JPH04197553A - Method for continuously casting steel slab using static magnetic field - Google Patents

Method for continuously casting steel slab using static magnetic field

Info

Publication number
JPH04197553A
JPH04197553A JP32575790A JP32575790A JPH04197553A JP H04197553 A JPH04197553 A JP H04197553A JP 32575790 A JP32575790 A JP 32575790A JP 32575790 A JP32575790 A JP 32575790A JP H04197553 A JPH04197553 A JP H04197553A
Authority
JP
Japan
Prior art keywords
nozzle
magnetic field
molten steel
continuous casting
static magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32575790A
Other languages
Japanese (ja)
Other versions
JP2977890B2 (en
Inventor
Tetsuya Fujii
徹也 藤井
Nagayasu Bessho
別所 永康
Hisao Yamazaki
久生 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2325757A priority Critical patent/JP2977890B2/en
Publication of JPH04197553A publication Critical patent/JPH04197553A/en
Application granted granted Critical
Publication of JP2977890B2 publication Critical patent/JP2977890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent invasion of inclusion, etc., into an immersion nozzle by setting a static magnetic field generating device for acting the static magnetic field crossing at a right angle to long side wall in a mold and applying brake to a molten steel stream directed downward. CONSTITUTION:The immersion nozzle 2 uses a straight nozzle having structure opening the tip part in the nozzle body and to the molten steel supplied into a continuous casting mold 1 from this nozzle 2, while applying the brake in the magnetic pole range of the static magnetic field generating device 3 set to the continuous casting mold 1, the continuous casting is executed. Therefore, there is no trouble, such as developing nozzle clogging caused by deposit of alumina, and even the molten steel is poured in the mold 1 at the desired velocity, the inclusion is not invaded to deep depth of the molten steel and ascending stream of the molten metal does not involve powder on the molten steel surface. Therefore, even if injection, etc., of Ar gas for preventing the nozzle clogging is not executed, the nozzle clogging is not developed and the cold-rolled steel sheet having a little surface defect, is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、連続鋳造によって得られた鋼スラブの内部
品質のより一層の改善を図ろうとするしのである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention aims to further improve the internal quality of steel slabs obtained by continuous casting.

(従来の技術) 幅広の鋼板の製造に用いられるスラブの届き鋼片の連続
鋳造においては、溶鋼を収容した夕〕・デイツシュと連
鋳鋳型との間の溶鋼流路と(−で、通常耐火物製の浸漬
ノスルが用いられている。この浸漬ノズルは、とくにア
ルミギルド鋼の連続鋳造時にノズル内面にアルミナか析
出し易いため、鋳造時間の経過に伴い溶鋼流路か狭めら
れ、所望の溶鋼流量を得ることかできない問題かあった
。このため通常は溶鋼の供給する間中、ノズル内にアル
コンなどの不活性ガスを供給してこれに対処していたが
、不活性ガスの供給速度か大きい場合には、該ガスか鋳
型内の浴上に浮上できずに凝固ンエル第1図あるいは第
4図中のaにトラップされるため、最終製品で欠陥とな
ることかあり、また不活性カスを単に吹き込むだけでは
、ノズル目詰まりの回避効果は充分でなく、ノズル交換
の頻繁な取替えを必要とに、とくに、ノズルの先端部に
左右対象な吐出口を備えた2孔ノズル形式の浸漬ノズル
においては、吐出口の左右の非対称な閉塞により品質低
下を招く問題かあった。
(Prior art) In the continuous casting of slabs used in the production of wide steel plates, the molten steel flow path between the plate containing the molten steel and the continuous casting mold (-) is usually refractory. A manufactured immersion nozzle is used.This immersion nozzle tends to deposit alumina on the inner surface of the nozzle, especially during continuous casting of aluminum guild steel, so as the casting time progresses, the molten steel flow path is narrowed and the desired molten steel is poured. There was a problem of being unable to obtain a flow rate.For this reason, this was usually dealt with by supplying an inert gas such as Alcon into the nozzle while the molten steel was being supplied, but the supply speed of the inert gas was If the gas is too large, it will not be able to float above the bath in the mold and will be trapped in the solidification well (a in Figure 1 or Figure 4), which may result in defects in the final product. Merely blowing water into the nozzle is not sufficient to prevent nozzle clogging, and requires frequent nozzle replacement, especially when using a two-hole immersion nozzle with symmetrical discharge ports at the tip of the nozzle. In this case, there was a problem in which the quality deteriorated due to asymmetrical blockage of the left and right sides of the discharge port.

このような問題を解決する試みとしては、アルミナと低
融点の化合物を作るCaOを含有するノズルを用いる試
みもあるが、充分な効果は得られていない。
Some attempts have been made to solve these problems by using a nozzle containing alumina and CaO, which forms a compound with a low melting point, but no sufficient effect has been achieved.

(発明が解決りようとする課題) 連続鋳造における上述したような問題を解消し内部品質
の良好な鋼スラブを得ることができる連続鋳造方法を提
案することがこの発明の目的である。
(Problems to be Solved by the Invention) It is an object of the present invention to propose a continuous casting method that can solve the above-mentioned problems in continuous casting and obtain a steel slab with good internal quality.

(課題を解決するための手段) 炭素濃度か500ppm以下になる、主に1A)で脱酸
した低炭素アルミキルト鋼を用いて連続鋳造の際におけ
るノズル詰まりについて種々調査、検討を重ねた結果、
溶鋼中の酸素濃度を30ppm u下、より好ましくは
20ppm以下に調整し、浸漬ノズルのノズル本体先端
に溶鋼の吐出孔を設けたストレートノズルを用いるとノ
ズル詰まりかほとんどないことか、明らかとなった。ま
た、このようなストレートノズルにおいては、溶鋼の吐
出流か鋳型の出側(下方)に向かうため、溶鋼中の介在
物やガス気泡などがクレータの奥深くまで侵入するおそ
れがあるか、介在物等の侵入防止のためには連鋳鋳型に
、該鋳型の長辺壁に直交する静磁場を作用させる静磁場
発生装置を配置して下方に向かう溶鋼流に制動を加える
ことか極めて盲動であることの知見を得た。
(Means for solving the problem) As a result of various investigations and studies regarding nozzle clogging during continuous casting using low carbon aluminum quilt steel deoxidized mainly with 1A), the carbon concentration becomes 500 ppm or less.
It has become clear that if the oxygen concentration in the molten steel is adjusted to below 30 ppm, more preferably below 20 ppm, and a straight nozzle with a molten steel discharge hole provided at the tip of the nozzle body of the immersion nozzle is used, there is almost no chance of nozzle clogging. . In addition, in such a straight nozzle, the discharge flow of molten steel is directed toward the exit side (downward) of the mold, so there is a risk that inclusions or gas bubbles in the molten steel may penetrate deep into the crater, or that inclusions, etc. In order to prevent the intrusion of metal, a static magnetic field generator must be placed in the continuous casting mold to apply a static magnetic field perpendicular to the long walls of the mold to brake the downward flow of molten steel, or it must be extremely blind. We obtained the following knowledge.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわち、この発明は、タンディツシュに収容した酸素
含有量か30ppm以下なる溶鋼を、一対の短辺壁と一
対の長辺壁の組合せからなる連鋳鋳型内に該タンディツ
シュと繋かる浸漬ノズルを通して供給しつつ鋼スラブを
連続鋳造するに当たり、上記連鋳鋳型に静磁場発生器を
配置し、上記浸漬ノズルとしてノズル本体の先端に開孔
を有するストレートノズルを用意して、二の&aノズル
の先端部を静磁場発生器の磁極領域に位置させた状態で
、該浸漬ノズルからの吐出溶鋼流に鋳型の長辺壁と直交
する静磁場を作用させて制動を加えることを特徴とする
静磁場を用いる鋼スラブの連続鋳造方法であり この発
明においてはC@鋼の注入過程で浸漬2/スル内に不活
性ガスを吹き込まないようにし、また、静磁場の磁束密
度または発生領域を連鋳鋳型の入側から出側に向けて小
さくする。
That is, the present invention supplies molten steel with an oxygen content of 30 ppm or less contained in a tundish into a continuous casting mold consisting of a pair of short side walls and a pair of long side walls through an immersion nozzle connected to the tundish. When continuously casting a steel slab, a static magnetic field generator is placed in the continuous casting mold, a straight nozzle with an opening at the tip of the nozzle body is prepared as the immersion nozzle, and the tip of the second &a nozzle is A steel that uses a static magnetic field, characterized in that the molten steel flow discharged from the immersion nozzle is damped by applying a static magnetic field perpendicular to the long side walls of the mold while the molten steel flow is placed in the magnetic pole region of a static magnetic field generator. This is a continuous casting method for slabs.In this invention, inert gas is not blown into the immersion 2/through during the C@ steel injection process, and the magnetic flux density or generation area of the static magnetic field is adjusted to the entrance side of the continuous casting mold. Make it smaller towards the exit side.

