JP2006192441A - Method for continuously casting steel - Google Patents

Method for continuously casting steel Download PDF

Info

Publication number
JP2006192441A
JP2006192441A JP2005003484A JP2005003484A JP2006192441A JP 2006192441 A JP2006192441 A JP 2006192441A JP 2005003484 A JP2005003484 A JP 2005003484A JP 2005003484 A JP2005003484 A JP 2005003484A JP 2006192441 A JP2006192441 A JP 2006192441A
Authority
JP
Japan
Prior art keywords
mold
immersion nozzle
distance
steel
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005003484A
Other languages
Japanese (ja)
Other versions
JP4448452B2 (en
Inventor
Toshiaki Mizoguchi
利明 溝口
Yoshiyuki Uejima
良之 上島
Masanobu Hayakawa
昌伸 早川
Akira Mikasa
彰 三笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005003484A priority Critical patent/JP4448452B2/en
Publication of JP2006192441A publication Critical patent/JP2006192441A/en
Application granted granted Critical
Publication of JP4448452B2 publication Critical patent/JP4448452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously casting a steel by which a cast slab excellent in the surface quality without developing a sliver caused by inclusion and blow hole on a coil surface after rolling can be cast. <P>SOLUTION: This casting method, that is, in the method for continuously casting the steel, using an electromagnetic stirring device, the casting is performed so that the minimum distance d (mm) between the outer wall of an immersion nozzle 3 at the immersion portion into molten steel and the solidified shell 5 formed at the long wall side in a mold 1, satisfies the following formula (A). This formula is d=(t-D)/2-18√(L/Vc)≥86√(f). Wherein, t: the length (mm) of the short wall side in the mold, D: the outer diameter (mm) of the immersion nozzle, L: the distance (m) from a meniscus to a portion, at where the distance between the immersion nozzle and the solidified shell minimizes, Vc: the casting speed and f: the frequency (Hz) of the electromagnetic stirring coil current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鋳型内電磁撹拌を用いた鋼の連続鋳造方法に関するものであり、特に浸漬ノズル近傍の溶鋼撹拌流速と溶鋼温度の低下を防止することにより、表面品質に優れた鋳片を安定して製造することができる鋼の連続鋳造方法に関するものである。   The present invention relates to a continuous casting method of steel using electromagnetic stirring in a mold, and in particular, by preventing a decrease in molten steel stirring flow velocity and molten steel temperature near the immersion nozzle, a slab excellent in surface quality can be stably obtained. The present invention relates to a continuous casting method of steel that can be manufactured.

電磁撹拌装置により鋳型内の溶鋼に旋回性を付与しつつ鋳造を行う鋼の連続鋳造方法は従来から広く行われており、安定した溶鋼撹拌流を得るための技術が研究されている。例えば特許文献1、2には、湯面盛り上がり高さやメニスカス流速を計測して、電磁力をオンラインで制御する方法が開示されている。また特許文献3には、電磁撹拌装置と浸漬ノズルの位置とを最適化し、溶鋼撹拌流と浸漬ノズルからの溶鋼吐出流の干渉を抑制する方法が開示されている。さらに特許文献4には、浸漬ノズル吐出口の下方に水平方向静磁場を形成して溶鋼吐出流の影響を小さくし、溶鋼撹拌流との干渉を防止する方法が開示されている。   A continuous casting method of steel that performs casting while imparting swirlability to molten steel in a mold using an electromagnetic stirring device has been widely performed, and a technique for obtaining a stable molten steel stirring flow has been studied. For example, Patent Documents 1 and 2 disclose a method of controlling the electromagnetic force online by measuring the height of rise of the molten metal surface and the meniscus flow velocity. Patent Document 3 discloses a method of optimizing the position of the electromagnetic stirring device and the immersion nozzle to suppress interference between the molten steel stirring flow and the molten steel discharge flow from the immersion nozzle. Further, Patent Document 4 discloses a method of forming a horizontal static magnetic field below the submerged nozzle discharge port to reduce the influence of the molten steel discharge flow and to prevent interference with the molten steel stirring flow.

しかしこれらの技術を用いてもなお、鋳型内電磁撹拌により均一な溶鋼撹拌流を生じさせることは難しく、圧延後のコイル表面に発生するスリバーと呼ばれる介在物起因の欠陥をゼロとすることはできなかった。本発明者はその原因を追求した結果、浸漬ノズル吹き込みアルゴンが、電磁撹拌の弱撹拌部位である鋳型の幅方向中央部とエッジ部の鋳片表層凝固シェルに捕捉されることが、このスリバーの原因であることを究明した。また鋳型の幅方向中央部が弱撹拌部位となるのは、浸漬ノズル周辺で流路幅が狭くなり、撹拌流速が低下することが一因であると推定した。   However, even with these technologies, it is still difficult to generate a uniform molten steel stirring flow by electromagnetic stirring in the mold, and defects caused by inclusions called sliver generated on the coil surface after rolling cannot be zero. There wasn't. As a result of pursuing the cause, the present inventor has found that the immersion nozzle blowing argon is captured by the solidified shell of the slab surface layer at the width direction center portion and the edge portion of the mold, which is a weak stirring portion of electromagnetic stirring. Investigated the cause. In addition, it was estimated that the reason why the central portion in the width direction of the mold becomes the weak stirring portion is that the flow path width is narrowed around the immersion nozzle and the stirring flow rate is lowered.

なお検索の結果、鋳型と浸漬ノズルとの距離に言及した特許文献5,6が発見された。そのうち特許文献5には、鋳型と浸漬ノズルとの距離を20〜60mmとすることが記載されている。しかし特許文献5の発明では電磁撹拌装置を使用しておらず、また発明の目的は鋳型内壁に付着した非金属介在物による偏流防止と、浸漬ノズルの折損防止である。   As a result of the search, Patent Documents 5 and 6 that mention the distance between the mold and the immersion nozzle were found. Among them, Patent Document 5 describes that the distance between the mold and the immersion nozzle is 20 to 60 mm. However, the invention of Patent Document 5 does not use an electromagnetic stirring device, and the object of the invention is to prevent drift due to non-metallic inclusions attached to the inner wall of the mold and to prevent breakage of the immersion nozzle.

一方、特許文献6は吐出流による凝固シェルの再溶融に伴う凝固遅れやブレークアウトの防止を目的として、鋳型と浸漬ノズルの寸法を規定している。しかし特許文献6の発明も、電磁撹拌装置を使用していない。このように、電磁撹拌鋳型で発生する浸漬ノズル近傍の溶鋼撹拌流の流速低下を防止するために、鋳型と浸漬ノズルとの最適な距離を追求した文献は存在しないと思われる。
特開平6−63712号公報 特開2000−94102号公報 特開2001−47201号公報 特開2004−42062号公報 特開平5−154625号公報 特開2000−263199号公報
On the other hand, Patent Document 6 defines the dimensions of the mold and the immersion nozzle for the purpose of preventing solidification delay and breakout associated with remelting of the solidified shell due to the discharge flow. However, the invention of Patent Document 6 does not use an electromagnetic stirring device. Thus, there seems to be no literature pursuing the optimum distance between the mold and the immersion nozzle in order to prevent the flow velocity of the molten steel stirring flow near the immersion nozzle generated in the electromagnetic stirring mold.
JP-A-6-63712 JP 2000-94102 A Japanese Patent Laid-Open No. 2001-47201 JP 2004-42062 A JP-A-5-154625 JP 2000-263199 A

本発明は上記した従来の課題を解決し、電磁撹拌鋳型で発生する浸漬ノズル近傍の溶鋼撹拌流の流速低下を防止するために、浸漬ノズルの深さや鋳造速度に応じて鋳型と浸漬ノズルとの距離を適正に保ち、圧延後のコイル表面にスリバーのない表面品質に優れた鋳片の鋳造を可能とした鋼の連続鋳造方法を提供するためになされたものである。   The present invention solves the above-described conventional problems, and prevents a decrease in the flow rate of the molten steel stirring flow in the vicinity of the submerged nozzle generated in the electromagnetic stirring mold. The present invention was made in order to provide a continuous casting method of steel that enables casting of a slab excellent in surface quality while maintaining a proper distance and having no sliver on the coil surface after rolling.

本発明者は上記の課題を解決するために研究を重ねた結果、電磁撹拌による浸漬ノズル周辺の溶鋼撹拌流速の低下を防止するために、鋳型短辺内壁長さと浸漬ノズル外壁間の距離には、電磁撹拌コイル電流の周波数と鋳造速度とによって決まる適正値があることが分かった。すなわち、電磁撹拌装置によって移動する溶鋼撹拌厚さはコイル電流の周波数で決まり、浸漬ノズル外壁と凝固シェル間の距離が狭いと電磁撹拌による旋回流が浸漬ノズルに衝突するため、撹拌流速が低下することとなる。   As a result of repeated researches to solve the above problems, the present inventor has found that the distance between the inner side of the mold short side and the outer wall of the submerged nozzle is determined in order to prevent a decrease in the molten steel stirring flow rate around the submerged nozzle due to electromagnetic stirring. It was found that there is an appropriate value determined by the frequency of the electromagnetic stirring coil current and the casting speed. That is, the thickness of the molten steel that is moved by the electromagnetic stirrer is determined by the frequency of the coil current, and if the distance between the outer wall of the immersion nozzle and the solidified shell is narrow, the swirl flow due to electromagnetic stirring collides with the immersion nozzle, so the stirring flow rate decreases. It will be.

上記の知見に基づいてなされた本発明は、電磁撹拌装置により鋳型内の溶鋼に旋回性を付与しつつ鋳造を行う鋼の連続鋳造方法において、溶鋼に浸漬した部分の浸漬ノズル外壁と、鋳型長辺側に形成された凝固シェルとの間の最小距離d(mm)が、下記(A)式を満足するように周波数を設定して鋳造することを特徴とするものである。
d=(t−D)/2−18√(L/Vc)≧86√(f)・・・(A)
ここで、tは鋳型短辺壁長さ(mm)、Dは浸漬ノズル外径(mm)、Lは浸漬ノズルと凝固シェルとの距離が最小となる部位までのメニスカスからの距離(m)、Vcは鋳造速度、fは電磁撹拌コイル電流の周波数(Hz)である。
なお鋳型としては、電磁撹拌装置を有する正方形または長方形の鋳型を用いることが好ましい。
The present invention made on the basis of the above knowledge, in a continuous casting method of steel that performs casting while imparting swirlability to molten steel in a mold by an electromagnetic stirrer, an immersion nozzle outer wall of a portion immersed in the molten steel, a mold length The casting is performed by setting the frequency so that the minimum distance d (mm) between the solidified shell formed on the side and the following equation (A) is satisfied.
d = (t−D) / 2-18√ (L / Vc) ≧ 86√ (f) (A)
Here, t is the length of the mold short side wall (mm), D is the outer diameter of the immersion nozzle (mm), L is the distance (m) from the meniscus to the portion where the distance between the immersion nozzle and the solidified shell is minimized, Vc is the casting speed, and f is the frequency (Hz) of the electromagnetic stirring coil current.
As the mold, it is preferable to use a square or rectangular mold having an electromagnetic stirring device.

本発明によれば、溶鋼に浸漬した部分の浸漬ノズル外壁と鋳型長辺側に形成された凝固シェルとの間の最小距離dを適切に保つことにより、電磁撹拌による浸漬ノズル周辺の溶鋼撹拌流速の低下を防止し、浸漬ノズル周辺において凝固シェルに捕捉される介在物の洗浄効果を高めることができる。その結果、圧延後のコイル表面にスリバー等の欠陥のない表面品質に優れた鋳片を安定して製造することが可能となった。   According to the present invention, the molten steel stirring flow velocity around the immersion nozzle by electromagnetic stirring is appropriately maintained by appropriately maintaining the minimum distance d between the outer wall of the immersion nozzle immersed in the molten steel and the solidified shell formed on the long side of the mold. , And the cleaning effect of inclusions captured by the solidified shell around the immersion nozzle can be enhanced. As a result, it has become possible to stably produce a cast slab having excellent surface quality free from defects such as sliver on the coil surface after rolling.

以下に本発明の実施形態を示す。
図1は連続鋳造用の鋳型の断面図、図2はその平面図である。これらの図において1は鋳型であり、その長辺側には電磁撹拌装置の電磁撹拌コイル2が設けられている。3は鋳型1の中央部に設けられた浸漬ノズルであり、その吐出孔4から吐出される溶鋼は図2に示されるように一定方向の撹拌流を形成しつつ、鋳型1の接触面から次第に冷却されて凝固シェル5を形成し、連続鋳造されて行く。
Embodiments of the present invention will be described below.
FIG. 1 is a sectional view of a continuous casting mold, and FIG. 2 is a plan view thereof. In these drawings, reference numeral 1 denotes a mold, and an electromagnetic stirring coil 2 of an electromagnetic stirring device is provided on the long side. 3 is an immersion nozzle provided at the center of the mold 1, and the molten steel discharged from the discharge hole 4 gradually forms from the contact surface of the mold 1 while forming a stirring flow in a certain direction as shown in FIG. 2. It is cooled to form a solidified shell 5 and is continuously cast.

本発明では、溶鋼に浸漬した部分の浸漬ノズル3の外壁と、鋳型長辺側に形成された凝固シェル5との間の最小距離d(mm)に着目し、その値が(A)式を満足するようにしながら鋳造する。
d=(t−D)/2−18√(L/Vc)≧86√(f)・・・(A)
この式で用いられる記号は図1に示したとおりであり、tは鋳型短辺壁長さ(mm)、Dは浸漬ノズル外径(mm)、Lは浸漬ノズルと凝固シェルとの距離が最小となる部位までのメニスカスからの距離(m)、Vcは鋳造速度である。またfは電磁撹拌コイル電流の周波数(Hz)である。
In the present invention, paying attention to the minimum distance d (mm) between the outer wall of the immersion nozzle 3 in the portion immersed in the molten steel and the solidified shell 5 formed on the long side of the mold, the value is expressed by the equation (A). Cast while satisfying.
d = (t−D) / 2-18√ (L / Vc) ≧ 86√ (f) (A)
The symbols used in this equation are as shown in FIG. 1, t is the mold short side wall length (mm), D is the immersion nozzle outer diameter (mm), and L is the minimum distance between the immersion nozzle and the solidified shell. The distance (m) from the meniscus to the part to become, Vc is the casting speed. F is the frequency (Hz) of the electromagnetic stirring coil current.

(A)式のうち18√(L/Vc)は連続鋳造における凝固シェルの厚さを示す項であり、(t−D)/2−18√(L/Vc)はメニスカスからの距離Lにおける浸漬ノズル3と凝固シェル5との距離dを示している。多数の実験を繰り返した結果、図3のグラフに示すように、距離dが86√(f)未満になると、電磁撹拌による旋回流が浸漬ノズル3に衝突してその近傍の流速が低下し、電磁撹拌効果が得られない。この結果、鋳片表層に捕捉される介在物と気泡個数が多くなり、次に示す実施例のデータにも示されるように、製品コイルの表面品位も悪くなる。しかし距離dが86√(f)以上となると、浸漬ノズル3近傍の溶鋼撹拌流速の低下を防止して、表面品質に優れた鋳片を安定して製造できる。本発明のように、電磁撹拌コイル電流の周波数fと距離dとの関係を解明した例は、従来は存在しないと思われる。   In formula (A), 18√ (L / Vc) is a term indicating the thickness of the solidified shell in continuous casting, and (t−D) / 2-18√ (L / Vc) is at a distance L from the meniscus. The distance d between the immersion nozzle 3 and the solidified shell 5 is shown. As a result of repeating many experiments, as shown in the graph of FIG. 3, when the distance d is less than 86√ (f), the swirling flow caused by electromagnetic stirring collides with the immersion nozzle 3 and the flow velocity in the vicinity thereof decreases. The electromagnetic stirring effect cannot be obtained. As a result, the inclusions and the number of bubbles trapped in the slab surface layer increase, and the surface quality of the product coil also deteriorates as shown in the data of the following examples. However, when the distance d is 86√ (f) or more, it is possible to prevent a drop in the molten steel stirring flow rate in the vicinity of the immersion nozzle 3 and stably manufacture a slab having excellent surface quality. As in the present invention, it is considered that there is no conventional example in which the relationship between the frequency f of the electromagnetic stirring coil current and the distance d is clarified.

なお、電磁撹拌により良好な溶鋼旋回性を得るためには(A)式から、浸漬ノズル3の外径Dの縮小、鋳型1の短辺壁長さtの拡大、鋳造速度Vcの増加、電磁撹拌コイル電流の周波数fの増加などを行えばよい。鋳型1の短辺壁長さtの拡大は浸漬ノズル3の周辺のみを拡大してもよいが、電磁撹拌装置を使用するためには設備が煩雑となるため、鋳型1の形状は正方形または長方形とすることが好ましい。   In order to obtain good molten steel swirlability by electromagnetic stirring, from equation (A), the outer diameter D of the immersion nozzle 3 is reduced, the short side wall length t of the mold 1 is increased, the casting speed Vc is increased, electromagnetic What is necessary is just to increase the frequency f of the stirring coil current. The enlargement of the short side wall length t of the mold 1 may enlarge only the periphery of the immersion nozzle 3, but the equipment becomes complicated to use the electromagnetic stirrer, so the shape of the mold 1 is square or rectangular. It is preferable that

溶鋼270トンの極低炭素鋼を転炉-RHで溶製した。タンディッシュ内の溶鋼温度は1560〜1580℃、鋳片幅は1600mmとし、垂直湾曲型連続鋳造機を使用した。tは200〜600mm、Dは100〜220mm、Lは0.2〜0.3m、Vcは0.1〜2.5m/min,fは0.3〜50Hzの間で変化させた。鋳片を通常の方法で熱延、酸洗、冷延、焼鈍して自動車用鋼板とし、コイル表面疵個数がコイル当り1個以下を○とし、2固以上を×とした。その結果を表1に示す。本発明によれば、浸漬ノズル近傍の溶鋼撹拌流速と溶鋼温度の低下を確実に防止して、表面品質に優れた鋳片を安定して製造できることが分かる。   Molten steel 270 tons of ultra-low carbon steel was melted in a converter-RH. The molten steel temperature in the tundish was 1560-1580 ° C., the slab width was 1600 mm, and a vertical curve type continuous casting machine was used. t was 200 to 600 mm, D was 100 to 220 mm, L was 0.2 to 0.3 m, Vc was 0.1 to 2.5 m / min, and f was changed between 0.3 to 50 Hz. The slab was hot-rolled, pickled, cold-rolled, and annealed by an ordinary method to form a steel sheet for automobiles. The number of coil surface defects was 1 or less per coil, and 2 or more was marked as x. The results are shown in Table 1. According to this invention, it turns out that the fall of the molten steel stirring flow rate and molten steel temperature of an immersion nozzle vicinity is prevented reliably, and the slab excellent in surface quality can be manufactured stably.

Figure 2006192441
Figure 2006192441

鋳型の断面図である。It is sectional drawing of a casting_mold | template. 鋳型の平面図である。It is a top view of a casting_mold | template. 距離dと周波数とコイル表面疵個数との関係を示すグラフである。It is a graph which shows the relationship between distance d, frequency, and the number of coil surface ridges.

符号の説明Explanation of symbols

1 鋳型
2 電磁撹拌コイル
3 浸漬ノズル
4 吐出孔
5 凝固シェル
1 Mold 2 Electromagnetic stirring coil 3 Immersion nozzle 4 Discharge hole 5 Solidified shell

Claims (2)

電磁撹拌装置により鋳型内の溶鋼に旋回性を付与しつつ鋳造を行う鋼の連続鋳造方法において、溶鋼に浸漬した部分の浸漬ノズル外壁と、鋳型長辺側に形成された凝固シェルとの間の最小距離d(mm)が、下記(A)式を満足するように鋳造することを特徴とする鋼の連続鋳造方法。
d=(t−D)/2−18√(L/Vc)≧86√(f)・・・(A)
ここで、tは鋳型短辺壁長さ(mm)、Dは浸漬ノズル外径(mm)、Lは浸漬ノズルと凝固シェルとの距離が最小となる部位までのメニスカスからの距離(m)、Vcは鋳造速度、fは電磁撹拌コイル電流の周波数(Hz)である。
In a continuous casting method of steel in which casting is performed while imparting swirlability to molten steel in a mold by an electromagnetic stirring device, between the outer wall of the immersion nozzle immersed in the molten steel and the solidified shell formed on the long side of the mold A continuous casting method for steel, wherein casting is performed so that the minimum distance d (mm) satisfies the following expression (A).
d = (t−D) / 2-18√ (L / Vc) ≧ 86√ (f) (A)
Here, t is the length of the mold short side wall (mm), D is the outer diameter of the immersion nozzle (mm), L is the distance (m) from the meniscus to the portion where the distance between the immersion nozzle and the solidified shell is minimized, Vc is the casting speed, and f is the frequency (Hz) of the electromagnetic stirring coil current.
電磁撹拌装置を有する正方形または長方形の鋳型を用いることを特徴とする請求項1記載の鋼の連続鋳造方法。   2. The steel continuous casting method according to claim 1, wherein a square or rectangular mold having an electromagnetic stirring device is used.
JP2005003484A 2005-01-11 2005-01-11 Steel continuous casting method Active JP4448452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003484A JP4448452B2 (en) 2005-01-11 2005-01-11 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003484A JP4448452B2 (en) 2005-01-11 2005-01-11 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2006192441A true JP2006192441A (en) 2006-07-27
JP4448452B2 JP4448452B2 (en) 2010-04-07

Family

ID=36798910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003484A Active JP4448452B2 (en) 2005-01-11 2005-01-11 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4448452B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080792A (en) * 2013-10-22 2015-04-27 新日鐵住金株式会社 Continuous casting method of steel
CN111283155A (en) * 2020-03-20 2020-06-16 首钢京唐钢铁联合有限责任公司 Method for on-line treatment of angle seam steel clamping of crystallizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080792A (en) * 2013-10-22 2015-04-27 新日鐵住金株式会社 Continuous casting method of steel
CN111283155A (en) * 2020-03-20 2020-06-16 首钢京唐钢铁联合有限责任公司 Method for on-line treatment of angle seam steel clamping of crystallizer
CN111283155B (en) * 2020-03-20 2022-06-14 首钢京唐钢铁联合有限责任公司 Method for on-line treatment of angle seam steel clamping of crystallizer

Also Published As

Publication number Publication date
JP4448452B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP4505530B2 (en) Equipment for continuous casting of steel
JP6129435B1 (en) Continuous casting method
JP5321528B2 (en) Equipment for continuous casting of steel
JP4746398B2 (en) Steel continuous casting method
CN101257988B (en) Method of continuous casting of steel
JP4448452B2 (en) Steel continuous casting method
CN108025354B (en) Continuous casting method of slab
JP4757661B2 (en) Vertical continuous casting method for large section slabs for thick steel plates
JP4553639B2 (en) Continuous casting method
JP4998705B2 (en) Steel continuous casting method
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP4910357B2 (en) Steel continuous casting method
JP2003205349A (en) Method for continuously casting cast slab having little blow hole defect, and produced cast slab
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP2002079355A (en) Method for continuously casting steel
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JP2016150343A (en) Continuous casting method of steel
JP6287901B2 (en) Steel continuous casting method
KR101400035B1 (en) Method for producing high quality slab
JPH1190595A (en) Manufacture of super-low carbon steel generating no blow hole
JP5018144B2 (en) Steel continuous casting method
JP2005305536A (en) Continuous-casting method for molten metal
JP2021087968A (en) Method of manufacturing thin cast piece
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4448452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350