JPH10153500A - Method and device for measuring photoelastic constant - Google Patents

Method and device for measuring photoelastic constant

Info

Publication number
JPH10153500A
JPH10153500A JP8315147A JP31514796A JPH10153500A JP H10153500 A JPH10153500 A JP H10153500A JP 8315147 A JP8315147 A JP 8315147A JP 31514796 A JP31514796 A JP 31514796A JP H10153500 A JPH10153500 A JP H10153500A
Authority
JP
Japan
Prior art keywords
light
sample
measured
photoelastic constant
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8315147A
Other languages
Japanese (ja)
Inventor
Motoi Ueda
基 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8315147A priority Critical patent/JPH10153500A/en
Publication of JPH10153500A publication Critical patent/JPH10153500A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily measuring the photoelastic constant of a sample to be measured having a light-transmissible material, including the wavelength dependency (wavelength dispersion). SOLUTION: The light for measurement which is phase-modulated by a photoelastic modulator 15, is applied to a sample to be measured 21, and the external force generating, a stress in a state which makes its intensity an direction understandable is added to the same by a pressing means. The light having passed through the sample to be measured, is detected by a photo detecting means 19, while rotating the sample to be measured 21 which is irradiated by the light and to which the external force is added, in a condition that an axis of rotation is agreed with an optical axis of the measuring beam. The double refraction quantity of the sample to be measured 21 is calculated on the basis of the detected light. The photoelasticity constant of the sample to be measured 21, is measured on the basis of the calculated refraction quantity and the stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透光性材料の光弾
性定数およびその分散を高精度に測定する方法およびそ
の実施に好適な装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the photoelastic constant of a translucent material and its dispersion with high accuracy, and an apparatus suitable for carrying out the method.

【0002】[0002]

【従来の技術】近年、偏光を利用した光学系、すなわち
偏光光学系の応用分野が急速に広がっている。このよう
な偏光光学系において所望の特性を得るためには、偏光
特性を高精度に制御できる技術が重要になる。
2. Description of the Related Art In recent years, an optical system utilizing polarized light, that is, a field of application of a polarized optical system has been rapidly expanding. In order to obtain desired characteristics in such a polarization optical system, a technique capable of controlling the polarization characteristics with high precision is important.

【0003】ところで、ガラスのように等質等方な透光
性材料でも、これに力を加えて応力を生じさせると、光
学的な異方性が生じて、ある種の結晶体と同様に複屈折
性を持つようになる。これは光弾性効果と呼ばれ、透光
性材料で単位応力当たりかつ単位光路当たりで生じる複
屈折量が光弾性定数として定義されている。実際のとこ
ろ透光性材料例えばガラスを様々な光学系に組み込んだ
場合、この透光性材料にかかる熱応力や力学的外部応力
が零であることはあり得ない。そのため透光性材料で
は、少なからず上記応力が原因で光弾性効果が生じ、そ
してこの光弾性効果が原因で複屈折が生じる。このよう
に生じる複屈折は、透光性材料を組み込んだ偏光光学系
の偏光特性を害する原因の1つになる。従って、偏光光
学系で偏光特性を高精度に制御するためには、透光性材
料の光弾性定数を高精度に測定できる技術が、必要にな
る。
[0003] By the way, when a stress is generated by applying a force to a homogeneous isotropic light-transmitting material such as glass, optical anisotropy occurs, and as with certain types of crystals, Becomes birefringent. This is called a photoelastic effect, and the amount of birefringence generated per unit stress and per unit optical path in a translucent material is defined as a photoelastic constant. As a matter of fact, when a light-transmitting material such as glass is incorporated into various optical systems, the heat stress and mechanical external stress applied to the light-transmitting material cannot be zero. Therefore, in the light-transmitting material, a photoelastic effect occurs due to the above-mentioned stress, and birefringence occurs due to the photoelastic effect. The birefringence generated in this way is one of the causes of deteriorating the polarization characteristics of the polarization optical system incorporating the light-transmitting material. Therefore, in order to control the polarization characteristics with high precision by the polarization optical system, a technique capable of measuring the photoelastic constant of the translucent material with high precision is required.

【0004】透光性材料の光弾性定数を測定する従来方
法の一つとして、例えば特開平4−6444号公報に開
示された方法がある。これは、光ヘテロダイン法の原理
を応用した手法によってまず外部応力を加えない状態の
試料の複屈折量と複屈折の主軸方位を高精度で求め、次
に同様の手法により外部応力を加えた状態の試料の複屈
折量と複屈折の主軸方位を高精度で求め、その後、これ
ら求めたデータに基づいて光弾性定数を求めるものであ
る(例えば公報第7頁左上欄第14行〜右上欄第4
行)。この方法によれば、1×10-4(nm/cm)/
(Kgf/cm2 )あるいはそれ以下のオーダーの光弾
性定数測定が可能である(例えば公報第6頁右下欄最下
行〜第7頁左上欄第3行)。
As one of conventional methods for measuring the photoelastic constant of a light-transmitting material, there is, for example, a method disclosed in Japanese Patent Application Laid-Open No. 4-64444. In this method, the amount of birefringence and the principal axis direction of the birefringence of a sample without external stress are obtained with high accuracy by a method that applies the principle of the optical heterodyne method, and then the external stress is applied by the same method. The birefringence amount and the principal axis azimuth of birefringence of the sample are determined with high accuracy, and then the photoelastic constant is determined based on the obtained data (for example, page 7, left upper column, line 14 to upper right column, page 7). 4
line). According to this method, 1 × 10 −4 (nm / cm) /
(Kgf / cm 2 ) or less can be measured (for example, page 6, lower right column, bottom line to page 7, upper left column, line 3).

【0005】一方、複屈折性をそもそも有する材料の複
屈折量を高精度で測定する従来方法の一つとして、例え
ば特開昭63−82345号公報に開示の方法がある。
これは、位相変調した測定光を試料に照射すると共に、
回転軸が測定光の光軸に一致するように試料を回転さ
せ、その状態で試料を透過してくる光に基づいて試料の
複屈折量を測定するものである(例えば公報第2〜第3
頁の実施例)。この方法によれば、複屈折を±0.01
nmの精度で測定できることが期待できる(公報の例え
ば第2頁右下欄第6〜9行)。直交偏光子の間に被測定
物とバビネソレイユ位相補償板を配した一般的な偏光補
償法では複屈折を±0.1nm程度の精度でしか測定で
きなかった点と比べると、特開昭63−82345号公
報に開示のこの方法は、複屈折の測定法として優れた方
法といえた。
On the other hand, as one of the conventional methods for measuring the amount of birefringence of a material having birefringence with high accuracy, there is a method disclosed in, for example, JP-A-63-82345.
This irradiates the sample with phase-modulated measurement light,
The sample is rotated so that the rotation axis coincides with the optical axis of the measurement light, and the amount of birefringence of the sample is measured based on the light transmitted through the sample in that state (for example, Japanese Patent Application Laid-Open Nos. H11-19710 and H10-203).
Example of page). According to this method, the birefringence is set to ± 0.01.
It can be expected that the measurement can be performed with an accuracy of nm (for example, page 2, lower right column, lines 6 to 9). Compared to the point that birefringence could only be measured with an accuracy of about ± 0.1 nm by a general polarization compensation method in which a DUT and a Babinet Soleil phase compensator were arranged between orthogonal polarizers, This method disclosed in JP-A-82345 was an excellent method for measuring birefringence.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
63−82345号公報には、複屈折性をそもそも有す
る透光性材料の複屈折量を測定する方法が記載されてい
るにすぎない。ガラスなどのような通常は複屈折性を示
さない透光性材料の複屈折性を測定し得る技術はもちろ
ん、そのような透光性材料の光弾性定数を測定し得る技
術については何ら記載も示唆もされていない。
However, JP-A-63-82345 only describes a method for measuring the birefringence of a translucent material having birefringence in the first place. There is no description of any technique that can measure the birefringence of a light-transmitting material that does not normally exhibit birefringence, such as glass, and also any technique that can measure the photoelastic constant of such a light-transmitting material. There is no suggestion.

【0007】また、特開平4−6444号公報に開示さ
れた方法では、光源として横ゼーマンレーザー装置等の
ビート信号を発生させる装置を用いる必要がある(例え
ば第4頁左下欄第2行)。横ゼーマンレーザー装置自体
が高価なものであるため、特開平4−6444号公報に
開示された方法では簡易に測定装置を作製することはで
きないという問題点があった。さらに、横ゼーマンレー
ザー装置を用いる関係上、実質的には測定光の波長は単
一に限定され、所望の波長における光弾性定数測定は不
可能であるという問題点があった。偏光光学系のレン
ズ、基板やプリズムなどに多く用いられる一般的な光学
ガラスの光弾性定数は分散を有し、波長によって異なっ
た値を示す。従って光弾性定数を波長依存性(波長分
散)を考慮して高精度に測定し、使用する光の波長にお
ける値を認識することは、偏光光学系を用いたシステム
を開発する上で必須と言える。しかし、特開平4−64
44号公報に開示された方法は、光弾性定数を波長分散
まで考慮して測定できないものであるので、好ましくな
い。
In the method disclosed in Japanese Patent Application Laid-Open No. 4-64444, it is necessary to use a device for generating a beat signal such as a horizontal Zeeman laser device as a light source (for example, page 4, lower left column, second line). Since the horizontal Zeeman laser device itself is expensive, there is a problem that the measuring device cannot be easily manufactured by the method disclosed in Japanese Patent Application Laid-Open No. 4-64444. Furthermore, due to the use of a lateral Zeeman laser device, the wavelength of the measurement light is practically limited to a single wavelength, and there is a problem that it is impossible to measure the photoelastic constant at a desired wavelength. The photoelastic constant of general optical glass often used for a lens, a substrate, a prism, and the like of a polarization optical system has dispersion and shows a different value depending on the wavelength. Therefore, it is essential to measure the photoelastic constant with high accuracy in consideration of the wavelength dependency (wavelength dispersion) and to recognize the value at the wavelength of the light to be used in developing a system using a polarization optical system. . However, JP-A-4-64
The method disclosed in Japanese Patent No. 44 is not preferable because the photoelastic constant cannot be measured in consideration of the wavelength dispersion.

【0008】透光性材料の光弾性定数を簡易にかつ波長
依存性(波長分散)をも含め測定できる方法とその実施
に好適な装置が望まれる。
There is a need for a method capable of easily measuring the photoelastic constant of a light-transmitting material and including the wavelength dependency (wavelength dispersion) and an apparatus suitable for carrying out the method.

【0009】[0009]

【課題を解決するための手段】そこでこの出願の光弾性
定数の測定方法の発明によれば、透光性を有する被測定
試料に、位相変調をかけた測定用の光を照射しかつ強さ
および方向が分かる状態の応力が生じるように外力を加
え、前記光照射および前記外力を加えた状態の前記被測
定試料を透過してくる光の偏光状態を検出することで求
まる複屈折量と、前記応力とに基づいて、前記被測定試
料の光弾性定数を測定することを特徴とする。
According to the invention of a method for measuring a photoelastic constant of the present application, a light-transmitting sample to be measured is irradiated with a phase-modulated measuring light and the intensity is measured. And applying an external force to generate a stress in a state in which the direction is known, the amount of birefringence determined by detecting the polarization state of light transmitted through the sample to be measured in the state where the light irradiation and the external force are applied, The photoelastic constant of the sample to be measured is measured based on the stress.

【0010】この発明によれば、外力が加えられた状態
の被測定試料に位相変調をかけた光(以下、位相変調光
ともいう。)を照射するので、位相変調光は、光弾性効
果が生じた状態の被測定試料を透過することになる。そ
のため、例え被測定試料が通常状態では複屈折性を示さ
ないものであったとしても、この発明の方法による測定
時においては、光弾性効果に起因し複屈折性が生じてい
る状態の被測定試料を位相変調光は透過することにな
る。一方、特定の位相振幅及び周波数で位相変調をかけ
た測定用の光を被測定試料を透過させ、該透過光のうち
特定の偏光方向の交流(ω)成分及び直流(DC)成分
を検出してそれら結果を演算すると複屈折が測定できる
ことが知られている(例えば文献I:光学技術コンタク
トVol.27,No.3P.27(1989。詳細は
後述する。)。さらにまた、被測定試料に応力を生じさ
せて光弾性効果を生じさせた場合に生じる複屈折から
は、前記応力が分かっていれば、光弾性定数が求まるこ
とも知られている。しかもこの発明の方法で測定される
複屈折は光弾性効果に起因するものであり、かつ、この
発明では被測定試料に生じる応力の方向および強さが分
かるように被測定試料に外力を加えている。したがっ
て、この発明の方法によれば、光弾性定数を求めること
ができる。
According to the present invention, the sample to be measured in a state where an external force is applied is irradiated with the phase-modulated light (hereinafter, also referred to as phase-modulated light). The sample to be measured in the generated state is transmitted. Therefore, even if the sample to be measured does not exhibit birefringence in a normal state, the measurement in the state where birefringence occurs due to the photoelastic effect during measurement by the method of the present invention. The phase modulated light will be transmitted through the sample. On the other hand, the measurement light, which has been phase-modulated at a specific phase amplitude and frequency, is transmitted through the sample to be measured, and an alternating current (ω) component and a direct current (DC) component in a specific polarization direction are detected from the transmitted light. It is known that birefringence can be measured by calculating these results (for example, Document I: Optical Technology Contact Vol. 27, No. 3 P. 27 (1989; details will be described later). It is also known that a photoelastic constant can be obtained from the birefringence generated when a stress is caused to cause a photoelastic effect if the stress is known. The refraction is caused by the photoelastic effect, and in the present invention, an external force is applied to the sample to be measured so that the direction and intensity of the stress generated in the sample can be known. , It is possible to obtain the photoelastic constant.

【0011】またこの発明の場合は位相変調光を用いる
ことから光源は特に限定されない。これは光弾性定数の
波長依存性を測定したい波長光を少なくとも発生する帯
域の広い光源を用い、かつ、これを分光手段で所定波長
幅に分光して測定を行なえることを意味する。そのた
め、光弾性定数の波長依存性(光弾性定数の波長分散)
を簡易に測定出来る。
In the case of the present invention, since the phase modulated light is used, the light source is not particularly limited. This means that it is possible to use a light source having a wide band that generates at least the wavelength light for which the wavelength dependency of the photoelastic constant is to be measured, and to perform the measurement by dispersing the light to a predetermined wavelength width by the spectral means. Therefore, wavelength dependence of photoelastic constant (wavelength dispersion of photoelastic constant)
Can be easily measured.

【0012】また、この出願の光弾性定数の測定装置の
発明によれば、透光性を有する被測定試料の光弾性定数
を測定するための装置であって、光弾性定数の波長依存
性を測定したい波長光を少なくとも発生する光源と、該
光源の光を所定波長幅の光に分光する分光手段と、前記
分光光に位相変調をかけて測定光を生成し該測定光を前
記被測定試料に照射する位相変調手段と、前記被測定試
料に強さおよび方向が分かる状態で応力を加えるための
加圧手段と、前記応力が加えられた状態の被測定試料
を、回転軸が前記測定光の光軸に一致する状態で回転さ
せるための被測定試料回転手段と、被測定試料を透過し
てくる光を検出するための光検出手段と、該光検出手段
で検出される光に基づいて前記被測定試料の複屈折量を
算出する複屈折量算出手段と、前記算出された複屈折量
および前記応力に基づいて被測定用試料の光弾性定数を
算出する光弾性定数算出手段とを具えたことを特徴とす
る。
According to the invention of the photoelastic constant measuring apparatus of the present application, there is provided an apparatus for measuring a photoelastic constant of a translucent sample to be measured, wherein the wavelength dependence of the photoelastic constant is measured. A light source that generates at least the wavelength light to be measured, a spectral unit that splits the light from the light source into light having a predetermined wavelength width, and phase-modulates the spectral light to generate measurement light, and the measurement light is used as the sample to be measured. Phase modulating means for irradiating the sample to be measured, pressing means for applying a stress in a state where the strength and direction are known to the sample to be measured, and A sample rotating means for rotating in a state coinciding with the optical axis of the light, a light detecting means for detecting light transmitted through the sample to be measured, and Birefringence calculation for calculating the birefringence of the sample to be measured Means, characterized in that comprising a photoelastic constant calculating means for calculating the photoelastic constant of the sample under test based on the calculated amount of birefringence and the stress.

【0013】この光弾性定数測定装置によれば、加圧手
段を具えるので被測定試料に強さおよび方向が分かる状
態で応力を生じさせることができる。さらに光源、分光
手段および位相変調手段を具えるので、応力を生じさせ
た状態の被測定試料に希望の波長の光でかつ位相変調を
かけた光を照射できる。さらに被測定試料回転手段、光
検出手段、複屈折量算出手段および光弾性定数算出手段
を具えるので、被測定試料の複屈折量を求めることと、
該求めた複屈折量と前記応力とから被測定試料の光弾性
定数を求めることができる。そのため、この出願に係る
光弾性定数の測定方法を容易に実施することができる。
According to this photoelastic constant measuring apparatus, since the pressure means is provided, a stress can be generated in the sample to be measured in a state in which the strength and the direction are known. Further, since the light source, the spectroscopy means, and the phase modulation means are provided, it is possible to irradiate the target sample in a stress-generated state with light having a desired wavelength and phase modulated. Furthermore, since the sample rotation means, light detection means, birefringence amount calculation means and photoelastic constant calculation means are provided, obtaining the birefringence amount of the measurement sample,
The photoelastic constant of the sample to be measured can be obtained from the obtained birefringence and the stress. Therefore, the method for measuring a photoelastic constant according to this application can be easily implemented.

【0014】[0014]

【発明の実施の形態】以下、図面を参照してこの出願の
光弾性定数測定方法および光弾性定数測定装置の実施の
形態について説明する。しかしながら説明に用いる各図
はこの発明を理解出来る程度に概略的に示してあるにす
ぎない。また、各図において同様な構成成分については
同一の番号を付して示し、その重複する説明を省略する
こともある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a photoelastic constant measuring method and a photoelastic constant measuring apparatus of the present application will be described below with reference to the drawings. However, the drawings used in the description are merely schematic representations so that the present invention can be understood. Also, in each of the drawings, the same components are denoted by the same reference numerals, and duplicate description thereof may be omitted.

【0015】この実施の形態では、特定の位相振幅およ
び周波数で位相変調をかけた測定用の光を被測定試料に
照射する。しかも、被測定試料に生じる応力の大きさお
よび強さが分かるように被測定試料に外力を加えた状態
で上記の測定用の光を照射する。そして、上記光照射お
よび上記外力を加えた状態の被測定試料を透過してきた
透過光のうち、特定の偏光方向の交流(ω)成分及び直
流(DC)成分を検出してそれら結果を演算することに
より複屈折を測定する。そして、上記応力および複屈折
量から被測定試料の測定光に対する光弾性定数を求め
る。これについて図1を参照してもう少し具体的に説明
する。ここで図1はこの発明の光弾性定数測定方法を実
施する基本的な測定系例を示した図である。すなわち、
光源11と、偏光子13と、光弾性変調器(PEM)1
5と、偏光面を偏光子13に対して45度回転させた検
光子17と、光検出手段19と、被測定試料21に外力
を加えるための加圧手段23とを具えた構成を示した図
である。構成成分11〜19は測定用の光の光軸に沿っ
てこの順に並べてある。また被測定試料21は光弾性変
調器15と検光子17との間に挿入される。
In this embodiment, a sample to be measured is irradiated with measurement light that has been phase-modulated at a specific phase amplitude and frequency. In addition, the measurement light is irradiated with an external force applied to the measured sample so that the magnitude and intensity of the stress generated in the measured sample can be understood. Then, an AC (ω) component and a DC (DC) component in a specific polarization direction are detected from the transmitted light transmitted through the sample under the condition of the light irradiation and the external force, and the results are calculated. This measures the birefringence. Then, the photoelastic constant of the sample to be measured with respect to the measurement light is determined from the stress and the birefringence. This will be described more specifically with reference to FIG. FIG. 1 is a diagram showing an example of a basic measurement system for implementing the photoelastic constant measurement method of the present invention. That is,
Light source 11, polarizer 13, photoelastic modulator (PEM) 1
5, an analyzer 17 having a polarization plane rotated by 45 degrees with respect to the polarizer 13, a light detection unit 19, and a pressurizing unit 23 for applying an external force to the sample 21 to be measured. FIG. The components 11 to 19 are arranged in this order along the optical axis of the light for measurement. The sample 21 to be measured is inserted between the photoelastic modulator 15 and the analyzer 17.

【0016】この測定系では、光源11から発せられた
光は、偏光子13によって直線偏光に変換され、更に光
弾性変調器15により位相変調がかけられる。この光は
被測定試料21に照射される。被測定試料を透過する光
は偏光面を偏光子13に対して45度回転させた検光子
17を透過した後に光検出手段19にて検出される。
In this measuring system, light emitted from the light source 11 is converted into linearly polarized light by the polarizer 13 and further subjected to phase modulation by the photoelastic modulator 15. This light is applied to the sample 21 to be measured. The light transmitted through the sample to be measured is detected by the light detecting means 19 after passing through the analyzer 17 whose polarization plane is rotated by 45 degrees with respect to the polarizer 13.

【0017】被測定試料21が特定の方向に進相軸を持
つ複屈折性を有する試料である場合、該被測定試料21
を測定光軸と垂直な面で回転させると、光検出手段19
で検出される信号のω成分及びDC成分は被測定試料2
1の回転角の関数として変化する。具体的には、光検出
手段19で検出される光のω成分、DC成分をそれぞれ
をIω(θ)、IDC(θ)で表すとした場合、光弾性変
調器15での変調周波数がω、変調振幅AがA=13
7.79度であると、式(1)、式(2)に示す関係式
が成り立つ。なおこれら式(1)、式(2)は例えば文
献I(光学技術コンタクトVol.27,No.3,
P.27(1989))に開示されている。
When the sample 21 to be measured is a sample having birefringence having a fast axis in a specific direction, the sample 21
Is rotated in a plane perpendicular to the measurement optical axis, the light detecting means 19
The ω component and DC component of the signal detected at
1 as a function of the rotation angle. Specifically, assuming that the ω component and the DC component of the light detected by the light detection unit 19 are represented by Iω (θ) and I DC (θ), respectively, the modulation frequency of the photoelastic modulator 15 is ω , Modulation amplitude A = 13
When the angle is 7.79 degrees, the relational expressions shown in Expressions (1) and (2) hold. These equations (1) and (2) are described in, for example, Document I (Optical Technology Contact Vol. 27, No. 3,
P. 27 (1989)).

【0018】[0018]

【数1】 (Equation 1)

【0019】ただし式(1)、式(2)において、ρは
被測定試料21の振幅透過率、Δφは被測定試料21で
生じる複屈折(位相差)、J1 (A)はベッセル関数の
1次の係数、tは時間を示すものである。
In Equations (1) and (2), ρ is the amplitude transmittance of the sample 21 to be measured, Δφ is the birefringence (phase difference) generated in the sample 21 to be measured, and J 1 (A) is the Bessel function. The first order coefficient, t, indicates time.

【0020】また上記の式(1)、式(2)の関係より
振幅透過率ρ、複屈折Δφはそれぞれ式(3)および式
(4)によって求められる。なおこれら式(3)、式
(4)についても例えば文献I(光学技術コンタクトV
ol.27,No.3,P.27(1989))に開示
されている。
The amplitude transmittance ρ and the birefringence Δφ are obtained from the equations (1) and (2) according to the equations (3) and (4), respectively. Note that these equations (3) and (4) are also described, for example, in Document I (Optical Technology Contact V).
ol. 27, no. 3, p. 27 (1989)).

【0021】[0021]

【数2】 (Equation 2)

【0022】ここにIDC(0)はθ=0のときの直流成
分であり、極大値をとる。またIDC(π/4)、Iω
(π/4)はそれぞれθ=(π/4)の時のIDC,Iω
である。
Here, I DC (0) is a DC component when θ = 0, and has a maximum value. I DC (π / 4), Iω
(Π / 4) are I DC and Iω when θ = (π / 4), respectively.
It is.

【0023】したがって、測定時に被測定試料21を測
定光軸と垂直な面で回転させてIDCが極大になる状態
と、その状態に対し試料21をπ/4回転させた状態と
を生じさせ、各状態での検出器19からの出力のω成分
及びDC成分すなわちIω(π/4)及びIDC(0)、
DC(π/4)を測定し、これらを式(3)、式(4)
に代入すると、被測定試料の有する複屈折量を求めるこ
とができる。
Therefore, during the measurement, the sample 21 to be measured is rotated on a plane perpendicular to the optical axis of the measurement to produce a state in which I DC is maximized, and a state in which the sample 21 is rotated by π / 4 with respect to that state. Ω component and DC component of the output from the detector 19 in each state, that is, Iω (π / 4) and I DC (0),
I DC (π / 4) is measured, and these are calculated by the equations (3) and (4).
, The amount of birefringence of the sample to be measured can be obtained.

【0024】ここで上記のごとく複屈折量が求まる点は
既に説明したように例えば文献I等に記載されていると
ころである。しかしこの発明では加圧手段23により被
測定試料に外力を加えた状態で上記複屈折量を測定す
る。すなわち光弾性効果に起因する複屈折量をこの発明
では測定する。ここで光弾性定数を一般的な形で説明す
ると、以下のようになる。
The point at which the amount of birefringence is determined as described above is described in, for example, Document I as described above. However, in the present invention, the amount of birefringence is measured in a state where an external force is applied to the sample to be measured by the pressing means 23. That is, the amount of birefringence caused by the photoelastic effect is measured in the present invention. Here, the photoelastic constant will be described in a general form as follows.

【0025】応力が生じたときの透光性材料の屈折率は
いわゆる屈折率楕円体で表すことができ、この時、屈折
率楕円体の主屈折率軸は主応力軸に一致する。一般に主
屈折率をn1 、n2 、n3 とそれぞれし、主応力をσ
1 、σ2 、σ3 (それぞれ添字が共通なものは同一方向
にある)とそれぞれすると、これらの間には式(5)の
ごとき関係が成立する。
The refractive index of the translucent material when a stress is generated can be represented by a so-called refractive index ellipsoid. At this time, the main refractive index axis of the refractive index ellipsoid coincides with the main stress axis. Generally the principal refractive index respectively and n 1, n 2, n 3 , the main stress σ
If they are 1 , σ 2 , and σ 3 (those having common indices are in the same direction), a relationship such as Expression (5) is established between them.

【0026】[0026]

【数3】 (Equation 3)

【0027】ここで、C1 、C2 は光の波長および透光
性材料の物質に固有の定数、n0 は無応力のときの屈折
率である。
Here, C 1 and C 2 are light wavelengths and constants specific to the substance of the light-transmitting material, and n 0 is a refractive index when there is no stress.

【0028】また、透光性材料として広く用いられてい
る種々の光学ガラスは、応力に対して破壊直前まで弾性
体的性質を示すとされており、光学的にも上述の式
(5)を満足する性質、つまり応力の大きさに比例して
複屈折量も変化する性質を示すとされている。したがっ
てこのような透光性材料に光を入射する場合、その方向
が式(5)中のσ3と同一方向となるように座標を取れ
ば、入射光はそれぞれσ1、σ2方向の、すなわち互い
に振動面が直行する2つの直線偏光に分かれる。またこ
のように光が入射された透光性材料から光が出射する時
には、各主応力方向の屈折率差(n1、n2)が生じる
ため、これらの2つの直線偏光間には式(6)で表せる
ような複屈折量Δφが生じる。
Various optical glasses widely used as translucent materials are said to exhibit elastic properties until just before breaking under stress, and optically satisfying the above formula (5). It is said to exhibit satisfactory properties, that is, properties in which the amount of birefringence changes in proportion to the magnitude of the stress. Therefore, when light is incident on such a translucent material, if the coordinates are set so that the direction is the same as σ3 in the equation (5), the incident light vibrates in the σ1 and σ2 directions, that is, mutually. The light is split into two linearly polarized light beams whose surfaces are perpendicular to each other. In addition, when light is emitted from the light-transmitting material on which light is incident as described above, a refractive index difference (n1, n2) in each principal stress direction is generated. The amount of birefringence Δφ that can be expressed as follows.

【0029】[0029]

【数4】 (Equation 4)

【0030】ここで式(6)において、λは光の波長、
Lは透光性材料の光透過厚、C=C1−C2は光弾性定
数と呼ばれる。
Here, in equation (6), λ is the wavelength of light,
L is the light transmission thickness of the translucent material, and C = C1-C2 is called the photoelastic constant.

【0031】更に既知の大きさのσ1=0となる一軸性
応力を印加した場合を考えると、式(6)はΔφ=(2
π/λ)・C・σ2 ・Lとなるので、これをさらに光弾
性定数Cについての式に展開すると、下記の式(7)と
なる。
Considering the case where a uniaxial stress having a known magnitude of σ1 = 0 is applied, equation (6) gives Δφ = (2
π / λ) · C · σ 2 · L, which is further expanded into an expression for the photoelastic constant C to obtain the following expression (7).

【0032】[0032]

【数5】 (Equation 5)

【0033】この式(7)から分かるように、光弾性定
数はこの発明の方法によって測定された複屈折量Δφ
を、被測定試料に生じている応力値と被測定試料の光透
過厚Lとで除することによって得ることができる。この
応力値と被測定試料の光透過厚Lとは、測定条件として
既知であるから、この発明の方法によれば光弾性定数を
求められることが分かる。しかも、光源11として、光
弾性定数の波長依存性を測定したい波長光を少なくとも
発生する帯域の広い光源を用いることが可能である。そ
して、該光源の光を分光手段で所定波長幅に分光してそ
れを測定光として用いることができる。そのため、光弾
性定数の波長依存性を簡易に測定することが出来る。
As can be seen from equation (7), the photoelastic constant is the birefringence Δφ measured by the method of the present invention.
Can be obtained by dividing the stress value generated in the sample to be measured by the light transmission thickness L of the sample to be measured. Since the stress value and the light transmission thickness L of the sample to be measured are known as measurement conditions, it is understood that the photoelastic constant can be obtained according to the method of the present invention. Moreover, as the light source 11, it is possible to use a light source having a wide band that generates at least the wavelength light whose wavelength dependence of the photoelastic constant is to be measured. Then, the light from the light source can be split into a predetermined wavelength width by the splitting means and used as measurement light. Therefore, the wavelength dependence of the photoelastic constant can be easily measured.

【0034】[0034]

【実施例】次に実施例によりさらにこの発明を説明す
る。なお、以下の実施例は一般に多く開発が行われてい
る可視域を中心とした波長域の光を用いる光学系を意識
したものであり、かつ、波長300〜1000nmにお
ける光弾性定数の測定を可能にする例である。
Next, the present invention will be further described with reference to examples. The following examples are conscious of an optical system using light in a wavelength region centered on a visible region, which is generally being developed, and can measure a photoelastic constant at a wavelength of 300 to 1000 nm. Here is an example.

【0035】まず、本発明者が実施例において用いた光
弾性定数測定装置の構成を図2を参照して説明する。た
だし、図2において図1に示した構成成分と同様な構成
成分については同一の符号を付して示してある。
First, the configuration of the photoelastic constant measuring device used in the embodiment by the present inventor will be described with reference to FIG. However, in FIG. 2, the same components as those shown in FIG. 1 are denoted by the same reference numerals.

【0036】実施例で用いた光弾性定数測定装置は、図
1のものと同様に、光源11、偏光子13、光弾性変調
器15、検光子17、光検出手段19および加圧手段2
3を具える。
The photoelastic constant measuring apparatus used in the embodiment is the same as that of FIG. 1, the light source 11, the polarizer 13, the photoelastic modulator 15, the analyzer 17, the light detecting means 19 and the pressing means 2.
It has three.

【0037】ここで光源11として、光弾性定数の波長
依存性を測定したい波長光を少なくとも発生する光源
(連続光源ともいう)を用いる。ここでいう連続光源と
は、完全に任意な波長ごとの光弾性定数の測定を考える
のであれば連続スペクトルを示す光源が必要であるが、
光弾性定数の測定を希望するいくつかの波長で輝線を示
す光源であれば連続スペクトルを示すものに限られな
い。ここでは各種放電管に比べて安定性がよく安価なハ
ロゲンランプを光源11として用いた。なお図2におい
て、11aは光源11を駆動するための電源を示す。
Here, as the light source 11, a light source (also referred to as a continuous light source) that generates at least the wavelength light whose wavelength dependence of the photoelastic constant is to be measured is used. A continuous light source here means a light source that exhibits a continuous spectrum if you want to completely measure the photoelastic constant for each arbitrary wavelength.
It is not limited to a light source showing a continuous spectrum as long as it is a light source showing an emission line at several wavelengths at which the measurement of the photoelastic constant is desired. Here, a halogen lamp, which is more stable and cheaper than various discharge tubes, was used as the light source 11. In FIG. 2, reference numeral 11a denotes a power supply for driving the light source 11.

【0038】光弾性変調器15としてここではPEM−
90(米国HINDS INSTRUMENTS 社製のもの)を用いた。
この光弾性変調器15は媒体として石英ガラスを用いた
ものである。なお図2において、15aは光弾性変調器
15に交流電圧を供給するための交流電圧発生装置を示
す。
As the photoelastic modulator 15, a PEM-
90 (made by HINDS INSTRUMENTS, USA) was used.
The photoelastic modulator 15 uses quartz glass as a medium. In FIG. 2, reference numeral 15a denotes an AC voltage generator for supplying an AC voltage to the photoelastic modulator 15.

【0039】偏光子13および検光子17それぞれは、
より高い測定精度を得るためには消光比の大きいものが
好ましい。これに限られないが、ここでは消光比が1
0,000:1のグラントムソンプリズムを用いた。
Each of the polarizer 13 and the analyzer 17 includes:
In order to obtain higher measurement accuracy, those having a large extinction ratio are preferable. Although not limited to this, the extinction ratio is 1 here.
A 0000: 1 Gran Thompson prism was used.

【0040】光検出手段19として、この場合は光電子
増倍管(フォトマルチプライヤ)であって可視から近紫
外域において感度が高い光電子増倍管を用いた。ただ
し、被測定試料21のセッティングあるいは被測定試料
21での測定光透過面の2面の平行度が悪い場合には、
該被測定試料21を回転手段35(後述する)で回転さ
せた際にビームにブレが生じて、受光面の感度ムラの原
因になる。そのようなときは、必要に応じて透過拡散
板、積分球等を、被測定試料21と光電子増倍管19と
の間に設けるのが良い。なお図2において、19aは光
電子増倍管19を駆動するための電源、19bは光電子
増倍管19の出力を増幅するためのプリアンプをそれぞ
れ示す。
In this case, a photomultiplier tube (photomultiplier) having high sensitivity in the visible to near-ultraviolet region was used as the light detecting means 19. However, when the setting of the sample 21 or the parallelism of the two measurement light transmitting surfaces of the sample 21 is poor,
When the sample to be measured 21 is rotated by the rotating means 35 (described later), the beam is blurred, which causes the sensitivity unevenness of the light receiving surface. In such a case, a transmission diffusion plate, an integrating sphere, and the like are preferably provided between the sample 21 to be measured and the photomultiplier tube 19 as necessary. In FIG. 2, reference numeral 19a denotes a power supply for driving the photomultiplier tube 19, and 19b denotes a preamplifier for amplifying the output of the photomultiplier tube 19.

【0041】加圧手段23は、外力を被測定用試料に加
える加圧部23aと、被測定試料21を保持する機能お
よび加圧部23aからの外力により被測定試料21を加
圧出来る機能を有した保持部23bと、加圧部23aか
らの外力の強さをモニターするための圧力/電圧変換器
(ロードセルとも呼ばれる)23cと、圧力/電圧変換
器23cを駆動するための電源23dと、圧力/電圧変
換器23cの出力電圧を検出する直流電圧計23eとを
具えた構成の手段としてある。加圧手段23のより具体
的な構成例を図3に示した。この図3に示した例では、
加圧部23a、保持部23bを筐体部25f(図2では
図示せず)に挿入した構成としてある。加圧部23a、
保持部23bおよび筐体23fそれぞれを金属で構成し
てある。測定光の照射を妨げることがない方向から加圧
部23aを加圧すると、保持部23bを介し被測定試料
21に外力が加わるので、該被測定試料21では圧縮応
力が生じる。被被定試料21で応力が均一に生じるよう
に、被測定試料21と保持部23bとの間にはシリコン
ゴム25gを挿入してある。
The pressing means 23 has a pressing portion 23a for applying an external force to the sample to be measured, a function of holding the sample 21 to be measured, and a function of pressing the sample 21 by the external force from the pressing portion 23a. A holding unit 23b, a pressure / voltage converter (also called a load cell) 23c for monitoring the strength of an external force from the pressurizing unit 23a, a power supply 23d for driving the pressure / voltage converter 23c, This is a means having a configuration including a DC voltmeter 23e for detecting the output voltage of the pressure / voltage converter 23c. FIG. 3 shows a more specific configuration example of the pressing means 23. In the example shown in FIG.
The configuration is such that the pressing portion 23a and the holding portion 23b are inserted into a housing portion 25f (not shown in FIG. 2). Pressurizing section 23a,
Each of the holding portion 23b and the housing 23f is made of metal. When the pressurizing portion 23a is pressed from a direction that does not hinder the irradiation of the measurement light, an external force is applied to the measured sample 21 via the holding portion 23b, so that a compressive stress is generated in the measured sample 21. 25 g of silicon rubber is inserted between the sample 21 to be measured and the holder 23b so that the stress is uniformly generated in the sample 21 to be measured.

【0042】さらにこの光弾性定数測定装置は、光源1
1から出た光を平行光にするためのコリメータ31を、
光源11と偏光子13との間に具える。ハロゲンランプ
を光源として用いているので、レーザを光源とする場合
に比べてコリメータの性能が測定精度に大きく影響す
る。コリメータの選択に当たってはその点を考慮する。
またコリメータ31は、任意の波長の光に対応するため
に、反射系のもの、また屈折系のものとするならズーム
機能を持つものとするのが望ましい。また迷光の問題が
懸念される場合は、光源11と試料21との間の任意の
位置に絞りを設けるのが良い。
Further, the photoelastic constant measuring apparatus includes a light source 1
A collimator 31 for converting the light emitted from 1 into parallel light,
It is provided between the light source 11 and the polarizer 13. Since the halogen lamp is used as the light source, the performance of the collimator greatly affects the measurement accuracy as compared with the case where the laser is used as the light source. This point is taken into consideration when selecting a collimator.
It is desirable that the collimator 31 has a zoom function if it is a reflection type or a refraction type in order to cope with light of an arbitrary wavelength. When there is a concern about the problem of stray light, it is preferable to provide a stop at an arbitrary position between the light source 11 and the sample 21.

【0043】さらにこの光弾性定数測定装置は、光源1
1の光を所望波長幅の光に分光するための分光フィルタ
33を、コリメータ31と偏光子13との間に具える。
分光フィルタ33をどのような分光特性の分光フィルタ
とするかは、要求される波長精度、波長分解能などを考
慮して決める。ただし、光弾性変調器15の媒体となっ
ている石英ガラスの光弾性定数の波長分散の影響を受け
ない程度の透過波長幅を持つ分光フィルタとする必要が
ある。この実施例では分光フィルタ33を通過した後に
適当な光量が得られることも考え、中心波長の半値幅が
約10nmの分光特性を持った分光フィルタを用いた。
しかも、このような構成の分光フィルタであって中心波
長が異なる分光フィルタを多数用意し、これらを分光フ
ィルタ切換手段33aにより適時切り換えて使用できる
構成としてある。分光フィルタ切換手段33aは、例え
ば円板上の各位置が分光特性の異なる分光フィルタとな
っている円板をステッピングモータで適時切り換える等
の手段で構成することが出来る。
Further, the photoelastic constant measuring apparatus includes a light source 1
A spectral filter 33 for dispersing one light into light having a desired wavelength width is provided between the collimator 31 and the polarizer 13.
The spectral characteristics of the spectral filter 33 are determined in consideration of required wavelength accuracy, wavelength resolution, and the like. However, it is necessary to use a spectral filter having a transmission wavelength width that is not affected by the wavelength dispersion of the photoelastic constant of the quartz glass used as the medium of the photoelastic modulator 15. In this embodiment, considering that an appropriate amount of light can be obtained after passing through the spectral filter 33, a spectral filter having a spectral characteristic with a half-width of the center wavelength of about 10 nm was used.
In addition, a large number of spectral filters having such a configuration and having different center wavelengths are prepared, and these can be switched and used at appropriate times by the spectral filter switching means 33a. The spectral filter switching means 33a can be constituted by, for example, means for appropriately switching, by a stepping motor, a disk in which each position on the disk is a spectral filter having different spectral characteristics.

【0044】さらにこの光弾性定数測定装置は、被測定
試料回転手段35を具える。被測定試料回転手段35と
は、被測定試料21を加圧手段23で加圧した状態で、
しかも、回転軸が測定光の光軸に一致する状態で回転さ
せるためのものである。例えばステッピングモータと好
適な回転機構とにより該手段35を構成することが出来
る。
The photoelastic constant measuring apparatus further comprises a sample rotating means 35. The measured sample rotating means 35 is a state in which the measured sample 21 is pressed by the pressing means 23,
In addition, the rotation is performed with the rotation axis coinciding with the optical axis of the measurement light. For example, the means 35 can be constituted by a stepping motor and a suitable rotating mechanism.

【0045】さらにこの光弾性定数測定装置は、光電子
増倍管19の出力(詳細にはプリアンプ19bの出力)
から交流(ω)成分及び直流(DC)成分を分離するた
めのAC/DC分離器37と、光電子増倍管19の出力
から分離されたω成分と交流電圧発生装置15aとのロ
ックイン状態を担保するロックインアンプ39と、分離
されたDC成分を測定する直流電圧計41と、この光弾
性定数測定装置の制御部として機能するコンピュータ4
3とを具える。このコンピュータ43には、光源用電源
11a、分光フィルタ切換手段33a、圧力/電圧変換
器用電源23d、被測定試料回転手段35、DC電圧計
23e、ロックインアンプ39、直流電圧計41がそれ
ぞれ接続してある。
Further, in this photoelastic constant measuring apparatus, the output of the photomultiplier tube 19 (specifically, the output of the preamplifier 19b)
An AC / DC separator 37 for separating an alternating current (ω) component and a direct current (DC) component from the A / C component, and a lock-in state between the ω component separated from the output of the photomultiplier tube 19 and the AC voltage generator 15a. Lock-in amplifier 39 for securing, DC voltmeter 41 for measuring the separated DC component, and computer 4 functioning as a control unit of the photoelastic constant measuring device.
3 and so on. The power source 11a for the light source, the spectral filter switching unit 33a, the power source 23d for the pressure / voltage converter, the sample rotating unit 35, the DC voltmeter 23e, the lock-in amplifier 39, and the DC voltmeter 41 are connected to the computer 43, respectively. is there.

【0046】この光弾性定数測定装置では、光検出手段
19の出力と被測定試料回転手段35での試料の回転角
度についての情報等とをパソコン43が演算することに
より複屈折量を算出できる(複屈折量算出手段)。ま
た、加圧手段21で印加される外力から求められる被測
定試料21で生じる応力と、上記算出される複屈折量と
をパソコン43が演算することにより光弾性定数を算出
できる(光弾性定数算出手段)。
In this photoelastic constant measuring apparatus, the amount of birefringence can be calculated by the personal computer 43 calculating the output of the light detecting means 19 and information on the rotation angle of the sample by the sample rotating means 35 ( Birefringence amount calculation means). Further, the photoelastic constant can be calculated by the personal computer 43 calculating the stress generated in the sample 21 measured from the external force applied by the pressurizing means 21 and the calculated birefringence (photoelastic constant calculation). means).

【0047】次に、光弾性定数の測定手順および測定結
果について説明する。先ず、被測定試料について説明す
る。被測定試料21にて一軸性の均一な応力を生じさせ
るためには、図4に示したように、被測定試料21の加
圧方向Pに沿う寸法aに対し、加圧面を構成する各辺の
寸法b,cをある程度大きくする必要がある。また、加
圧される面を構成する各辺b,cのうち、測定光の光軸
Lに沿う寸法ここではbの寸法は、測定光の透過厚であ
るので、大きくする程レターデーションが大きくなり測
定精度が向上する。一方、加圧される面を構成する各辺
b,cの寸法を大きくしすぎると、効率良く被測定試料
に応力を生じさせることができなくなる。さらに、被測
定試料21を加圧状態で回転する必要があるため被測定
試料21は小さい方が回転機構が簡易になるので好まし
い。しかし、被測定試料21を小さくするに従い測定光
のビーム径も小さくする必要が生じるが、測定光のビー
ム径を小さくし過ぎるとコリメータ31の性質から測定
光の光量低下を余儀なくされ、その結果、測定精度を低
下させる原因になる。さらにビーム径が小さい程、測定
精度に対しホコリ等の影響が生じてくる。これらの理由
から被測定試料21は直方体状であって上記b,a,c
の各寸法がb,a,cの順でいって10×15×20m
mとなった試料とした。また被測定試料21における測
定光が照射される面および透過側の面それぞれ(a×c
=15×20で規定される2面)の平行度が悪いと、測
定時に被測定試料を回転させた際に測定光のビームのぶ
れが大きくなり、そのため光検出手段19の感度ムラの
原因とる。したがって上記平行度はそれを抑制できるよ
うな平行度とする。これに限られないが、この実施例で
は上記平行度が1分となるように上記の2面を研磨して
被測定試料21とした。
Next, a measurement procedure and a measurement result of the photoelastic constant will be described. First, the sample to be measured will be described. In order to generate a uniaxial uniform stress in the sample 21 to be measured, as shown in FIG. 4, each side constituting the pressing surface with respect to the dimension a along the pressing direction P of the sample 21 to be measured. Must be increased to some extent. In addition, of the sides b and c constituting the surface to be pressed, the dimension along the optical axis L of the measurement light, here, the dimension b is the transmission thickness of the measurement light. The measurement accuracy is improved. On the other hand, if the dimensions of the sides b and c constituting the surface to be pressed are too large, it becomes impossible to efficiently generate stress on the sample to be measured. Further, since it is necessary to rotate the sample to be measured 21 in a pressurized state, it is preferable that the sample to be measured 21 is small because the rotation mechanism is simplified. However, it is necessary to reduce the beam diameter of the measurement light as the sample 21 to be measured is reduced. However, if the beam diameter of the measurement light is too small, the amount of the measurement light decreases due to the nature of the collimator 31. This may cause a decrease in measurement accuracy. Furthermore, as the beam diameter is smaller, the influence of dust and the like on the measurement accuracy occurs. For these reasons, the sample 21 to be measured has a rectangular parallelepiped shape and the above-mentioned b, a, c
10 × 15 × 20m in the order of b, a, c
m. In addition, each of the surface of the sample 21 to be irradiated with the measurement light and the surface on the transmission side (a × c
If the parallelism of the two surfaces defined by (15 × 20) is poor, the beam of the measuring light beam becomes large when the sample to be measured is rotated at the time of measurement, which causes unevenness in sensitivity of the light detecting means 19. . Therefore, the parallelism is set to such a degree that it can be suppressed. Although not limited to this, in this example, the two surfaces were polished so that the parallelism was 1 minute, thereby obtaining a sample 21 to be measured.

【0048】一方、測定光のビーム径をコリメータ31
により5mm程度に調整する。また分光フィルタ切換手
段33aを用いて分光フィルタ33を所望の波長を透過
させ得るものに切り換える。また、光弾性変調器15の
変調振幅Aが137.79度となり、かつ、変調周波数
ωが50KHzとなるように、光弾性変調器15を交流
電圧発生装置15aにより制御する。変調振幅Aを13
7.79度としたのは、こうすると上記の式(1)、式
(2)の関係が満たされるからである。また変調周波数
ωを50KHzとしたのは、こうすると光弾性変調器1
5で用いた媒体である石英ガラスの弾性変形の追従が良
いので、光電子増倍管19を経由してくる信号をロック
インアンプ39により検出し易いからである。交流電圧
発生装置15aは参照信号をロックインアンプ39にも
送っている。
On the other hand, the beam diameter of the measuring light is
To about 5 mm. Further, the spectral filter 33 is switched to a filter capable of transmitting a desired wavelength by using the spectral filter switching means 33a. The photoelastic modulator 15 is controlled by the AC voltage generator 15a so that the modulation amplitude A of the photoelastic modulator 15 becomes 137.79 degrees and the modulation frequency ω becomes 50 KHz. Modulation amplitude A is 13
The reason why the angle is set to 7.79 degrees is that in this case, the relations of the above equations (1) and (2) are satisfied. The reason why the modulation frequency ω is set to 50 KHz is that the photoelastic modulator 1
This is because the elastic deformation of the quartz glass, which is the medium used in 5, is good, and the signal passing through the photomultiplier tube 19 can be easily detected by the lock-in amplifier 39. The AC voltage generator 15a also sends a reference signal to the lock-in amplifier 39.

【0049】被測定用試料21を加圧手段23により加
圧する。この際の加圧力は圧力/電圧変換器23cの出
力に現れるので、これを直流電圧計23eを介しコンピ
ュータ43は取り込む。コンピュター43はこの加圧に
より被測定試料に生じている応力を算出する。
The sample 21 to be measured is pressed by the pressing means 23. Since the pressing force at this time appears in the output of the pressure / voltage converter 23c, the computer 43 takes it in via the DC voltmeter 23e. The computer 43 calculates the stress generated in the sample to be measured by the pressurization.

【0050】光電子増倍管19の出力は、AC/DC分
離器37でω成分およびDC成分に分離される。ω成分
はロックインアンプ39を介しコンピュータ43に入力
され、DC成分は直流電圧計41を介しかつ図示しない
A/D変換器でディジタル信号に変換された後にコンピ
ュータ43に入力される。コンピュータ43は、光電子
増倍管19からのω成分ならびにDC成分と、被測定試
料21を回転させた回転角の相関と、圧力/電圧変換器
23cからの信号に基づいて算出した被測定試料での応
力とに基づいて、上記式(1)〜式(7)についての演
算をして、光弾性定数を算出する。
The output of the photomultiplier tube 19 is separated by an AC / DC separator 37 into a ω component and a DC component. The ω component is input to the computer 43 via the lock-in amplifier 39, and the DC component is input to the computer 43 via the DC voltmeter 41 and after being converted into a digital signal by an A / D converter (not shown). The computer 43 calculates the correlation between the ω component and the DC component from the photomultiplier tube 19, the rotation angle of the sample 21 to be rotated, and the signal measured from the pressure / voltage converter 23c. The photoelastic constant is calculated based on the stresses (1) to (7) above.

【0051】具体的な測定結果を次に説明する。被測定
試料として4種類の被測定試料1〜4を用意した。内部
歪みが残留していると測定精度を低下させる原因となる
ので、光弾性定数の測定をする前に、これら被測定試料
にアニールをそれぞれ施した。なおこれら被測定試料は
光学ガラスの中でも比較的光弾性定数が小さいとされて
いるものを選択した。具体的には被測定試料1および2
それぞれは、PbO(酸化鉛)の含有量が高いフリント
系ガラスであり、被測定試料3および4はフッ化物リン
酸塩系のガラスである。
Next, specific measurement results will be described. Four types of measured samples 1 to 4 were prepared as the measured samples. Since residual internal strain causes a decrease in measurement accuracy, each of the samples to be measured was annealed before measuring the photoelastic constant. The samples to be measured were selected from optical glasses having a relatively small photoelastic constant. Specifically, the measured samples 1 and 2
Each is a flint glass having a high PbO (lead oxide) content, and the samples 3 and 4 to be measured are fluoride phosphate glasses.

【0052】まず、被測定試料1を用いる。そして被測
定試料1に外力を加えた状態(被測定試料に応力を生じ
させた状態)で、かつ、この被測定試料を回転手段35
により回転させながら、被測定試料の透過光を検出手段
19で検出する。しかも、この検出光についてのω成分
Iω(θ)およびDC成分IDC(θ)すなわち、上述し
たIDC(0)、IDC(π/4)およびIω(π/4)を
それぞれ測定する。なお被測定試料に印加する外力は、
ここでは被測定試料で生じる応力がゼロから約50N/
cm2 の間で6水準となるように、設定した。次に、上
記測定で得られたIω(θ)およびIDC(θ)と上記の
式(3)、式(4)とに基づいて、被測定試料で生じて
いる複屈折をそれぞれ算出する。またこの一連の処理
を、測定光として種々の波長の光、具体的には中心波長
が365nm、405nm、435nm、510nm、
635nmの各光を用いた場合それぞれについて行なっ
た。なお、IDC(0)を与える角度が既知である場合
は、透過光測定は被測定試料を回転手段35により回転
させながら行なう必要はない。この既知の角度で透過光
を測定し、その位置からπ/4ずれた角度に試料を回転
させた後に、再び透過光を測定するというようにしても
良い。
First, the sample 1 to be measured is used. Then, in a state where an external force is applied to the sample 1 to be measured (a state in which stress is generated in the sample to be measured), and the sample to be measured is
The light transmitted through the sample to be measured is detected by the detection unit 19 while rotating the sample. In addition, the ω component Iω (θ) and the DC component I DC (θ) of the detection light, that is, the above-described I DC (0), I DC (π / 4), and Iω (π / 4) are measured. The external force applied to the sample to be measured is
Here, the stress generated in the sample to be measured is from zero to about 50 N /
It was set so that there were 6 levels between cm 2 . Next, birefringence generated in the sample to be measured is calculated based on Iω (θ) and I DC (θ) obtained in the above measurement and the above equations (3) and (4). Also, this series of processing is performed by measuring light of various wavelengths as the measurement light, specifically, the center wavelength is 365 nm, 405 nm, 435 nm, 510 nm,
This was performed for each case where each light of 635 nm was used. When the angle for giving I DC (0) is known, it is not necessary to perform the transmitted light measurement while rotating the sample to be measured by the rotating means 35. The transmitted light may be measured at this known angle, the sample may be rotated by an angle shifted by π / 4 from the position, and then the transmitted light may be measured again.

【0053】次に、算出された複屈折と応力とを用いか
つ最小二乗法を用いて、両者の関係の近似直線を作成す
る。図5にこの近似直線と、上記求めた複屈折量とを併
せて示した。ただし図5では、横軸に被測定試料で生じ
ている応力(N/cm2 )をとり、縦軸に複屈折(nm
/cm)をとってある。また図5において、黒塗り四角
印は測定光として中心波長が365nmの光を用いたと
きのもの、黒塗り丸印は測定光として中心波長が405
nmの光を用いたときのもの、黒塗り三角印は測定光と
して中心波長が435nmの光を用いたときのもの、黒
塗り菱形印は測定光として中心波長が510nmの光を
用いたときのもの、白抜き四角印は測定光として中心波
長が635nmの光を用いたときのものである。
Next, using the calculated birefringence and stress, and using the least squares method, an approximate straight line of the relationship between the two is created. FIG. 5 also shows this approximate straight line and the amount of birefringence obtained above. In FIG. 5, the stress (N / cm 2 ) generated in the sample to be measured is plotted on the horizontal axis, and the birefringence (nm) is plotted on the vertical axis.
/ Cm). In FIG. 5, black squares indicate the case where light having a center wavelength of 365 nm is used as measurement light, and black circles indicate that the center wavelength is 405 as the measurement light.
In the case of using light of nm, black triangles indicate the case where light with a central wavelength of 435 nm is used as measurement light, and the black diamonds indicate the case where light of a center wavelength of 510 nm is used as measurement light. The white square marks are obtained when light having a center wavelength of 635 nm is used as measurement light.

【0054】図5から分かるようにいずれの波長につい
ても、応力と複屈折との関係は直線に近似できた。ま
た、いずれの近似直線もR2 (平均二乗誤差)=0.9
98〜0.996の誤差のものであった。また、同様な
測定を再度行なったときの測定の再現性も非常に高かっ
た。ここで、上記の(6)式中のΔφが複屈折であり、
σ2 −σ1 が応力であるから、図5に示した各近似直線
の傾きは各波長ごとの光弾性定数といえる。そして特筆
すべきことは、ここで得られた直線がいずれもR2 (平
均二乗誤差)=0.998〜0.996であるから、こ
の発明の測定方法によれば、応力の大小にかかわらず光
弾性定数を高い精度で測定できるということである。例
えば、R2 =0.996としても0.4%程度のバラツ
キで光弾性定数を測定出来るといえる。したがって、光
弾性定数が0.05cm2 /N程度と小さな場合であっ
ても0.4%程度のバラツキで光弾性定数の測定ができ
るといえる。これは、特開平4−6444号公報に開示
された方法と同程度であると言える。ただし、特開平4
−6444号公報に開示された方法ではガラスなどのよ
うな通常は複屈折性を示さない透光性材料の複屈折性を
測定出来ないが、本発明によればそれが可能になる。
As can be seen from FIG. 5, for any wavelength, the relationship between stress and birefringence could be approximated to a straight line. In addition, R 2 (mean square error) = 0.9
The error was 98 to 0.996. The reproducibility of the measurement when the same measurement was performed again was also very high. Here, Δφ in the above equation (6) is birefringence,
Since σ 2 −σ 1 is the stress, the slope of each approximate straight line shown in FIG. 5 can be said to be the photoelastic constant for each wavelength. It should be noted that all of the straight lines obtained here are R 2 (mean square error) = 0.998 to 0.996, and therefore, according to the measuring method of the present invention, regardless of the magnitude of the stress, This means that the photoelastic constant can be measured with high accuracy. For example, it can be said that even when R 2 = 0.996, the photoelastic constant can be measured with a variation of about 0.4%. Therefore, it can be said that even if the photoelastic constant is as small as about 0.05 cm 2 / N, the photoelastic constant can be measured with a variation of about 0.4%. This can be said to be comparable to the method disclosed in JP-A-4-6444. However, JP
The method disclosed in Japanese Patent No. 6444 cannot measure the birefringence of a light-transmitting material that does not normally show birefringence, such as glass, but the present invention makes it possible.

【0055】次に、上記4種の被測定試料それぞれにつ
いて光弾性係数をこの発明に係る測定方法によりそれぞ
れ実測する。そして光の波長に対する光弾性定数の変化
をプロットしてみた。その結果を図6に示した。図6か
ら、光学ガラスの光弾性定数の分散は、光学ガラスの組
成の違いによって大きく異なることがわかる。しかも波
長によって光弾性定数が大きく変化するガラスが存在す
ることがわかる。これは、高精度な偏光の制御を必要と
する光学系では、実際に使用する波長における透過性材
料の光弾性定数を設計に反映させる必要があることを明
確に示唆している。そして、本発明の方法を用いると、
光学系を設計するに当たり光弾性定数の波長依存性を考
慮した設計をも容易に行なえる。
Next, the photoelastic coefficient of each of the four kinds of samples to be measured is actually measured by the measuring method according to the present invention. Then, the change of the photoelastic constant with respect to the wavelength of light was plotted. FIG. 6 shows the result. FIG. 6 shows that the dispersion of the photoelastic constant of the optical glass greatly differs depending on the difference in the composition of the optical glass. In addition, it can be seen that there is a glass whose photoelastic constant changes greatly depending on the wavelength. This clearly indicates that in an optical system that requires high-precision polarization control, it is necessary to reflect the photoelastic constant of the transmissive material at the wavelength actually used in the design. And, using the method of the present invention,
In designing the optical system, it is possible to easily perform the design in consideration of the wavelength dependence of the photoelastic constant.

【0056】[0056]

【発明の効果】以上詳細に説明したように、本発明は、
光弾性定数を測定するに当たり、位相変調をかけた測定
光を用いて複屈折を測定する方法(光弾性変調法)と、
被測定試料を加圧する方法とを利用するので、透光性を
有する被測定試料の光弾性定数を従来よりも高精度に且
つ所望の光の波長について簡易に測定できるものであ
る。種々の透過性材料について本発明による測定を行
い、分散特性も含めた、光弾性定数を詳細に測定するこ
とによって、高精度に制御された偏光を用いた光学系に
用いる光学ガラスの開発、選定に役立てることができ
る。また、同光学系を用いた装置の開発にあたって、種
々の原因でガラスに働く応力をどの程度抑制するべき
か、と言った仕様を与えることも可能となる。
As described in detail above, the present invention provides
In measuring the photoelastic constant, a method of measuring birefringence using a phase-modulated measurement light (photoelastic modulation method),
Since the method of pressurizing the sample to be measured is used, the photoelastic constant of the sample to be measured having a light-transmitting property can be measured with higher accuracy than before and at a desired wavelength of light. Development and selection of optical glass used in optical systems using highly controlled polarized light by performing measurements according to the present invention on various transmissive materials and measuring the photoelastic constant including dispersion characteristics in detail Can help. Further, in developing a device using the optical system, it is possible to give a specification such as how much the stress acting on the glass should be suppressed due to various causes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光弾性定数測定方法の基本的な考え
を説明する図である。
FIG. 1 is a diagram illustrating a basic idea of a photoelastic constant measuring method according to the present invention.

【図2】光弾性定数測定装置の実施例の説明図である。FIG. 2 is an explanatory diagram of an embodiment of a photoelastic constant measuring device.

【図3】加圧手段の説明図である。FIG. 3 is an explanatory diagram of a pressing unit.

【図4】被測定試料の説明図である。FIG. 4 is an explanatory diagram of a sample to be measured.

【図5】実施例の説明図であり、特に、測定光の波長を
パラメータとしたときの応力と複屈折との関係を示した
図である。
FIG. 5 is an explanatory diagram of the example, and particularly shows a relationship between stress and birefringence when the wavelength of measurement light is used as a parameter.

【図6】実施例の説明図であり、特に、組成が異なる試
料毎の測定光波長と光弾性定数との関係を示した図であ
る。
FIG. 6 is an explanatory diagram of an example, particularly a diagram showing a relationship between a measurement light wavelength and a photoelastic constant for each sample having a different composition.

【符号の説明】[Explanation of symbols]

11:光源 13:偏光子 15:光弾性変調器 17:検光子 19:光検出手段(光電子増倍管) 21:被測定試料 23:加圧手段 23a:加圧部 23b:保持部(被測定試料保持部) 23c:圧力/電圧変換器 23d:圧力/電圧変換器用電源 23e:直流電圧計 11: Light source 13: Polarizer 15: Photoelastic modulator 17: Analyzer 19: Photodetector (photomultiplier tube) 21: Sample to be measured 23: Pressurizer 23a: Pressurizer 23b: Holder (Measurement Sample holder) 23c: Pressure / voltage converter 23d: Power supply for pressure / voltage converter 23e: DC voltmeter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透光性を有する被測定試料に、位相変調
をかけた測定用の光を照射しかつ強さおよび方向が分か
る状態の応力が生じるよう外力を加え、 前記光照射および前記外力を加えた状態の前記被測定試
料を透過してくる光の偏光状態を検出することで求まる
複屈折量と、前記応力とに基づいて、前記被測定試料の
光弾性定数を測定することを特徴とする光弾性定数の測
定方法。
An external force is applied to a light-transmitting sample to be measured by irradiating the sample with phase-modulated light for measurement and generating a stress whose intensity and direction are known. Measuring the photoelastic constant of the sample to be measured based on the amount of birefringence obtained by detecting the polarization state of light transmitted through the sample to be measured in a state where the stress is applied, and the stress. The method of measuring the photoelastic constant.
【請求項2】 透光性を有する被測定試料に、位相変調
をかけた測定用の光を照射しかつ強さおよび方向が分か
る状態の応力が生じるよう外力を加え、 前記光照射および外力を加えた状態の前記被測定試料を
回転軸が前記測定光の光軸に一致する状態で回転させ
て、該被測定試料を前記光に対し少なくとも2つの状態
で対向させ、各状態での被測定試料を透過してくる光を
検出し、 該検出した光に基づいて前記被測定試料の複屈折量を算
出し、 該算出した複屈折量と前記応力とに基づいて前記被測定
試料の光弾性定数を測定することを特徴とする光弾性定
数の測定方法。
2. A light-transmitting sample to be measured is irradiated with a phase-modulated light for measurement and an external force is applied so as to generate a stress whose intensity and direction are known. The sample to be measured in the added state is rotated with the rotation axis coinciding with the optical axis of the measurement light, and the sample to be measured is opposed to the light in at least two states. Detecting light transmitted through the sample, calculating a birefringence amount of the sample to be measured based on the detected light, and photoelasticity of the sample to be measured based on the calculated birefringence amount and the stress. A method for measuring a photoelastic constant, comprising measuring a constant.
【請求項3】 請求項1または2に記載の光弾性定数の
測定方法において、 光弾性定数の波長依存性を測定したい波長光を少なくと
も発生する光源を用い、 該光源からの光を分光手段により所定波長幅の光に分光
しそれに位相変調をかけて前記測定用の光を生成し、 該生成した測定光により前記光弾性定数の測定を実施
し、 これら一連の処理を前記波長依存性を測定したい各波長
についてそれぞれ行なうことを特徴とする光弾性定数の
測定方法。
3. The method for measuring a photoelastic constant according to claim 1, wherein a light source that generates at least light having a wavelength at which the wavelength dependence of the photoelastic constant is to be measured is used, and the light from the light source is separated by spectroscopic means. Disperse the light having a predetermined wavelength width, apply phase modulation to the light, generate the light for measurement, measure the photoelastic constant using the generated measurement light, and measure the wavelength dependence of these series of processes. A method for measuring a photoelastic constant, wherein the method is performed for each wavelength desired.
【請求項4】 請求項3に記載の光弾性定数の測定方法
において、 前記光源としてハロゲンランプを用いることを特徴とす
る光弾性定数の測定方法。
4. The method for measuring a photoelastic constant according to claim 3, wherein a halogen lamp is used as the light source.
【請求項5】 透光性を有する被測定試料の光弾性定数
を測定するための装置であって、 光弾性定数の波長依存性を測定したい波長光を少なくと
も発生する光源と、 該光源の光を所定波長幅の光に分光する分光手段と、 前記分光光に位相変調をかけて測定光を生成し該測定光
を前記被測定試料に照射する位相変調手段と、 前記被測定試料に強さおよび方向が分かる状態の応力が
生じるように外力を加えるための加圧手段と、 前記外力が加えられた状態の被測定試料を、回転軸が前
記測定光の光軸に一致する状態で回転させるための被測
定試料回転手段と、 被測定試料を透過してくる光を検出するための光検出手
段と、 該光検出手段で検出される光に基づいて前記被測定試料
の複屈折量を算出する複屈折量算出手段と、 前記算出された複屈折量および前記応力に基づいて被測
定用試料の光弾性定数を算出する光弾性定数算出手段と
を具えたことを特徴とする光弾性定数測定装置。
5. An apparatus for measuring a photoelastic constant of a translucent sample to be measured, wherein the light source generates at least light having a wavelength at which the wavelength dependence of the photoelastic constant is to be measured, and light from the light source. A spectroscopic means for dispersing the light into light having a predetermined wavelength width, a phase modulation means for applying a phase modulation to the spectral light to generate a measuring light and irradiating the measuring light with the measuring light, Pressurizing means for applying an external force so as to generate a stress in a state in which the measurement light and the direction are known; Sample rotating means for detecting, light detecting means for detecting light transmitted through the sample to be measured, and calculating the amount of birefringence of the sample to be measured based on the light detected by the light detecting means Birefringence amount calculating means, and the calculated birefringence Photoelastic constant measuring apparatus characterized by equipped the photoelastic constant calculating means for calculating the photoelastic constant of the sample under test based on the amount and the stress.
【請求項6】 請求項5に記載の光弾性定数測定装置に
おいて、 前記光源をハロゲンランプとしたことを特徴とする光弾
性定数測定装置。
6. The photoelastic constant measuring apparatus according to claim 5, wherein the light source is a halogen lamp.
JP8315147A 1996-11-26 1996-11-26 Method and device for measuring photoelastic constant Withdrawn JPH10153500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8315147A JPH10153500A (en) 1996-11-26 1996-11-26 Method and device for measuring photoelastic constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8315147A JPH10153500A (en) 1996-11-26 1996-11-26 Method and device for measuring photoelastic constant

Publications (1)

Publication Number Publication Date
JPH10153500A true JPH10153500A (en) 1998-06-09

Family

ID=18061985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8315147A Withdrawn JPH10153500A (en) 1996-11-26 1996-11-26 Method and device for measuring photoelastic constant

Country Status (1)

Country Link
JP (1) JPH10153500A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804994B2 (en) 2001-12-27 2004-10-19 Mitsubishi Denki Kabushiki Kaisha Dynamic loading system, dynamic loading method and dynamic loading test method for piles
WO2004104563A1 (en) * 2003-05-21 2004-12-02 Japan Science And Technology Agency Spectrometer
WO2005068957A1 (en) * 2004-01-15 2005-07-28 Tokyo Denki University Stress measuring method and instrument
JP2017009338A (en) * 2015-06-18 2017-01-12 国立大学法人山梨大学 Measurement method of optical characteristic and measurement instrument of optical characteristic
WO2019090572A1 (en) * 2017-11-09 2019-05-16 深圳大学 Elasto-optical coefficient measurement system and measurement method
CN111562216A (en) * 2020-05-12 2020-08-21 湖北新华光信息材料有限公司 Device and method for testing stress photoelastic coefficient of infrared optical glass
WO2021108352A1 (en) * 2019-11-26 2021-06-03 Corning Incorporated Prism-coupling systems and methods using different wavelengths
US11860090B2 (en) 2021-04-01 2024-01-02 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804994B2 (en) 2001-12-27 2004-10-19 Mitsubishi Denki Kabushiki Kaisha Dynamic loading system, dynamic loading method and dynamic loading test method for piles
WO2004104563A1 (en) * 2003-05-21 2004-12-02 Japan Science And Technology Agency Spectrometer
WO2005068957A1 (en) * 2004-01-15 2005-07-28 Tokyo Denki University Stress measuring method and instrument
US7639348B2 (en) 2004-01-15 2009-12-29 Tokyo Denki University Stress measuring method and instrument
JP2017009338A (en) * 2015-06-18 2017-01-12 国立大学法人山梨大学 Measurement method of optical characteristic and measurement instrument of optical characteristic
WO2019090572A1 (en) * 2017-11-09 2019-05-16 深圳大学 Elasto-optical coefficient measurement system and measurement method
WO2021108352A1 (en) * 2019-11-26 2021-06-03 Corning Incorporated Prism-coupling systems and methods using different wavelengths
CN111562216A (en) * 2020-05-12 2020-08-21 湖北新华光信息材料有限公司 Device and method for testing stress photoelastic coefficient of infrared optical glass
US11860090B2 (en) 2021-04-01 2024-01-02 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements

Similar Documents

Publication Publication Date Title
US6515744B2 (en) Small spot ellipsometer
JP3910352B2 (en) Pretilt angle detection method and detection apparatus
JP4249608B2 (en) Birefringence measurement at deep ultraviolet wavelength
JP2002504673A (en) Method and apparatus for measuring birefringence characteristics
CN107655599B (en) Method for measuring micro stress of optical element
JPH10153500A (en) Method and device for measuring photoelastic constant
JP2005509153A (en) Accurate calibration of birefringence measurement system
JPH0470582B2 (en)
JPH10153780A (en) Liquid crystal cell parameter detecting method
JP2004226404A (en) Device for measuring residual stress of optical fiber
Wang Measurement of circular and linear birefringence in chiral media and optical materials using the photoelastic modulator
JPH1068673A (en) Optical anisotropy measuring apparatus and method using the same
Kuczyński et al. Interference method for the determination of refractive indices and birefringence of liquid crystals
Oakberg Measurement of waveplate retardation using a photoelastic modulator
JP4095932B2 (en) Refractive index measuring device and refractive index measuring method
JP2713190B2 (en) Optical property measuring device
JP2006189411A (en) Measuring instrument and measuring method for phase delay
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
Allen et al. A 10.6 micron modulated light ellipsometer
JPH046444A (en) Method and apparatus for measuring photo-elastic constant
Simon et al. About the optical activity of incommensurate [N (CH3) 4] 2ZnCl4 (TMAZC)
CN115077874A (en) Device and method for measuring field induced birefringence of blue phase liquid crystal in electric field normal direction
JPS62182627A (en) Method for measuring photoelasticity constant
JPH0518859A (en) Method for measuring thickness of liquid crystal layer
JPH08271409A (en) Photoelastic measuring equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203