さて、第1図fa)(b)にこの発明の実施に用いて好
適な連続鋳造装置の要部の構成を示し、図における番号
1は、一対の短辺壁1aと長辺壁1bからなる連鋳鋳型
、2はタンディツシュと繋がる浸漬ノズルであって、こ
の浸漬ノズル2はノズル本体の先端部を開放して溶鋼の
吐出孔とした構造になっている。また、3は連鋳鋳型l
の長辺壁1bの背面にて配置され浸漬ノズル2からの吐
出溶鋼流に鋳型の長辺壁1bと直交する向きの静磁場を
作用させる静磁場発生器である。
Now, Fig. 1 fa) and (b) show the configuration of the main parts of a continuous casting apparatus suitable for carrying out the present invention, and the number 1 in the figures is made up of a pair of short side walls 1a and long side walls 1b. The continuous casting mold 2 is an immersed nozzle connected to a tundish, and the immersed nozzle 2 has a structure in which the tip of the nozzle body is open and serves as a discharge hole for molten steel. In addition, 3 is a continuous casting mold l
This is a static magnetic field generator that is placed on the back side of the long side wall 1b of the mold and applies a static magnetic field in a direction perpendicular to the long side wall 1b of the mold to the molten steel flow discharged from the immersion nozzle 2.

(作用) 溶鋼の吐出孔か左右対称になる第2図に示すような2孔
式浸漬ノズルは、ノズルから噴出させた溶鋼流がクレー
タの奥深くまで流入して注入溶鋼中の介在物や気泡か凝
固シェルにトラップされないように、また噴出流かモー
ルド内の浴面へ向かってモールトパウターの巻き込みを
起こさないような構造かとられているか、このような構
造になる浸漬ノズルは、とくに吐出孔近傍においてアル
ミナなどが析出し易く1.ノズル詰まりを起ニしやすい
ことは前述した。
(Function) A two-hole immersion nozzle as shown in Figure 2, in which the molten steel discharge holes are bilaterally symmetrical, allows the molten steel flow ejected from the nozzle to flow deep into the crater, preventing inclusions and bubbles in the injected molten steel. Immersion nozzles with such a structure are designed to prevent mold powder from being trapped in the solidified shell and from being drawn into the ejected flow toward the bath surface in the mold, especially near the discharge hole. Alumina etc. tend to precipitate 1. As mentioned above, the nozzle is easily clogged.

この発明においては、浸漬ノズルをノズル本体の先端か
開放された構造になる第3図に示すようなストレートノ
ズルを用い、このノズルより連鋳鋳型内へ供給する溶鋼
に対して、連鋳鋳型に配置した静磁場発生器の磁極領域
で制動を加えつつ連続鋳造するようにしたから、アルミ
ナの析出に起因したノズル詰まりを起こすような不具合
はなく、従って所望の速度で溶鋼を鋳型内に注入しても
介在物が溶鋼の奥深くまで侵入したり、溶鋼の上昇流か
浴面のパウダーを巻き込むようなこともない。
In this invention, a straight nozzle as shown in Fig. 3, in which the tip of the nozzle body is open, is used as the immersion nozzle, and the molten steel supplied from this nozzle into the continuous casting mold is Since continuous casting is performed while applying braking in the magnetic pole area of the static magnetic field generator, there is no problem such as nozzle clogging caused by alumina precipitation, and therefore molten steel can be injected into the mold at the desired speed. However, inclusions do not penetrate deep into the molten steel, nor do they involve the upward flow of molten steel or the powder on the bath surface.

この発明においては、磁界適用領域から流出する溶鋼流
の流速の均一化を図るために第4図に示すように磁界の
磁束密度を鋳型の上方から下方に沿って小さくするのか
よいか、このような静磁界を発生させるにあたっては静
磁場発生器3の形状を予めそのような形状にしておけば
よい。
In this invention, in order to equalize the flow velocity of the molten steel flowing out of the magnetic field application area, it is desirable to reduce the magnetic flux density of the magnetic field from the top to the bottom of the mold as shown in FIG. In order to generate a static magnetic field, the shape of the static magnetic field generator 3 may be made into such a shape in advance.

(実施例) 実施例−1 2ストランド連鋳機を適用して取鍋精錬を経た、C濃度
360ppm、 AI濃度450ppm酸素濃度27p
pmになる溶鋼を下記の条件で3チヤ一ジ分を継続して
連続鋳造し、浸漬ノズル内のアルミナの付着状況を調査
した。なお、この発明に従う連続鋳造を行うにあたって
は、静磁界発生器を浸漬ノズルの吐出口から100 +
nm上方にその上端が、また吐出口から500 mm下
方に下端がくるように配置した。
(Example) Example-1 Ladle refining using a 2-strand continuous caster, C concentration 360 ppm, AI concentration 450 ppm, oxygen concentration 27p
Three casts of molten steel were continuously cast under the following conditions, and the state of alumina adhesion inside the immersion nozzle was investigated. In addition, when performing continuous casting according to the present invention, the static magnetic field generator is placed at a distance of 100 + from the discharge port of the immersion nozzle.
It was arranged so that its upper end was 500 mm above the discharge port, and its lower end was 500 mm below the discharge port.

鋳造条件 連鋳鋳型のサイズ:短辺壁230 mm、長辺壁160
0mm鋳造速度: 1.7m、/min タンデイシュのスーパーヒート;約30°C静磁場発生
器:長さ500 mm、幅500M静磁場:約2000
カウス その結果、ノズル内に10n、minの、ノズル詰まり
防止用ガスを吹き込んだ従来の2孔型の浸漬2ノズル(
吐出口か静磁界のほぼ中央になるように配置)を用いた
連続鋳造においては、ノズル吐出口近傍に最大で10m
m厚みになるアルミナ付着物の層が認められたが、この
発明に従う連続鋳造においては、アルミナの付着物層は
最大で2mm程度であって、ノズル詰まりか極めて小さ
いことか確かめられた。
Casting conditions Continuous casting mold size: Short side wall 230 mm, long side wall 160 mm
0mm casting speed: 1.7m/min Tandish superheat; approx. 30°C Static magnetic field generator: length 500mm, width 500M Static magnetic field: approx. 2000
As a result, the conventional 2-hole type immersion 2 nozzle (10 nm, min. of gas to prevent nozzle clogging) was blown into the nozzle.
In continuous casting using a nozzle (located so that the discharge port is approximately in the center of the static magnetic field), a maximum of 10 m is placed near the nozzle discharge port.
A layer of alumina deposits with a thickness of m was observed, but in continuous casting according to the present invention, the maximum thickness of the alumina deposit layer was about 2 mm, and it was confirmed that this was due to nozzle clogging or was extremely small.

実施例−2 取鍋内の溶鋼(実施例−1と同一組成)にAI粉末を添
加して取鍋的溶鋼浴面上のスラク′中のFeOを還元し
て、FeO濃度を3%以下とした取鍋精錬を行って溶鋼
中の0濃度を15〜18ppmとヒたのち、実施例−1
と同様の鋳造条件のもとに、3チヤージ連続的に連続鋳
造を行い、その際の浸漬ノズルのアルミナの付着状況を
調査した。なお、この実施例では、浸漬ノズル内には一
切ノズル詰まり防止用のガスは吹き込まなかった。
Example 2 AI powder was added to molten steel in a ladle (same composition as in Example 1) to reduce FeO in the slurry on the surface of the molten steel bath in the ladle to reduce the FeO concentration to 3% or less. After carrying out ladle refining to reduce the 0 concentration in molten steel to 15 to 18 ppm, Example-1
Continuous casting was performed for 3 charges under the same casting conditions as above, and the state of alumina adhesion to the immersion nozzle was investigated. In this example, no gas for preventing nozzle clogging was blown into the immersion nozzle.

その結果、従来法に従った場合には、3チヤージ目にお
いてノズル詰まりのために所定の注入速度か達成できず
、鋳造速度が1.7m/minから1.2m/minに
低下したか、この発明に従う連続鋳造においては、鋳造
速度が低下するようなことはなく、鋳造終了後に浸漬ノ
ズルを回収してその内面を観察したところ、1〜2mm
程度のアルミナか付着しているのみであった。
As a result, when following the conventional method, the specified injection speed could not be achieved due to nozzle clogging at the third charge, and the casting speed decreased from 1.7 m/min to 1.2 m/min, or In the continuous casting according to the invention, the casting speed did not decrease, and when the immersion nozzle was collected after casting and the inner surface was observed, it was found that the diameter was 1 to 2 mm.
There was only some alumina attached.

実施例−3 連続鋳造用鋳型に上掲第4図に示しt4ような静磁界発
生器(静磁界の上端の幅550ffIffl、静磁界の
下端の幅450mm)をそれぞれ配置した2ストランド
連続鋳造機を適用して実施例−1と同様の溶鋼、条件で
連続鋳造を行い、鋳造後の浸漬ノズルのアルミナの付着
状況を調査した。その結果、従来型の2孔ノズルを用い
た場合においては、そのノズルの先端を静磁界のほぼ中
央に吐出口がくるように配置しておいても、ノズル内面
のアルミナの付着層は最大で10mm厚みの付着層があ
ったか、この発明においては、付着層の厚みか最大2m
m程度であった。
Example 3 A two-strand continuous casting machine was installed in which static magnetic field generators (width at the upper end of the static magnetic field 550ffIffl, width at the lower end of the static magnetic field 450 mm) such as t4 shown in Figure 4 above were arranged in the continuous casting mold. Continuous casting was performed using the same molten steel and conditions as in Example-1, and the state of alumina adhesion on the immersion nozzle after casting was investigated. As a result, when using a conventional two-hole nozzle, even if the tip of the nozzle is placed so that the discharge port is located approximately in the center of the static magnetic field, the alumina adhesion layer on the inner surface of the nozzle is at its maximum. In this invention, the thickness of the adhesive layer is 2 m at maximum.
It was about m.

以上の実施例1〜3にて得られた連鋳スラブを次に、熱
間圧延、冷間圧延して厚さ0.8mmの冷延板とし、得
られた鋼板の表面欠陥(ふくれ性欠陥とすし状欠陥の合
計)の発生率について調査した。
The continuous cast slabs obtained in Examples 1 to 3 above were then hot-rolled and cold-rolled into a cold-rolled plate with a thickness of 0.8 mm, and the obtained steel plate had surface defects (blister defects). The incidence of slender defects (total of slender defects) was investigated.

その結果を第5図に示す。The results are shown in FIG.

第5図において、この発明に従う連続鋳造を1斤った場
合には、表面欠陥の発生率か非常に小さいことがわかる
。この理由は、連続鋳造用鋳型における磁界の適用によ
って、溶鋼の注入流かクレータの奥深くまで侵入するこ
とかないためであると考えられる。また実施例−2にお
ける適合例の結果が実施例−1の適合例よりも良好なの
は、溶鋼のO濃度か低く、またふくれ性欠陥の主因とな
るArガスの吹き込みを行っていないためと考えられる
。なお、この実施例−2における比較例でもかなり良い
結果が得られているか、ノズル内にノズル詰まり防止用
のガスを吹き込まないために、ノズル詰まりが発生して
所望の鋳造速度が得られず、生産性の点で問題がある。
In FIG. 5, it can be seen that the incidence of surface defects is extremely small when one loaf is produced by continuous casting according to the present invention. The reason for this is believed to be that the application of a magnetic field in the continuous casting mold prevents the injection flow of molten steel from penetrating deep into the crater. In addition, the results of the compatible example in Example-2 are better than those in Example-1, which is thought to be because the O concentration of the molten steel is low and Ar gas, which is the main cause of blistering defects, is not injected. . In addition, fairly good results were obtained in the comparative example of this Example-2, or the nozzle was clogged and the desired casting speed could not be obtained because no gas was blown into the nozzle to prevent nozzle clogging. There is a problem in terms of productivity.

実施例−1と実施例−3との比較においては、実施例−
3における適合例が優れているが、これは台形状の磁界
を適用することによって溶鋼の流速か第4図に示すよう
に均一化されるために介在物やアルゴン気泡の侵入深さ
か浅くなり、鋳型内での介在物の浮上か促進されるため
である。
In the comparison between Example-1 and Example-3, Example-
The adaptation example in 3 is excellent, but this is because by applying a trapezoidal magnetic field, the flow velocity of the molten steel is made uniform as shown in Figure 4, so the penetration depth of inclusions and argon bubbles becomes shallower. This is because the floating of inclusions within the mold is promoted.

なお、この発明では磁界の適用領域をノズルの下端部を
含みこれよりも下方の領域に適用することが肝要である
。それは、ノズル下端すなわちノズル先端部の吐出口と
磁界の間にすき間があると、ノズルから吐出した下降流
か磁界発生部で反力を受けるため、磁界発生領域部への
溶鋼の侵入が妨けられ、このすき間から溶鋼流が逃げる
ことになる。その結果、従来の2孔型の浸漬ノズルに近
い水平方向の流れとなるため、この流れが鋳型短辺壁に
衝突し該短辺壁に沿って深く下降するためである。また
、この発明では、実施例−2のように溶鋼の0濃度を2
0ppm以下とするとノズル詰まり防止用の、Arカス
などを吹き込み等を行わなくともノズル詰まりを起こす
ようなことはなく、表面欠陥の極めて少ない冷延鋼板を
得ることができるのである。
In this invention, it is important that the magnetic field is applied to an area including the lower end of the nozzle and below this. This is because if there is a gap between the discharge port at the lower end of the nozzle, that is, the tip of the nozzle, and the magnetic field, the downward flow discharged from the nozzle or the magnetic field generation area will receive a reaction force, which will prevent molten steel from entering the magnetic field generation area. The molten steel flow escapes from this gap. As a result, the flow is in a horizontal direction similar to that of a conventional two-hole submerged nozzle, and this flow collides with the short side wall of the mold and descends deeply along the short side wall. In addition, in this invention, the zero concentration of molten steel is reduced to 2 as in Example-2.
When the content is 0 ppm or less, nozzle clogging does not occur even without blowing Ar scum or the like to prevent nozzle clogging, and a cold-rolled steel sheet with extremely few surface defects can be obtained.

(発明の効果) かくしてこの発明によれば、連続鋳造用の浸漬ノズルに
不活性ガスを吹き込むような操作を行わすともノズル閉
塞をおこすことがなく、内部品質の良好なスラブを得る
ことができる。
(Effects of the Invention) Thus, according to the present invention, even when an operation such as blowing inert gas into a continuous casting immersion nozzle is performed, nozzle clogging does not occur, and a slab with good internal quality can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は連続鋳造装置の構成を示した図第
2図(a)(b)(C)は従来の浸漬ノズルを示した図
第3図(a)(b)はこの発明に従う鋳造方法に適用し
て好適な浸漬ノズルを示した図 第4図は連続鋳造用鋳型内に溶鋼を注入した状況を示し
た図 第5図は実施例の結果を比較して示した図である。 ■・・・連鋳鋳型     2・・・浸漬ノズル3・・
・静磁界発生器
Figures 1 (a) and (b) show the configuration of a continuous casting device. Figures 2 (a), (b), and (C) show a conventional immersion nozzle. Figures 3 (a) and (b) show the configuration of a continuous casting device. Figure 4 shows a suitable immersion nozzle applied to the casting method according to the present invention. Figure 4 shows a situation in which molten steel is injected into a mold for continuous casting. Figure 5 shows a comparison of the results of Examples. It is a diagram. ■... Continuous casting mold 2... Immersion nozzle 3...
・Static magnetic field generator

Claims (1)

【特許請求の範囲】 1、タンディッシュに収容した酸素含有量が30ppm
以下なる溶鋼を、一対の短辺壁と一対の長辺壁の組合せ
からなる連鋳鋳型内に該タンディッシュと繋がる浸漬ノ
ズルを通して供給しつつ鋼スラブを連続鋳造するに当た
り、上記連鋳鋳型に静磁場発生器を配置し、上記浸漬ノ
ズルとしてノズル本体の先端を開放したストレートノズ
ルを用意して、この浸漬ノズルの先端部を静磁場発生器
の磁極領域に位置させた状態で、該浸漬ノズルからの吐
出溶鋼流に鋳型の長辺壁と直交する静磁場を作用させて
制動を加えることを特徴とする静磁場を用いる鋼スラブ
の連続鋳造方法。 2、溶鋼の注入過程で浸漬ノズル内に不活性ガスを吹き
込まない請求項1記載の方法。 3、静磁場の磁束密度または発生領域を連鋳鋳型の入側
から出側に沿って小さくする請求項1又は2記載の方法
[Claims] 1. The oxygen content contained in the tundish is 30 ppm.
When continuously casting a steel slab while supplying the following molten steel into a continuous casting mold consisting of a pair of short side walls and a pair of long side walls through a submerged nozzle connected to the tundish, the above continuous casting mold is placed in a static state. A magnetic field generator is arranged, a straight nozzle with an open tip of the nozzle body is prepared as the immersion nozzle, and the tip of the immersion nozzle is positioned in the magnetic pole region of the static magnetic field generator, and from the immersion nozzle. A continuous casting method for steel slabs using a static magnetic field, characterized in that a static magnetic field perpendicular to the long side walls of the mold is applied to the discharged molten steel flow to apply damping. 2. The method according to claim 1, wherein no inert gas is blown into the submerged nozzle during the injection process of molten steel. 3. The method according to claim 1 or 2, wherein the magnetic flux density or generation area of the static magnetic field is reduced from the entrance side to the exit side of the continuous casting mold.
JP2325757A 1990-11-29 1990-11-29 Continuous casting method of steel slab using static magnetic field Expired - Fee Related JP2977890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325757A JP2977890B2 (en) 1990-11-29 1990-11-29 Continuous casting method of steel slab using static magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325757A JP2977890B2 (en) 1990-11-29 1990-11-29 Continuous casting method of steel slab using static magnetic field

Publications (2)

Publication Number Publication Date
JPH04197553A true JPH04197553A (en) 1992-07-17
JP2977890B2 JP2977890B2 (en) 1999-11-15

Family

ID=18180294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325757A Expired - Fee Related JP2977890B2 (en) 1990-11-29 1990-11-29 Continuous casting method of steel slab using static magnetic field

Country Status (1)

Country Link
JP (1) JP2977890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436437A (en) * 2011-04-01 2016-03-30 伊克一有限责任公司 Machine for forming metal bars

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436437A (en) * 2011-04-01 2016-03-30 伊克一有限责任公司 Machine for forming metal bars

Also Published As

Publication number Publication date
JP2977890B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
RU2297900C2 (en) Steel strip producing method and thin steel strip produced by such method
JPH02284750A (en) Method for continuously casting steel using static magnetic field
JPH0320295B2 (en)
JPH03142049A (en) Method and apparatus for continuously casting steel using static magnetic field
EP0523837B1 (en) Continuous casting method of steel slab
JPH04197553A (en) Method for continuously casting steel slab using static magnetic field
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
JPH0577007A (en) Method for continuously casting steel slab using static magnetic field
JP2856960B2 (en) Continuous casting method of steel slab by traveling magnetic field and static magnetic field
JPH0422538A (en) Method for continuously casting beam blank
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JPH04220148A (en) Molten steel supplying nozzle
JP2888312B2 (en) Continuous casting method of steel slab by static magnetic field
JPS62130752A (en) Continuous casting method for bloom or billet
JP2841429B2 (en) Steel continuous casting method
JP2925374B2 (en) Continuous casting method of steel slab by static magnetic field
JP2750320B2 (en) Continuous casting method using static magnetic field
JPH04361858A (en) Method for continuously casting steel slab using advancing magnetic field
JP3095710B2 (en) Continuous casting method using static magnetic field
JPH0577006A (en) Method for continuously casting steel slab using static magnetic field
JPH11320054A (en) Continuous caster and continuous casting method
JPH0211246A (en) Horizontal continuous casting method for steel
JP2953857B2 (en) Continuous casting method using static magnetic field
JPH0441059A (en) Submerged nozzle for continuous casting
JPH05104218A (en) Method for continuous casting steel slab using progressive magnetic field

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees