JPH09192802A - Method for continuously casting extra-low carbon steel slab - Google Patents

Method for continuously casting extra-low carbon steel slab

Info

Publication number
JPH09192802A
JPH09192802A JP773496A JP773496A JPH09192802A JP H09192802 A JPH09192802 A JP H09192802A JP 773496 A JP773496 A JP 773496A JP 773496 A JP773496 A JP 773496A JP H09192802 A JPH09192802 A JP H09192802A
Authority
JP
Japan
Prior art keywords
molten steel
mold
flow velocity
magnetic field
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP773496A
Other languages
Japanese (ja)
Other versions
JP3125664B2 (en
Inventor
Riyuuzou Nishimachi
龍三 西町
Atsushi Kubota
淳 久保田
Yasutsugu Ogura
康嗣 小倉
Masayuki Nakada
正之 中田
Makoto Suzuki
真 鈴木
Toshio Ishii
俊夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP08007734A priority Critical patent/JP3125664B2/en
Publication of JPH09192802A publication Critical patent/JPH09192802A/en
Application granted granted Critical
Publication of JP3125664B2 publication Critical patent/JP3125664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the rate of occurrence of surface defect of a thin steel sheet by specifying the flow velocity of molten steel poured into a mold from an immersion nozzle. SOLUTION: Flow velocity of the molten steel at the position near the short side of the mold at 1/4 width of the mold is kept in the range of -0.07-0.05m/sec. The molten steel stream from the short side of the mold toward the immersion nozzle is shown by the positive. The flow velocity is controlled by using a linearly movable magnetic field type electromagnetic stirring device. At the time of keeping the flow velocity of the molten steel to near zero at -0.07-0.05m/sec, spouting stream of the molten steel from the immersion nozzle does not transmit the moving magnetic field by the linearly movable magnetic field type electromagnetic stirring device but sufficiently reduced in the velocity by the magnetic field. The molten steel is dispersed in the direction orthogonal to the moving direction of the magnetic field. Since the flow velocity of the molten steel just below the molten steel surface becomes sufficiently small, vertical eddy flow is not caused and the generation of dripping of mold powder is prevented. The sufficient heat supply is obtained on the molten steel surface by the spouting stream of the molten steel and the growth of claw defect on a solidified shell near a slab corner is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、極低炭素鋼から
なるスラブの連続鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for slabs made of extremely low carbon steel.

【0002】[0002]

【従来の技術】自動車外装用鋼板、缶用鋼板、家庭電化
製品用鋼板など多くの用途に使用されている薄鋼板に対
し、年々その加工性の向上が強く要求されている。一
方、冷間圧延後の薄鋼板に施される焼鈍は、従来のバッ
チ焼鈍から連続焼鈍に、急速に転換されている。このよ
うな状況により、薄鋼板用の鋼は、炭素含有量が0.0
1〜0.1wt.%の低炭素鋼から、炭素含有量が0.01
wt.%以下の極低炭素鋼に転換されつつある。
2. Description of the Related Art With respect to thin steel sheets used in many applications such as steel sheets for automobile exteriors, steel sheets for cans, and steel sheets for household appliances, improvement in workability is strongly required year after year. On the other hand, the annealing performed on the steel sheet after cold rolling has been rapidly changed from conventional batch annealing to continuous annealing. Due to such a situation, the steel for steel sheets has a carbon content of 0.0
From low carbon steel of 1 to 0.1 wt.%, The carbon content is 0.01
It is being converted to ultra low carbon steel with wt.% or less.

【0003】このような、極低炭素鋼の溶鋼をスラブに
連続鋳造し、鋳造されたスラブを素材として薄鋼板を製
造した場合、スラブ中に含まれている非金属介在物が原
因となる鋼板表面疵の発生が、低炭素鋼のスラブを素材
とした薄鋼板と比較して多いことが知られている。
When such a molten steel of ultra-low carbon steel is continuously cast into a slab and a thin steel plate is manufactured using the cast slab as a raw material, a steel plate caused by non-metallic inclusions contained in the slab. It is known that surface defects occur more frequently than thin steel sheets made of low carbon steel slabs.

【0004】特徴的な表面疵の一つは、「ブリスター
疵」と呼ばれている「ふくれ」状の疵である。この「ブ
リスター疵」が発生する原因は、溶鋼をスラブに連続鋳
造する際に、凝固シエルの表層下にアルミナが捕捉さ
れ、冷間圧延後の連続焼鈍時に、アルミナの周囲に鋼中
の固溶水素が凝集気化して、膨張するためであるといわ
れている。
One of the characteristic surface flaws is a "blister" -shaped flaw called "blister flaw". The cause of this "blister flaw" is that when molten steel is continuously cast into a slab, alumina is trapped under the surface layer of the solidified shell, and during continuous annealing after cold rolling, the solid solution in the steel around the alumina is dissolved. It is said that hydrogen is condensed and vaporized and expands.

【0005】極低炭素鋼は、精錬中に、CO生成反応に
よって、鋼中の炭素含有量を0.01wt.%以下の低いレ
ベルまで下げるために、精錬中における溶鋼中の溶存酸
素濃度が高い。従って、脱炭反応終了後におけるアルミ
ニウムによる脱酸量が多くなるため、鋼中に懸濁するア
ルミナの量が、低炭素鋼よりも多くなり、従って「ブリ
スター疵」が発生しやすくなる。
The ultra-low carbon steel has a high dissolved oxygen concentration in the molten steel during refining in order to reduce the carbon content in the steel to a low level of 0.01 wt. . Therefore, the amount of deoxidation by aluminum after the completion of the decarburization reaction is large, so that the amount of alumina suspended in the steel is larger than that in the low carbon steel, so that “blister defects” are likely to occur.

【0006】特徴的な表面疵の他の一つは、「スリバー
疵」と呼ばれている線状の疵である。「スリバー疵」が
発生する原因は、極低炭素鋼からなる溶鋼をスラブに連
続鋳造する際に、鋳型内における湯面位置の凝固シエル
先端の爪部分に、モールドパウダーの液滴や脱酸生成物
のアルミナが捕捉されるためであるといわれている。極
低炭素鋼は、低炭素鋼と比較して凝固温度が高く、上述
した爪が成長しやすいので、「スリバー疵」が発生しや
すくなる。
[0006] Another one of the characteristic surface flaws is a linear flaw called "sliver flaw". The cause of "sliver flaws" is that, when continuously casting molten steel consisting of extremely low carbon steel into a slab, droplets of mold powder and deoxidation are generated at the claws at the tip of the solidification shell at the molten metal surface position in the mold. It is said that this is because the alumina of the product is captured. The ultra-low carbon steel has a higher solidification temperature than the low-carbon steel, and the above-mentioned claws easily grow, so that “sliver flaw” is likely to occur.

【0007】「ブリスター疵」を低減する手段として、
アルミニウム脱酸後のアルミナを鍋上スラグによって回
収する方法や、「材料とプロセス」Vol.5(1992)−21
1に開示されているように、浸漬ノズルの溶鋼吐出孔角
度を浅角化することによって、鋳型内の溶鋼中における
アルミナの浮上率を向上させる方法(以下、先行技術1
という)が知られており、このような方法を行うことに
よって、「ブリスター疵」の発生頻度は激減し、低炭素
鋼と遜色のないものになってきた。
As a means for reducing "blister defects",
A method of recovering alumina after aluminum deoxidation by slag on the pan, "Materials and Process" Vol.5 (1992) -21
As disclosed in No. 1, a method for improving the floating rate of alumina in molten steel in a mold by making the molten steel discharge hole angle of the immersion nozzle shallower (hereinafter referred to as prior art 1
It is known that by performing such a method, the frequency of occurrence of "blister defects" has been drastically reduced, and it has become comparable to low carbon steel.

【0008】また、「スリバー疵」を低減する手段とし
て、「材料とプロセス」Vol.4(1992)−253に開示さ
れているように、鋳型短辺近傍の湯面直下における溶鋼
の流速を、図1に示す適正範囲即ち0.25〜0.33
m/秒に維持する方法(以下、先行技術2という)が知
られている。以下に、先行技術2の方法について述べ
る。
As a means for reducing "sliver flaws", as disclosed in "Materials and Processes" Vol. 4 (1992) -253, the flow velocity of molten steel immediately below the molten metal surface near the short side of the mold is Proper range shown in FIG. 1, namely 0.25 to 0.33
A method of maintaining m / sec (hereinafter referred to as prior art 2) is known. The method of Prior Art 2 will be described below.

【0009】「スリバー疵」の発生原因である、スラブ
表層下におけるモールドパウダー液滴の捕捉は、スラブ
の幅方向両端部(以下、スラブコーナー部という)付近
に多い。実際に凝固シェル先端部の爪の長さも、スラブ
コーナー部が最も長くなる傾向がある。図1には、鋳型
短辺近傍における湯面直下の溶鋼流速と冷間圧延された
薄鋼板コイルの表面欠陥発生率との関係が示されてい
る。図1に示すように、鋳型短辺近傍における湯面直下
の溶鋼流速には、コイルの表面欠陥発生率を最小にする
適正範囲(0.25〜0.33m/秒)がある。
The trapping of mold powder droplets below the surface layer of the slab, which is the cause of the occurrence of "sliver flaws", is often near both ends in the width direction of the slab (hereinafter referred to as slab corners). In fact, the length of the claw at the tip of the solidified shell also tends to be the longest at the slab corner. FIG. 1 shows the relationship between the molten steel flow velocity just below the molten metal surface in the vicinity of the short side of the mold and the surface defect occurrence rate of the cold rolled thin steel sheet coil. As shown in FIG. 1, the molten steel flow velocity just below the molten metal surface in the vicinity of the short side of the mold has an appropriate range (0.25 to 0.33 m / sec) that minimizes the surface defect occurrence rate of the coil.

【0010】鋳型短辺近傍における湯面直下の溶鋼流速
が、上記適正範囲よりも遅すぎてもまたは速すぎても、
コイルの表面欠陥発生率が高くなる。即ち、上記溶鋼流
速が遅すぎる領域では、前述したように、スラブコーナ
ー部において凝固シエル先端の爪が成長し、モールドパ
ウダーの液滴を捕捉して、表層下介在物が生成する結
果、「スリバー疵」が発生しやすくなる。一方、上記溶
鋼流速が速すぎる領域では、湯面直下の溶鋼流によって
モールドパウダーの液滴が巻き込まれ、ストランド内部
にまで移送されて、凝固シエルの先端から凝固シエルの
厚さが20〜30mmに相当するストランド鋳造方向の深
さ位置までの広範な範囲にわたり、溶鋼の凝固界面に付
着し、表層下介在物となる。
If the molten steel flow velocity just below the molten metal surface in the vicinity of the short side of the mold is too slow or too fast than the above-mentioned appropriate range,
The surface defect occurrence rate of the coil is increased. That is, in the region where the molten steel flow velocity is too slow, as described above, the claw at the tip of the solidification shell grows in the slab corner portion, the droplets of the mold powder are captured, and the subsurface inclusions are generated. "Blemish" is likely to occur. On the other hand, in the region where the molten steel flow velocity is too fast, the droplets of the mold powder are entrained by the molten steel flow just below the molten metal surface and are transferred to the inside of the strand, and the thickness of the solidified shell is 20 to 30 mm from the tip of the solidified shell. Over a wide range up to the depth position in the corresponding strand casting direction, it adheres to the solidification interface of the molten steel and becomes a subsurface inclusion.

【0011】そこで、鋳型短辺近傍の湯面直下における
溶鋼流速を、上述した0.25〜0.33m/秒の範囲
内に維持することにより、鋳型短辺近傍における溶鋼の
熱供給が十分に行われ、スラブコーナー部における凝固
シエル先端の爪の成長が抑制される結果、極低炭素鋼の
薄鋼板コイルの表面欠陥発生率を従来の数%から約1%
にまで低減させることができる。
Therefore, by maintaining the molten steel flow velocity just below the molten metal surface near the short side of the mold within the above-mentioned range of 0.25 to 0.33 m / sec, the heat supply of the molten steel near the short side of the mold is sufficiently performed. As a result, the growth of the claws at the tip of the solidified shell at the slab corner is suppressed, and as a result, the surface defect occurrence rate of the ultra-low carbon steel sheet steel coil is reduced from a few percent to about 1%.
Can be reduced to

【0012】[0012]

【発明が解決しようとする課題】上述したように、鋳型
短辺近傍の湯面直下における溶鋼流速を0.25〜0.
33m/秒の範囲内に維持することにより、極低炭素鋼
からなる薄鋼板コイルの表面欠陥発生率を従来の数%か
ら約1%にまで低減させることができるようになった。
しかしながら、これを低炭素鋼からなる薄鋼板コイルと
比較した場合には、その表面欠陥発生率は約2倍であ
り、依然として高いレベルにある。一方、先行技術2が
開発された当時と比較して、現在は薄鋼板に占める極低
炭素鋼の割合が約2倍に増加していることから、薄鋼板
の製造歩留りを高く維持するためには、極低炭素鋼から
なる薄鋼板の製造歩留りを更に向上させること即ち極低
炭素鋼からなる薄鋼板の表面欠陥発生率を一段と低減さ
せることが必要になってきた。
As described above, the molten steel flow velocity immediately below the molten metal surface in the vicinity of the short side of the mold is 0.25 to 0.
By maintaining the rate within the range of 33 m / sec, it became possible to reduce the surface defect occurrence rate of the thin steel sheet coil made of ultra-low carbon steel from the conventional several% to about 1%.
However, when this is compared with a thin steel plate coil made of low carbon steel, its surface defect occurrence rate is about twice, which is still at a high level. On the other hand, compared to the time when Prior Art 2 was developed, the ratio of ultra-low carbon steel to the thin steel sheet is now about doubled, so in order to keep the manufacturing yield of the thin steel sheet high. It has become necessary to further improve the production yield of thin steel sheets made of ultra-low carbon steel, that is, to further reduce the surface defect occurrence rate of thin steel sheets made of ultra-low carbon steel.

【0013】従って、この発明の目的は、上述した問題
を解決し、極低炭素鋼からなる薄鋼板の表面欠陥発生率
を一段と低減し、その製造歩留りを向上させることがで
きる、極低炭素鋼からなるスラブの連続鋳造方法を提供
することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to further reduce the surface defect occurrence rate of a thin steel sheet made of ultra-low carbon steel, and to improve the production yield thereof. It is to provide a continuous casting method of a slab consisting of.

【0014】[0014]

【課題を解決するための手段】本発明者等は、上述した
問題を解決し、極低炭素鋼からなる薄鋼板の表面欠陥発
生率を一段と低減し、その製造歩留りを向上させること
ができる、極低炭素鋼からなるスラブの連続鋳造方法を
開発すべく、鋭意研究を重ねた。
The inventors of the present invention can solve the above-mentioned problems, further reduce the surface defect occurrence rate of a thin steel sheet made of an ultra-low carbon steel, and improve the production yield thereof. We have conducted intensive research to develop a continuous casting method for slabs made of ultra-low carbon steel.

【0015】先行技術2においては、前述したように、
鋳型短辺近傍の湯面直下における溶鋼の流動が、凝固シ
ェル先端の爪部分の成長に影響を及ぼしている点のみに
着目し、鋳型短辺近傍の湯面直下における溶鋼の流速を
適正範囲に制御して、スラブの表層下介在物を低減して
いる。そこで、本発明者等は、スラブの表層下介在物の
多少に影響を及ぼす鋳型内における溶鋼流動の要素は、
鋳型短辺近傍における湯面直下の溶鋼流速以外にもある
と考え研究を進めた。
In the prior art 2, as described above,
Focusing only on the fact that the flow of molten steel just below the molten metal surface near the short side of the mold affects the growth of the claws at the tip of the solidification shell, the flow rate of molten steel immediately below the molten metal surface near the short side of the mold is adjusted to an appropriate range. By controlling, the inclusions under the surface of the slab are reduced. Therefore, the inventors of the present invention, the elements of the molten steel flow in the mold that influence the inclusions of the subsurface inclusions of the slab,
We proceeded with the research, considering that there is other than the molten steel flow velocity just below the molten metal surface near the short side of the mold.

【0016】その結果、鋳型短辺近傍のみではなく、鋳
型幅4分の1の鋳型短辺寄りの位置における湯面直下の
溶鋼流速が、当該溶鋼によって連続鋳造されたスラブを
素材とする冷間圧延薄鋼板の表面欠陥発生率に大きな影
響を及ぼすことを知見した。
As a result, not only in the vicinity of the short side of the mold but also in the position near the short side of the mold of the mold width 1/4, the molten steel flow velocity just below the molten metal surface is cold when the slab continuously cast by the molten steel is used as the material. It was found that it has a great influence on the surface defect occurrence rate of the rolled thin steel sheet.

【0017】この発明は、上記知見に基づいてなされた
ものであって、請求項1に記載の発明は、極低炭素鋼か
らなる溶鋼を、その下部が鋳型内の溶鋼中に浸漬された
浸漬ノズルを通して鋳型内に注入し、そして、前記鋳型
から連続的に引き抜くことによりスラブを連続鋳造する
方法において、前記浸漬ノズルから前記鋳型内に注入さ
れる溶鋼の、鋳型幅4分の1の鋳型短辺寄りの位置にお
ける流速を、前記鋳型短辺から前記浸漬ノズルに向けた
溶鋼流を正で表し、そして、前記浸漬ノズルから前記鋳
型短辺に向けた溶鋼流を負で表したときに、−0.07
m/秒から0.05m/秒の範囲内に維持することに特
徴を有するものである。
The present invention has been made on the basis of the above findings, and the invention according to claim 1 is an immersion method in which a molten steel made of an ultra-low carbon steel is immersed in the molten steel in the lower part of the molten steel. In a method of continuously casting a slab by injecting it into a mold through a nozzle and then continuously withdrawing it from the mold, a short mold having a mold width of 1/4 of a molten steel injected into the mold from the immersion nozzle. The flow velocity at a position near the edge represents the molten steel flow from the mold short side toward the immersion nozzle as a positive value, and when the molten steel flow from the immersion nozzle toward the mold short side as a negative value, − 0.07
It is characterized in that it is maintained within the range of m / sec to 0.05 m / sec.

【0018】そして、請求項2に記載の発明は、浸漬ノ
ズルから鋳型内に注入される溶鋼の流速を、請求項1に
規定した範囲内に維持するために、前記鋳型の外側にそ
の幅方向に設けられたリニア移動磁場型電磁攪拌装置を
使用して、前記溶鋼の流速を制御することに特徴を有す
るものである。
According to the second aspect of the invention, in order to maintain the flow rate of the molten steel injected from the immersion nozzle into the mold within the range defined in the first aspect, the width direction is provided outside the mold in the width direction. It is characterized in that the flow velocity of the molten steel is controlled by using the linear moving magnetic field type electromagnetic stirrer provided in the above.

【0019】[0019]

【発明の実施の形態】表1に示す仕様のスラブ連続鋳造
機を使用し、表2に示す化学成分組成の極低炭素鋼から
なる溶鋼をスラブに連続鋳造したときの、浸漬ノズルと
一方の鋳型短辺との間の鋳型幅方向における中点、即
ち、鋳型幅4分の1の鋳型短辺寄りの位置(以下、1/
4幅位置という)における湯面直下の溶鋼流速を測定
し、これと当該溶鋼によって連続鋳造されたスラブを素
材とする冷間圧延薄鋼板の表面欠陥発生率との関係を調
べた。
BEST MODE FOR CARRYING OUT THE INVENTION A slab continuous casting machine having the specifications shown in Table 1 is used, and a molten steel made of an extremely low carbon steel having the chemical composition shown in Table 2 is continuously cast into a slab. The midpoint between the mold short side and the mold width direction, that is, the position near the mold short side of the mold width 1/4 (hereinafter, 1 /
The molten steel flow velocity immediately below the molten metal surface at 4 width positions) was measured, and the relationship between this and the surface defect occurrence rate of the cold-rolled thin steel sheet using the slab continuously cast by the molten steel as a raw material was investigated.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】1/4幅位置における湯面直下の溶鋼流速
は、図2に示すような方法によって測定した。即ち、鋳
型1の中央に配置されている浸漬ノズル2から、一方の
鋳型短辺1a寄りの1/4幅位置に、長さ410mm、直径
20mmのモリブデンージルコニア系サ−メット製の浸漬
棒3を、その下端部を鋳型1内の溶鋼中に浸漬させた状
態で、その上端付近を支点とし、鋳型1の幅方向に回動
可能に支持させて取り付けた。浸漬棒3の下端から湯面
4までの距離即ち浸漬棒3の溶鋼内における浸漬深さD
は、約100mmである。
The molten steel flow velocity just below the molten metal surface at the 1/4 width position was measured by the method shown in FIG. That is, from the dipping nozzle 2 arranged at the center of the mold 1, a dipping rod 3 made of molybdenum-zirconia-based cermet having a length of 410 mm and a diameter of 20 mm is placed at a quarter width position near one of the mold short sides 1a. Was attached so as to be rotatably supported in the width direction of the mold 1 with the lower end portion being immersed in the molten steel in the mold 1 with the vicinity of the upper end as a fulcrum. The distance from the lower end of the immersion rod 3 to the molten metal surface 4, that is, the immersion depth D of the immersion rod 3 in the molten steel.
Is about 100 mm.

【0023】このように鋳型1内の溶鋼中に浸漬棒3を
浸漬すると、浸漬棒3の浸漬部分は、湯面直下の溶鋼流
によって、その上端付近の支点を中心として回動し、浸
漬棒3に働く重力と、湯面直下の溶鋼流による力とがつ
りあったところで停止する。このときの、浸漬棒3の軸
線方向と鉛直方向とがなす角度θを測定し、浸漬棒3に
働く重力と湯面直下の溶鋼流とによる力のつりあい計算
によって、湯面直下の溶鋼流速を求めるることができ
る。
When the immersion rod 3 is immersed in the molten steel in the mold 1 in this way, the immersion portion of the immersion rod 3 is rotated around the fulcrum near the upper end by the molten steel flow immediately below the molten metal surface, and the immersion rod is rotated. It stops when the gravity acting on 3 and the force due to the molten steel flow just below the surface of the molten metal are balanced. At this time, the angle θ formed by the axial direction of the immersion rod 3 and the vertical direction is measured, and the molten steel flow velocity immediately below the molten metal surface is calculated by the balance calculation of the force acting on the immersion rod 3 and the molten steel flow immediately below the molten metal surface. You can ask.

【0024】上述した方法により、種々の鋳造条件にお
ける、湯面直下の溶鋼流速を測定し、当該溶鋼によって
連続鋳造されたスラブを素材とする冷間圧延薄鋼板の表
面欠陥発生率との関係を調べ、これを図3に示した。
By the above-mentioned method, the molten steel flow velocity immediately below the molten metal surface was measured under various casting conditions, and the relationship with the surface defect occurrence rate of the cold-rolled thin steel sheet made of the slab continuously cast by the molten steel was measured. It was investigated and shown in FIG.

【0025】図3において、横軸は1/4幅位置の湯面
直下溶鋼流速で、鋳型短辺1aから浸漬ノズル2に向けた
流れを正方向とし、浸漬ノズル2から鋳型短辺1aに向け
た流れを負方向とし、そして、正方向の流速を正数字で
表し、負方向の流速を負数字で表した。
In FIG. 3, the horizontal axis is the molten steel flow velocity just below the molten metal surface at the 1/4 width position, and the flow from the mold short side 1a to the immersion nozzle 2 is in the positive direction, and from the immersion nozzle 2 to the mold short side 1a. The flow was defined as a negative direction, the flow velocity in the positive direction was represented by a positive number, and the flow velocity in the negative direction was represented by a negative number.

【0026】図3から明らかなように、1/4幅位置の
湯面直下溶鋼流速が正方向に約0.05m/秒を超え、
そして、負方向に約0.07m/秒を超えると、表面欠
陥の発生率が多くなる。
As is apparent from FIG. 3, the molten steel flow velocity just below the molten metal surface at the 1/4 width position exceeds about 0.05 m / sec in the positive direction,
If it exceeds about 0.07 m / sec in the negative direction, the occurrence rate of surface defects increases.

【0027】図4は、1/4幅位置の湯面直下溶鋼流が
正方向に流れるときの、鋳型1内における溶鋼の流動状
態を示す図である。図4に示すように、1/4幅位置の
湯面直下溶鋼流が正方向に流れるときには、浸漬ノズル
2からの溶鋼吐出流は、矢印に示すように、鋳型短辺1a
に衝突して上方向および下方向に分岐し、上方向に分岐
した溶鋼流は、湯面4の直下を流れ浸漬ノズル2の位置
に到達した後、再び、浸漬ノズル2からの溶鋼吐出流と
合流して循環流を形成すると考えられる。
FIG. 4 is a diagram showing the flow state of the molten steel in the mold 1 when the molten steel flow immediately below the molten metal surface at the 1/4 width position flows in the positive direction. As shown in FIG. 4, when the molten steel flow immediately below the molten metal surface at the 1/4 width position flows in the positive direction, the molten steel discharge flow from the immersion nozzle 2 is, as shown by the arrow, a short side 1a of the mold.
The molten steel flow that has collided with the above and branched in the upward and downward directions and branched in the upward direction flows immediately below the molten metal surface 4, reaches the position of the immersion nozzle 2, and then again flows into the molten steel discharge flow from the immersion nozzle 2. It is considered that they merge to form a circulation flow.

【0028】浸漬ノズル2からの溶鋼吐出流の速度は1
〜2m/秒であって、この速度は、浸漬ノズル2からの
単位時間当りの溶鋼吐出量によって決まる。このような
循環流は、浸漬ノズル2から鋳型両短辺1a,1aに向けた
両側に発生するので、浸漬ノズル2付近の湯面において
は、鋳型両短辺1a,1aからの湯面直下流が出会う形にな
る。湯面直下における溶鋼流速は、時間的に一定ではな
く、変動しているので、鋳型両短辺1a,1aからの双方の
湯面直下流の速度に差があると、浸漬ノズル2の付近に
おいて縦渦5が生ずる結果、湯面下のモールドパウダー
を巻き込むおそれが生ずる。
The velocity of the molten steel discharge flow from the immersion nozzle 2 is 1
.About.2 m / sec, and this speed is determined by the amount of molten steel discharged from the immersion nozzle 2 per unit time. Since such a circulating flow is generated on both sides from the immersion nozzle 2 toward both the short sides 1a, 1a of the mold, in the molten metal surface in the vicinity of the immersion nozzle 2, it is directly downstream from the both short sides 1a, 1a of the mold. Will meet you. Since the molten steel flow velocity immediately below the molten metal surface is not constant in time but fluctuates, if there is a difference in velocity immediately downstream of both molten metal surfaces from the mold short sides 1a, 1a, in the vicinity of the immersion nozzle 2. As a result of the generation of the vertical vortex 5, there is a possibility that the molding powder below the surface of the molten metal may be caught.

【0029】図5は、1/4幅位置の湯面直下溶鋼流が
負方向に流れるときの、鋳型1内における溶鋼の流動状
態を示す図である。図5に示すように、1/4幅位置の
湯面直下溶鋼流が負方向に流れるときには、後述するリ
ニア移動磁場型電磁攪拌装置による溶鋼吐出流に対する
減速力が強すぎるために、浸漬ノズル2からの溶鋼吐出
流の一部分がすぐ湯面4に向って浮上し、浸漬ノズル2
から鋳型両短辺1a,1aに向けた湯面直下の流れが形成さ
れると考えられる。このような湯面直下の溶鋼流が生ず
ると、浸漬ノズル2からの溶鋼吐出流が鋳型両短辺1a,
1aに衝突し、湯面4に向って反射する流れと干渉して、
縦渦5や湯面の波動が生ずる結果、湯面下のモールドパ
ウダーを巻き込むおそれが生ずる。
FIG. 5 is a view showing the flow state of molten steel in the mold 1 when the molten steel flow immediately below the molten metal surface at the 1/4 width position flows in the negative direction. As shown in FIG. 5, when the molten steel flow just below the molten metal surface at the 1/4 width position flows in the negative direction, the deceleration force against the molten steel discharge flow by the linear moving magnetic field type electromagnetic stirrer, which will be described later, is too strong. A part of the molten steel discharge flow from the surface immediately rises toward the molten metal surface 4, and the immersion nozzle 2
Therefore, it is considered that the flow just below the surface of the molten metal is formed toward both short sides 1a of the mold. When such a molten steel flow just below the molten metal surface occurs, the molten steel discharge flow from the dipping nozzle 2 becomes
It collides with 1a and interferes with the flow reflected toward the molten metal surface 4,
As a result of the generation of the vertical vortex 5 and the wave of the molten metal surface, there is a possibility that the molding powder below the molten metal surface may be caught.

【0030】そこで、この発明においては、図3に示し
た如く、浸漬ノズルから鋳型内に注入される溶鋼の、鋳
型幅4分の1の鋳型短辺寄りの位置における流速を、鋳
型短辺から浸漬ノズルに向けた溶鋼流を正とし、そし
て、浸漬ノズルから鋳型短辺に向けた溶鋼流を負とした
ときに、−0.07m/秒から0.05m/秒の範囲内
に維持するようにした。
Therefore, in the present invention, as shown in FIG. 3, the flow velocity of the molten steel injected into the mold from the dipping nozzle at a position close to the mold short side of the mold width 1/4 is calculated from the mold short side. When the molten steel flow toward the immersion nozzle is positive and the molten steel flow from the immersion nozzle toward the short side of the mold is negative, it is maintained within the range of -0.07 m / sec to 0.05 m / sec. I chose

【0031】実際の鋳造において、1/4幅位置におけ
る湯面直下の溶鋼の流速を、上記適正範囲内に維持する
ためには、スラブ断面積に対する鋳造速度、浸漬ノズル
の形状、タンディッシュからモールドへのアルゴンガス
吹込み量などの条件を適正に設定し、且つ、リニア移動
磁場型電磁攪拌装置を使用して、1/4幅位置における
湯面直下溶鋼流速を、上記範囲内となるように制御す
る。なお、前述した1/4幅位置における湯面直下溶鋼
流速と表面欠陥発生率との関係を調査するための鋳造に
おいても、このリニア移動磁場型電磁攪拌装置を使用し
た。
In actual casting, in order to maintain the molten steel flow velocity just below the molten metal surface at the 1/4 width position within the appropriate range, the casting speed with respect to the slab cross-sectional area, the shape of the immersion nozzle, the tundish to the mold. By appropriately setting the conditions such as the amount of argon gas blown into the furnace, and using a linear moving magnetic field type electromagnetic stirrer, the molten steel flow velocity just below the molten metal surface at the 1/4 width position should be within the above range. Control. This linear moving magnetic field type electromagnetic stirrer was also used in the casting for investigating the relationship between the molten steel flow velocity just below the molten metal surface and the surface defect occurrence rate at the 1/4 width position.

【0032】図6はリニア移動磁場型電磁攪拌装置によ
り発生したリニア移動磁場によって、浸漬ノズルからの
溶鋼吐出流に制動力が付加された状態を示す、鋳型の幅
方向概略断面図であり、図7はその概略平面図である。
図6および図7に示すように、鋳型1の両長辺1b, 1bに
沿ってリニア移動磁場型電磁攪拌コイル 6a,6b、6a',6
b' が設けられており、発生した磁場が、スラブの幅方
向に平行に且つ水平に、鋳型1の両短辺1a, 1aから浸漬
ノズル2に向けて移動するようになっている。これによ
って、浸漬ノズル2からの溶鋼吐出流の方向と磁場の方
向とが相対するため、電磁力によって、溶鋼吐出流に対
し制動力が作用する。表3に上記リニア移動磁場型電磁
攪拌装置の仕様を示す。
FIG. 6 is a schematic cross-sectional view in the width direction of the mold showing a state in which a braking force is applied to the molten steel discharge flow from the immersion nozzle by the linear moving magnetic field generated by the linear moving magnetic field type electromagnetic stirrer. 7 is a schematic plan view thereof.
As shown in FIGS. 6 and 7, along the long sides 1b, 1b of the mold 1, linear moving magnetic field type electromagnetic stirring coils 6a, 6b, 6a ', 6
b'is provided so that the generated magnetic field moves parallel to the width direction of the slab and horizontally from both short sides 1a, 1a of the mold 1 toward the immersion nozzle 2. As a result, the direction of the molten steel discharge flow from the immersion nozzle 2 and the direction of the magnetic field face each other, so that a braking force acts on the molten steel discharge flow by the electromagnetic force. Table 3 shows the specifications of the linear moving magnetic field type electromagnetic stirrer.

【0033】[0033]

【表3】 [Table 3]

【0034】図8は、リニア移動磁場型電磁攪拌装置の
電流値と、鋳型内における1/4幅位置の湯面直下溶鋼
流の流速との関係を示す図である。1/4幅位置におけ
る湯面直下の溶鋼流速は、前述したモリブデンージルコ
ニア系サ−メット製の浸漬棒3を使用して測定した。図
8から明らかなように、リニア移動磁場型電磁攪拌装置
に対する印加電流を、0から2160Aまで増すと、1
/4幅位置における湯面直下の溶鋼流速は単調減少し、
印加電流に応じた溶鋼流速が得られる。
FIG. 8 is a diagram showing the relationship between the current value of the linear moving magnetic field type electromagnetic stirrer and the flow velocity of the molten steel flow immediately below the molten metal surface at the 1/4 width position in the mold. The molten steel flow velocity immediately below the molten metal surface at the 1/4 width position was measured using the above-mentioned dipping rod 3 made of molybdenum-zirconia-based cermet. As is apparent from FIG. 8, when the applied current to the linear moving magnetic field type electromagnetic stirrer is increased from 0 to 2160 A, 1
The molten steel flow velocity just below the molten steel surface at the / 4 width position decreased monotonically,
A molten steel flow rate corresponding to the applied current can be obtained.

【0035】この例の鋳造条件においては、1/4幅位
置における湯面直下の溶鋼流速を、ー0.07m/秒か
ら0.05m/秒の範囲内に維持するためには、リニア
移動磁場型電磁攪拌装置に、約1100Aから約140
0Aの電流を通電すればよいことがわかる。
Under the casting conditions of this example, in order to maintain the molten steel flow velocity immediately below the molten metal surface at the 1/4 width position within the range of -0.07 m / sec to 0.05 m / sec, a linear moving magnetic field was used. Type electromagnetic stirrer, about 1100A to about 140
It can be seen that a current of 0 A should be applied.

【0036】図9は、リニア移動磁場型電磁攪拌装置に
よって、鋳型内における1/4幅位置の湯面直下溶鋼流
の流速を−0.07m/秒から0.05m/秒の範囲内
に制御したときの鋳型内における溶鋼の流動状態を示す
図である。図9に示すように、1/4幅位置における湯
面直下の溶鋼流速を、−0.07m/秒から0.05m
/秒のほぼ0に近い値に維持したときには、浸漬ノズル
からの溶鋼吐出流は、リニア移動磁場型電磁攪拌装置に
よる移動磁場を透過せず、磁場によって十分に減速され
つつ、磁場の移動方向と直交する方向に分散する。
FIG. 9 shows a linear moving magnetic field type electromagnetic stirrer for controlling the flow velocity of the molten steel flow immediately below the molten metal surface at a 1/4 width position in the mold within the range of -0.07 m / sec to 0.05 m / sec. It is a figure which shows the flowing state of the molten steel in a mold at the time of doing. As shown in FIG. 9, the molten steel flow velocity immediately below the molten metal surface at the 1/4 width position was changed from -0.07 m / sec to 0.05 m.
When maintained at a value close to 0 per second, the molten steel discharge flow from the immersion nozzle does not pass through the moving magnetic field generated by the linear moving magnetic field type electromagnetic stirrer, and is sufficiently decelerated by the magnetic field while moving in the moving direction of the magnetic field. Disperse in the orthogonal direction.

【0037】このような、1/4幅位置における湯面直
下の溶鋼流速が実現された状態においては、湯面直下の
溶鋼流速は、十分に小さくなるため、図4および図5に
おいて説明したような縦渦5の発生によるモールドパウ
ダー液滴の発生が防止され、且つ、リニア移動磁場によ
って減速分散された溶鋼吐出流によって、湯面には十分
な溶鋼の熱供給が行われる結果、スラブコーナー付近の
凝固シエルの爪の成長も防止されると考えられる。
In such a state where the molten steel flow velocity just below the molten metal surface at the 1/4 width position is realized, the molten steel flow velocity immediately below the molten metal surface becomes sufficiently small, and therefore, as described with reference to FIGS. 4 and 5. The generation of mold powder droplets due to the generation of the vertical vortex 5 is prevented, and the molten steel discharge flow decelerated and dispersed by the linear moving magnetic field supplies sufficient heat of molten steel to the molten metal surface, resulting in the vicinity of the slab corner. It is also believed that the growth of the nails of the coagulated shell is prevented.

【0038】[0038]

【実施例】次にこの発明を、実施例により説明する。表
1に示した仕様のスラブ連続鋳造機を使用し、表2に示
した化学成分組成の極低炭素鋼からなる溶鋼をスラブに
連続鋳造した。連続鋳造に際し、図6および図7に示し
たリニア移動磁場型電磁攪拌装置により、1/4幅位置
における湯面直下の溶鋼流速を、本発明の範囲内に維持
されるように制御した。
EXAMPLES The present invention will now be described with reference to examples. Using the slab continuous casting machine having the specifications shown in Table 1, molten steel made of ultra-low carbon steel having the chemical composition shown in Table 2 was continuously cast into the slab. During continuous casting, the linear moving magnetic field type electromagnetic stirrer shown in FIGS. 6 and 7 was used to control the molten steel flow velocity immediately below the molten metal surface at the 1/4 width position so as to be maintained within the range of the present invention.

【0039】図10に、鋳造速度が2.0〜2.4m/
分のときの、リニア移動磁場型電磁攪拌装置に対するス
ラブ幅別の印加電流値を、先行技術2の従来法の場合と
比較して示す。図面において、白丸印は本発明法の場合
の印加電流値であり、黒丸印は従来法の場合の印加電流
値である。本発明法の場合には、印加電流値を、1/4
幅位置における湯面直下の溶鋼流速が−0.07m/秒
から0.05m/秒の範囲内に維持されるように制御
し、従来法の場合には、印加電流値を、鋳型短辺近傍に
おける湯面直下の溶鋼流速が0.25m/秒から0.3
3m/秒の範囲内に維持されるように制御した。
In FIG. 10, the casting speed is 2.0 to 2.4 m /
The applied current value for each slab width to the linear moving magnetic field type electromagnetic stirrer at the time of minute is shown in comparison with the case of the conventional method of the prior art 2. In the drawings, white circles represent applied current values in the method of the present invention, and black circles represent applied current values in the conventional method. In the case of the method of the present invention, the applied current value is ¼
The molten steel flow velocity just below the surface of the molten metal at the width position was controlled to be maintained within the range of -0.07 m / sec to 0.05 m / sec. The molten steel flow velocity just below the molten metal surface at 0.25 to 0.3
It was controlled so as to be maintained within the range of 3 m / sec.

【0040】図11に、鋳造速度が2.0〜2.4m/
分のときの、本発明法および従来法における1/4幅位
置のスラブ幅別の湯面直下溶鋼流速を示す。図11から
明らかなように、従来法の場合には、スラブ幅の狭い範
囲では、鋳型短辺近傍の湯面直下溶鋼流速を適正値に維
持するために、リニア移動磁場型電磁攪拌装置の電流値
は比較的小さく、そのために、1/4幅位置における湯
面直下溶鋼流速は、0.07m/秒を超えている。ま
た、スラブ幅が広い範囲では、鋳型短辺近傍の湯面直下
溶鋼流速を適正値に維持するために、リニア移動磁場型
電磁攪拌装置の電流値は比較的大きく、そのために、1
/4幅位置における湯面直下溶鋼流は、負方向即ち浸漬
ノズルから鋳型短辺に向けた方向に流れており、その流
速は0.05m/秒を超えている。
In FIG. 11, the casting speed is 2.0 to 2.4 m /
The molten steel flow velocity just below the molten metal surface for each slab width at the 1/4 width position in the method of the present invention and the conventional method is shown in minutes. As is clear from FIG. 11, in the case of the conventional method, in the range where the slab width is narrow, in order to maintain the molten steel flow velocity just below the molten metal surface near the mold short side at an appropriate value, the current of the linear moving magnetic field type electromagnetic stirring device is increased. Since the value is relatively small, the molten steel flow velocity just below the molten metal surface at the 1/4 width position exceeds 0.07 m / sec. Further, in the wide slab width range, the current value of the linear moving magnetic field type electromagnetic stirrer is relatively large in order to maintain the molten steel flow velocity just below the molten metal surface near the mold short side at an appropriate value.
The molten steel flow immediately below the molten metal surface at the / 4 width position is flowing in the negative direction, that is, in the direction from the immersion nozzle to the short side of the mold, and its flow rate exceeds 0.05 m / sec.

【0041】これに対して、本発明法の場合には、1/
4幅位置における湯面直下溶鋼流の流速が、適正範囲で
ある−0.07m/秒から0.05m/秒の範囲内に維
持されている。
On the other hand, in the case of the method of the present invention, 1 /
The flow velocity of the molten steel flow immediately below the molten metal surface at the 4-width position is maintained within the appropriate range of -0.07 m / sec to 0.05 m / sec.

【0042】図12は、本発明方法および先行技術2の
従来法による、スラブ幅別の冷間圧延コイル表面欠陥発
生率を示す図である。図12から明らかなように、1/
4幅位置における湯面直下溶鋼流の流速が本発明の範囲
を外れた従来法によって鋳造されたスラブによる、スラ
ブ幅別の冷間圧延コイル表面欠陥発生率は、約0.2〜
0.8%の高い値を示した。これに対し、本発明法によ
り、1/4幅位置における湯面直下溶鋼流の流速を本発
明の範囲内に維持して鋳造したスラブによる、スラブ幅
別の冷間圧延コイル表面欠陥発生率は、全スラブ幅にわ
たって極めて低かった。
FIG. 12 is a diagram showing the cold rolling coil surface defect occurrence rate for each slab width by the method of the present invention and the conventional method of the prior art 2. As is clear from FIG. 12, 1 /
The cold rolling coil surface defect occurrence rate for each slab width by the slab cast by the conventional method in which the flow velocity of the molten steel flow immediately below the molten metal surface at the 4 width position is outside the range of the present invention is about 0.2 to.
It showed a high value of 0.8%. On the other hand, according to the method of the present invention, the cold rolling coil surface defect occurrence rate for each slab width by the slab cast by maintaining the flow velocity of the molten steel flow immediately below the molten metal surface at the 1/4 width position within the range of the present invention is , Was extremely low over the entire slab width.

【0043】図13は、本発明法および従来法による、
全スラブ幅平均の冷間圧延コイル表面欠陥発生率を示す
図である。図13から明らかなように、本発明法の場合
には、冷間圧延コイル表面欠陥発生率が従来法の約4分
の1に低減し、極低炭素鋼からなる冷間圧延コイルの製
造歩留りを大きく向上させることができた。
FIG. 13 shows the method according to the present invention and the conventional method.
It is a figure which shows the cold rolling coil surface defect generation rate of all slab width averages. As is clear from FIG. 13, in the case of the method of the present invention, the surface defect occurrence rate of the cold rolling coil is reduced to about 1/4 of that of the conventional method, and the production yield of the cold rolling coil made of ultra low carbon steel is reduced. Was able to be greatly improved.

【0044】[0044]

【発明の効果】以上述べたように、この発明によれば、
極低炭素鋼からなる溶鋼をスラブに連続鋳造するに際
し、浸漬ノズルから鋳型内に注入される溶鋼の、鋳型幅
4分の1の鋳型短辺寄りの位置における流速を、鋳型短
辺から浸漬ノズルに向けた溶鋼流を正で表し、そして、
浸漬ノズルから鋳型短辺に向けた溶鋼流を負で表したと
きに、−0.07m/秒から0.05m/秒の範囲内に
維持されるようにに制御したことにより、モールドパウ
ダーの液滴が鋼中に取り込まれてスラブの表層下介在物
が発生することが防止され、これによって、薄鋼板の表
面欠陥発生率が顕著に低減し、その製造歩留りを向上さ
せることができる、工業上有用な効果がもたらされる。
As described above, according to the present invention,
When continuously casting molten steel made of ultra-low carbon steel into a slab, the flow velocity of the molten steel injected into the mold from the dipping nozzle at a position close to the mold short side of the mold width 1/4 is measured from the mold short side to the dipping nozzle. Positively represent the molten steel flow toward
When the molten steel flow from the dipping nozzle toward the short side of the mold is expressed as a negative value, it was controlled so as to be maintained within the range of -0.07 m / sec to 0.05 m / sec, so that the mold powder liquid Droplets are prevented from being taken into the steel and generating inclusions under the surface of the slab, which significantly reduces the surface defect occurrence rate of the thin steel sheet and improves the manufacturing yield thereof. It has a useful effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による、鋳型短辺近傍における湯面直
下の溶鋼流速と冷間圧延コイルの表面欠陥発生率との関
係を示す図である。
FIG. 1 is a diagram showing a relationship between a molten steel flow velocity just below a molten metal surface near a short side of a mold and a surface defect occurrence rate of a cold rolling coil according to a conventional technique.

【図2】鋳型内における1/4幅位置の湯面直下溶鋼流
速の測定方法を示す図である。
FIG. 2 is a diagram showing a method for measuring a molten steel flow velocity just below a molten metal surface at a 1/4 width position in a mold.

【図3】鋳型内における1/4幅位置の湯面直下溶鋼流
速と冷間圧延コイルの表面欠陥発生率との関係を示す図
である。
FIG. 3 is a diagram showing a relationship between a molten steel flow rate immediately below a molten metal surface at a 1/4 width position in a mold and a surface defect occurrence rate of a cold rolling coil.

【図4】鋳型内における1/4幅位置の湯面直下溶鋼流
が正方向に流れるときの鋳型内の溶鋼流動状態を示す図
である。
FIG. 4 is a diagram showing a molten steel flow state in the mold when the molten steel flow just below the molten metal surface at a 1/4 width position in the mold flows in a positive direction.

【図5】鋳型内における1/4幅位置の湯面直下溶鋼流
が負方向に流れるときの鋳型内の溶鋼流動状態を示す図
である。
FIG. 5 is a diagram showing a molten steel flow state in the mold when the molten steel flow just below the molten metal surface at a quarter width position in the mold flows in a negative direction.

【図6】リニア移動磁場型電磁攪拌装置により発生した
リニア移動磁場によって、浸漬ノズルからの溶鋼吐出流
に制動力が付加された状態を示す、鋳型の幅方向概略断
面図である。
FIG. 6 is a schematic cross-sectional view in the width direction of the mold showing a state in which a braking force is applied to the molten steel discharge flow from the immersion nozzle by the linear moving magnetic field generated by the linear moving magnetic field type electromagnetic stirring device.

【図7】図6の概略平面図である。FIG. 7 is a schematic plan view of FIG.

【図8】リニア移動磁場型電磁攪拌装置の電流値と、鋳
型内における1/4幅位置の湯面直下溶鋼流の流速との
関係を示す図である。
FIG. 8 is a diagram showing a relationship between a current value of a linear moving magnetic field type electromagnetic stirrer and a flow velocity of a molten steel flow just below a molten metal surface at a 1/4 width position in a mold.

【図9】リニア移動磁場型電磁攪拌装置によって、鋳型
内における1/4幅位置の湯面直下溶鋼流の流速を−
0.07m/秒から0.05m/秒の範囲内に制御した
ときの鋳型内における溶鋼の流動状態を示す図である。
FIG. 9 shows the flow velocity of the molten steel flow just below the molten metal surface at the 1/4 width position in the mold by the linear moving magnetic field type electromagnetic stirring device.
It is a figure which shows the flow state of the molten steel in a mold when controlling in the range of 0.07 m / sec to 0.05 m / sec.

【図10】本発明方法および従来法による、スラブ幅別
のリニア移動磁場型電磁攪拌装置の印加電流値を示す図
である。
FIG. 10 is a diagram showing applied current values of a linear moving magnetic field type electromagnetic stirrer for each slab width according to the method of the present invention and the conventional method.

【図11】図10に示した電流値によってリニア移動磁
場型電磁攪拌装置を運転し鋳造を行ったときの、本発明
方法および従来法による、鋳型内における1/4幅位置
の湯面直下溶鋼流速を示す図である。
FIG. 11 is a molten steel directly below the molten metal surface at a ¼ width position in the mold according to the method of the present invention and the conventional method when the linear moving magnetic field type electromagnetic stirrer is operated by the current value shown in FIG. 10 to perform casting. It is a figure which shows a flow velocity.

【図12】本発明方法および従来法による、スラブ幅別
の冷間圧延コイル表面欠陥発生率を示す図である。
FIG. 12 is a diagram showing a cold rolling coil surface defect occurrence rate for each slab width according to the method of the present invention and the conventional method.

【図13】本発明方法および従来法による、全スラブ幅
平均の冷間圧延コイル表面欠陥発生率を示す図である。
FIG. 13 is a diagram showing the average defect rate of cold rolling coil surface defects over the entire slab width according to the method of the present invention and the conventional method.

【符号の説明】[Explanation of symbols]

1 鋳型 1a 鋳型短辺 1b 鋳型長辺 2 浸漬ノズル 3 浸漬棒 4 湯面 5 縦渦 6 リニア移動磁場型電磁攪拌コイル 1 Mold 1a Mold short side 1b Mold long side 2 Immersion nozzle 3 Immersion rod 4 Melt surface 5 Vertical vortex 6 Linear moving magnetic field type electromagnetic stirring coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 正之 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 鈴木 真 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 石井 俊夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masayuki Nakata, 1-2 Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Makoto Suzuki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Date Inside the Steel Pipe Co., Ltd. (72) Inventor Toshio Ishii 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 極低炭素鋼からなる溶鋼を、その下部が
鋳型内の溶鋼中に浸漬された浸漬ノズルを通して鋳型内
に注入し、そして、前記鋳型から連続的に引き抜くこと
によりスラブを連続鋳造する方法において、 前記浸漬ノズルから前記鋳型内に注入される溶鋼の、鋳
型幅4分の1の鋳型短辺寄りの位置における流速を、前
記鋳型短辺から前記浸漬ノズルに向けた溶鋼流を正で表
し、そして、前記浸漬ノズルから前記鋳型短辺に向けた
溶鋼流を負で表したときに、−0.07m/秒から0.
05m/秒の範囲内に維持することを特徴とする、極低
炭素鋼スラブの連続鋳造方法。
1. A slab is continuously cast by injecting molten steel made of ultra-low carbon steel into a mold through a dipping nozzle whose lower portion is immersed in the molten steel in the mold, and continuously withdrawing from the mold. In the method, the flow velocity of the molten steel injected into the mold from the immersion nozzle at a position close to the mold short side of the mold width ¼, the molten steel flow from the mold short side toward the immersion nozzle is positive. When the molten steel flow from the dipping nozzle toward the short side of the mold is expressed as a negative value, it is expressed as −0.07 m / sec to 0.
A continuous casting method for ultra-low carbon steel slabs, characterized in that the ultra-low carbon steel slab is maintained within a range of 05 m / sec.
【請求項2】 浸漬ノズルから鋳型内に注入される溶鋼
の流速を、請求項1に規定した範囲内に維持するため
に、前記鋳型の外側にその幅方向に設けられたリニア移
動磁場型電磁攪拌装置を使用して、前記溶鋼の流速を制
御する、極低炭素鋼スラブの連続鋳造方法。
2. A linear moving magnetic field type electromagnetic wave provided outside the mold in the width direction thereof in order to maintain the flow velocity of the molten steel injected from the immersion nozzle into the mold within the range defined in claim 1. A continuous casting method for ultra-low carbon steel slabs, wherein a flow rate of the molten steel is controlled by using a stirrer.
JP08007734A 1996-01-19 1996-01-19 Continuous casting method of ultra low carbon steel slab Expired - Fee Related JP3125664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08007734A JP3125664B2 (en) 1996-01-19 1996-01-19 Continuous casting method of ultra low carbon steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08007734A JP3125664B2 (en) 1996-01-19 1996-01-19 Continuous casting method of ultra low carbon steel slab

Publications (2)

Publication Number Publication Date
JPH09192802A true JPH09192802A (en) 1997-07-29
JP3125664B2 JP3125664B2 (en) 2001-01-22

Family

ID=11673943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08007734A Expired - Fee Related JP3125664B2 (en) 1996-01-19 1996-01-19 Continuous casting method of ultra low carbon steel slab

Country Status (1)

Country Link
JP (1) JP3125664B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100654738B1 (en) * 2003-08-29 2006-12-08 제이에프이 스틸 가부시키가이샤 Method for producing ultra low carbon steel slab
JP2007021572A (en) * 2005-07-21 2007-02-01 Nippon Steel Corp Continuous casting cast slab and producing method therefor
KR100741404B1 (en) * 2002-03-01 2007-07-20 제이에프이 스틸 가부시키가이샤 Method and Apparatus for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
JP2007307577A (en) * 2006-05-18 2007-11-29 Jfe Steel Kk Method for continuously casting steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492333B2 (en) * 2004-12-10 2010-06-30 Jfeスチール株式会社 Steel continuous casting method
JP4569320B2 (en) * 2005-02-28 2010-10-27 Jfeスチール株式会社 Continuous casting method of ultra-low carbon steel slab slab

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741404B1 (en) * 2002-03-01 2007-07-20 제이에프이 스틸 가부시키가이샤 Method and Apparatus for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
KR100741403B1 (en) * 2002-03-01 2007-07-20 제이에프이 스틸 가부시키가이샤 Method for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
EP2425912A3 (en) * 2002-03-01 2012-09-19 JFE Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuously cast product
KR100654738B1 (en) * 2003-08-29 2006-12-08 제이에프이 스틸 가부시키가이샤 Method for producing ultra low carbon steel slab
JP2007021572A (en) * 2005-07-21 2007-02-01 Nippon Steel Corp Continuous casting cast slab and producing method therefor
JP4728724B2 (en) * 2005-07-21 2011-07-20 新日本製鐵株式会社 Continuous casting slab and manufacturing method thereof
JP2007307577A (en) * 2006-05-18 2007-11-29 Jfe Steel Kk Method for continuously casting steel

Also Published As

Publication number Publication date
JP3125664B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
US20060102316A1 (en) Method for producing ultra low carbon steel slab
JP4746398B2 (en) Steel continuous casting method
JPWO2007049824A1 (en) Method for producing ultra-low carbon slab
JPH09192802A (en) Method for continuously casting extra-low carbon steel slab
CN108025354B (en) Continuous casting method of slab
KR101239537B1 (en) Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
US4482003A (en) Method for continuous casting of steel
JPWO2019044292A1 (en) Steel continuous casting method and thin steel plate manufacturing method
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
CN112643007B (en) Continuous casting method for reducing large-size impurities on surface layer of aluminum-containing steel casting blank
US3940976A (en) Method of determining the suitability of continuously cast slabs of Al- or Al-Si-killed soft steel for producing cold rolled sheets to be tinned
JPH09295109A (en) Method for continuously casting clean molten metal
US4298050A (en) Process for continuous casting of a slightly deoxidized steel slab
JP4259232B2 (en) Slab continuous casting method for ultra-low carbon steel
JP3505142B2 (en) Casting method of high clean steel
JP3502830B2 (en) Casting method of aluminum deoxidized steel
JP3375862B2 (en) Method for producing ultra-low carbon steel without blowholes
JP4569320B2 (en) Continuous casting method of ultra-low carbon steel slab slab
JP2004322140A (en) Continuous casting method for steel
JP2006192441A (en) Method for continuously casting steel
JP2006255759A (en) Method for continuously casting steel
JP4432263B2 (en) Steel continuous casting method
JP2002079355A (en) Method for continuously casting steel
CN116213670A (en) Capping method for ultralow-carbon steel continuous casting tail billet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees