of the wide side with the bottom surface at the bottom of the mold. Installed to match; The strength of the first quiet magnetic field at the center of the wide surface is 2500 Gauss,
The strength of the second static magnetic field was set to 1000 Gauss. Molten steel was injected at an injection rate of 3.5 L/+nin using a submerged nozzle with a total discharge hole cross-sectional area of 150 cm2.

冷延用へ1キルド鋼5ヒート合計1400tを鋳造した
が冷間圧延製品は最後までスリーパー、ブリスターのほ
とんど無い良好な表面品質を保った。
A total of 1,400 tons of 5 heats of 1-killed steel were cast for cold rolling, and the cold-rolled products maintained good surface quality with almost no sleepers or blisters until the end.

実施例(5) 注入速度を4.5t /minにした以外は、他の条件
を実施例(4)と同じにして実験した。冷間圧延製品に
はブリスターがわずかに生じた。
Example (5) An experiment was conducted under the same conditions as Example (4) except that the injection rate was 4.5 t/min. Slight blistering occurred in the cold rolled product.

実施例(6) 中央部の第1静磁場の強さを2500ガウス、端部の第
2静磁場の強さは500ガウスにしたことろ、冷間圧延
後の製品にはブリスターとスリーパーがわずかに生じた
Example (6) The strength of the first static magnetic field at the center was set to 2500 Gauss, and the strength of the second static magnetic field at the ends was set to 500 Gauss, so there were only a few blisters and sleepers in the product after cold rolling. It occurred in

(発明の効果) 本発明の効果を確認するため、比較例(1)、 (2)
と従来例とを実験し、本発明の実施例(1)、 (2)
、 (3)。
(Effects of the invention) In order to confirm the effects of the invention, comparative examples (1) and (2)
Examples (1) and (2) of the present invention were obtained by experimenting with the conventional example and the conventional example.
, (3).

(4)、 (5)、 CG)と比較して第1表に示す。Table 1 shows a comparison with (4), (5), and CG).

比較例(1) 上述の本発明の実施例(1)における条件の中、磁場の
強さを800ガウス以下にし、初速を75cm / s
ecにした。この結果、冷間圧延製品におけるスIJ 
−バーの発生が若干多くなり、ブリスターが多発した。
Comparative Example (1) Among the conditions in Example (1) of the present invention described above, the strength of the magnetic field was 800 Gauss or less, and the initial velocity was 75 cm / s.
I changed it to ec. As a result, the steel IJ in cold rolled products
- The occurrence of bars increased slightly and blisters occurred frequently.

比較例(2) 中央部の第1静磁場の強さを1000ガウス、端部の第
2静磁場の強さを500ガウスにし注入速度を4、Qt
/minにした。この結果、冷間圧延製品におけるスリ
ーパーの発生が若干多くなり、ブリスターが多発した。
Comparative Example (2) The strength of the first static magnetic field at the center is 1000 Gauss, the strength of the second static magnetic field at the end is 500 Gauss, the injection rate is 4, and Qt.
/min. As a result, the occurrence of sleepers in cold-rolled products increased slightly, and blisters occurred frequently.

従来例 従来例として・、特開昭57−17356号公f−に記
載の従来方法により2個の静磁場を用いて溶鋼を注入し
た。この結果、冷間圧延製品にはブリスターとスリーパ
ーが若干多く発生した。
Conventional Example As a conventional example, molten steel was injected using two static magnetic fields according to the conventional method described in JP-A-57-17356 f-. As a result, the cold-rolled product had slightly more blisters and sleepers.

本発明によれば、浸漬ノズルからの溶鋼の吐出位置が少
しぐらい変動しても安定した鋳込みができ、浸漬ノズル
からの溶鋼吐出流はすぐに減速して平均化し、局部的な
強い流れがなくなり、この結果、非金属介在物や、気泡
を鋳型内に深く持ちこむことがなくなり、スラブ連鋳鋳
片内部への非金属介在物、気泡の巻込量を著しく低減し
て1憂れた品質の鋼材を僻ることができるという効果が
1)られる。
According to the present invention, stable casting is possible even if the discharge position of the molten steel from the immersion nozzle changes slightly, and the flow of molten steel discharged from the immersion nozzle is quickly decelerated and averaged, eliminating strong local flows. As a result, non-metallic inclusions and air bubbles are not brought deep into the mold, and the amount of non-metallic inclusions and air bubbles trapped inside the continuously cast slab is significantly reduced, resulting in improved quality. 1) The advantage is that steel materials can be used sparingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による実施態様を示す鋳型部分の線図的
縦断面図、 第2図は第1図の■−■線上で一部を断面として示す線
図的断面図 第3図は本発明の(It、の実施態様を示す鋳型部分の
線図的縦断面図である。 1・・・鋳型      2・・・鋳型広幅側面3・・
・第1静磁極   4・・・第1静磁場5・・・注入溶
鋼    6・・・中心線7・・・浸漬ノズル   訃
・・下端吐出孔9・・・高磁束店度部分 10・・・低磁束密度部分
FIG. 1 is a diagrammatic longitudinal sectional view of a mold part showing an embodiment according to the present invention; FIG. 2 is a diagrammatic sectional view showing a part of the mold section along the line It is a diagrammatic longitudinal sectional view of a mold part showing an embodiment of the invention (It). 1... Mold 2... Mold wide side surface 3...
- First static magnetic pole 4... First static magnetic field 5... Injected molten steel 6... Center line 7... Immersed nozzle Bottom... Lower end discharge hole 9... High magnetic flux store portion 10... Low magnetic flux density part

Claims (1)

【特許請求の範囲】 1、連鋳機の鋳型内に注入された溶鋼の流れを静磁場に
よって制御する鋼の連続鋳造方法において、溶鋼を第1
静磁場の中心部に注入して溶鋼の流速を減速させること
を特徴とする静磁場を用いる鋼の連続鋳造方法。 2、連鋳機の鋳型内に注入された溶鋼の流れを静磁場に
よって制御する鋼の連続鋳造方法において、溶鋼を第1
静磁場の中心部に注入して溶鋼の流速を減速させ、前記
第1静磁場からの溶鋼の減速下降流を第1静磁場の下方
に設置した少なくとも1個の第2静磁場によって制御し
て減速させることを特徴とする静磁場を用いる鋼の連続
鋳造方法。 3、連鋳機の鋳型広幅側面の上部に1対の第1静磁極が
配設され、この第1静磁極の磁極中心を結ぶ中心線を溶
鋼注入用浸漬ノズルの吐出孔にほぼ一致させたことを特
徴とする静磁場を用いる鋼の連続鋳造装置。 4、連鋳機の鋳型広幅側面の上部に1対の第1静磁極が
配設され、この第1静磁極の磁極中心を結ぶ中心線を溶
鋼注入用浸漬ノズルの吐出孔にほぼ一致させ、前記第1
静磁極より下方位置で鋳型広幅側面の下部に少なくとも
1の対の第2静磁極が設置されていることを特徴とする
静磁場を用いる鋼の連続鋳造装置。
[Claims] 1. In a continuous steel casting method in which the flow of molten steel injected into a mold of a continuous casting machine is controlled by a static magnetic field, the molten steel is
A continuous casting method for steel using a static magnetic field, characterized by injecting the molten steel into the center of the static magnetic field to slow down the flow velocity of the molten steel. 2. In a continuous steel casting method in which the flow of molten steel injected into the mold of a continuous casting machine is controlled by a static magnetic field, the molten steel is
the molten steel is injected into the center of the static magnetic field to decelerate the flow velocity of the molten steel, and the decelerated downward flow of the molten steel from the first static magnetic field is controlled by at least one second static magnetic field installed below the first static magnetic field. A continuous casting method for steel using a static magnetic field characterized by deceleration. 3. A pair of first static magnetic poles were arranged at the top of the wide side of the mold of the continuous casting machine, and the center line connecting the magnetic pole centers of the first static magnetic poles was made to almost match the discharge hole of the immersion nozzle for injecting molten steel. A continuous steel casting device using a static magnetic field, characterized by: 4. A pair of first static magnetic poles are arranged at the upper part of the wide side of the mold of the continuous casting machine, and the center line connecting the magnetic pole centers of the first static magnetic poles is made to almost coincide with the discharge hole of the immersion nozzle for pouring molten steel, Said first
1. A continuous casting apparatus for steel using a static magnetic field, characterized in that at least one pair of second static magnetic poles is installed below the wide side surface of the mold at a position below the static magnetic poles.
JP62009134A 1986-10-13 1987-01-20 Method and apparatus for continuous casting of steel using static magnetic field Expired - Lifetime JPH0790339B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24143186 1986-10-13
JP61-241431 1986-10-13

Publications (2)

Publication Number Publication Date
JPS63230258A true JPS63230258A (en) 1988-09-26
JPH0790339B2 JPH0790339B2 (en) 1995-10-04

Family

ID=17074196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62009134A Expired - Lifetime JPH0790339B2 (en) 1986-10-13 1987-01-20 Method and apparatus for continuous casting of steel using static magnetic field

Country Status (1)

Country Link
JP (1) JPH0790339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137077A (en) * 1989-06-09 1992-08-11 Nippon Steel Corporation Method of controlling flow of molten steel in mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199557A (en) * 1985-02-28 1986-09-04 Nippon Kokan Kk <Nkk> Device for controlling flow rate of molten steel in mold for continuous casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199557A (en) * 1985-02-28 1986-09-04 Nippon Kokan Kk <Nkk> Device for controlling flow rate of molten steel in mold for continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137077A (en) * 1989-06-09 1992-08-11 Nippon Steel Corporation Method of controlling flow of molten steel in mold

Also Published As

Publication number Publication date
JPH0790339B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
CA2015573C (en) Apparatus and method for continuous casting
JPH02284750A (en) Method for continuously casting steel using static magnetic field
KR960005883B1 (en) Continuous casting method of steel slab
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP3566904B2 (en) Steel continuous casting method
JPS63230258A (en) Method and apparatus for continuously casting steel by using static magnetic field
JP2610741B2 (en) Continuous casting method and apparatus
JPS63154246A (en) Continuous casting method for steel using static magnetic field
JP3214994B2 (en) Continuous casting method of thin slab and immersion nozzle for continuous casting
JPS5976647A (en) Method and device for stirring molten metal for casting in continuous casting
KR20000036232A (en) Continuous casting machine
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
JPS6272458A (en) Electromagnetic stirring method
JPH0579430B2 (en)
JPS623857A (en) Continuous casting method using single hole type immersion nozzle
JPS62130752A (en) Continuous casting method for bloom or billet
JPH0596351A (en) Method for continuously casting steel slab by traveling magnetic field and magnetostatic field
JPH05104218A (en) Method for continuous casting steel slab using progressive magnetic field
JPS5914035Y2 (en) Tundish for continuous casting
JPH01180763A (en) Method for continuously casting steel
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JPH0456704B2 (en)
JPS6331817Y2 (en)
JPH0596345A (en) Method for continuously casting steel using magnetostatic field power conducting method
JP2002239691A (en) Method for continuously casting molten metal