JPH0518859A - Method for measuring thickness of liquid crystal layer - Google Patents

Method for measuring thickness of liquid crystal layer

Info

Publication number
JPH0518859A
JPH0518859A JP17261191A JP17261191A JPH0518859A JP H0518859 A JPH0518859 A JP H0518859A JP 17261191 A JP17261191 A JP 17261191A JP 17261191 A JP17261191 A JP 17261191A JP H0518859 A JPH0518859 A JP H0518859A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
light
cell
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17261191A
Other languages
Japanese (ja)
Inventor
Toshiharu Nishino
利晴 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP17261191A priority Critical patent/JPH0518859A/en
Publication of JPH0518859A publication Critical patent/JPH0518859A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently measure the thickness of a liquid crystal layer by vertically transmitting laser beam through a polarizer, a photoelastic modulator, a liquid crystal cell to be measured rotated around an optical axis and an analyser to detect and calculate the intensity of said beam. CONSTITUTION:A polarizer 13, a photoelastic modulator 14, a liquid crystal cell 20 and an analyser 15 are arranged at right angles to an optical axis O and the liquid crystal cell 20 is rotated around the optical axis O. The output beam of laser 11 passes through the polarizer 13 to become linear polarized beam which is, in turn, modulated in its polarized state corresponding to modulation frequency by the modulator 13 to enter the cell 20. The beam is further changed in its polarized state by the double refraction property of a liquid crystal 24 during the transmission through the cell 20 to be incident to a photodetector 12 through the analyser 15. The photodetector 12 detects the intensity of the beam to output the signal corresponding to the intensity to an operation part 17. The component corresponding to the modulation frequency of the modulator 14 is extracted from a beam intensity signal in the operation part 17 and the thickness of the crystal layer can be calculated from the DC component and frequency component thereof, the double refraction property of the liquid crystal of the cell 20 and the twist angle of a liquid crystal molecule.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶セルの液晶層厚を
測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the liquid crystal layer thickness of a liquid crystal cell.

【0002】[0002]

【従来の技術】従来、液晶セルの液晶層厚(セルギャッ
プ)の測定は、液晶セルに白色光を入射させ、この液晶
セルを透過した光の分光分布に基づいて液晶層厚を算出
する方法で行なわれている。
2. Description of the Related Art Conventionally, the liquid crystal layer thickness (cell gap) of a liquid crystal cell is measured by causing white light to enter the liquid crystal cell and calculating the liquid crystal layer thickness based on the spectral distribution of light transmitted through the liquid crystal cell. It is done in.

【0003】この液晶層厚測定方法を説明すると、図6
は液晶セルを透過した光の分光分布を測定するための光
学系を示しており、この光学系は、白色光源1と、分光
器2とからなっている。
This liquid crystal layer thickness measuring method will be described with reference to FIG.
Indicates an optical system for measuring the spectral distribution of light transmitted through the liquid crystal cell, and this optical system includes a white light source 1 and a spectroscope 2.

【0004】この光学系による透過光の分光分布の測定
は、図6のように、上記白色光源1と分光器2との間
に、液晶層厚を測定しようとする液晶セル20を配置
し、光源1からの白色光を液晶セル20に垂直に入射さ
せるとともに、この液晶セル20を透過した各波長光の
強度を分光器2で検出する方法で行なわれている。図7
は、上記光学系によって測定した分光分布の一例を示し
ている。
To measure the spectral distribution of transmitted light by this optical system, a liquid crystal cell 20 for measuring the liquid crystal layer thickness is arranged between the white light source 1 and the spectroscope 2 as shown in FIG. The white light from the light source 1 is vertically incident on the liquid crystal cell 20, and the intensity of each wavelength light transmitted through the liquid crystal cell 20 is detected by the spectroscope 2. Figure 7
Shows an example of the spectral distribution measured by the above optical system.

【0005】なお、上記液晶セル20は、例えばTN型
またはSTN型のものであり、図6に示すように、ガラ
ス等からなる一対の透明基板21,22を枠状のシール
材23を介して接合し、この両基板21,11間に液晶
24を封入して構成されている。この液晶セル20の両
基板21,22の液晶層をはさんで対向する面には、図
示しないが、透明電極と配向膜がそれぞれ形成されてお
り、液晶24の分子は、両基板21,22間においてツ
イスト配列されている。
The liquid crystal cell 20 is, for example, of the TN type or the STN type, and as shown in FIG. 6, a pair of transparent substrates 21 and 22 made of glass or the like, with a frame-shaped sealing material 23 interposed therebetween. A liquid crystal 24 is sealed between both substrates 21 and 11 by bonding. Although not shown, a transparent electrode and an alignment film are respectively formed on the surfaces of the substrates 21 and 22 of the liquid crystal cell 20 which face each other across the liquid crystal layer, and the molecules of the liquid crystal 24 are formed on both the substrates 21 and 22. Twisted in between.

【0006】そして、液晶セル20の液晶層厚bは、上
記光学系によって測定した図7のような分光分布から、
透過光強度が極大(または極小)となる2つの点の波長
λ1,λ2 を求め、このλ1 ,λ2 間の距離Δλ12と、
予め分かっている液晶層の屈折率nとから、次式 b=Δλ12/2n を用いて算出されている。
The liquid crystal layer thickness b of the liquid crystal cell 20 is calculated from the spectral distribution measured by the optical system as shown in FIG.
The wavelengths λ 1 and λ 2 at the two points where the transmitted light intensity is maximum (or minimum) are obtained, and the distance Δλ 12 between these λ 1 and λ 2 is
It is calculated from the refractive index n of the liquid crystal layer which is known in advance, using the following equation b = Δλ 12 / 2n.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の液晶層厚測定方法では、液晶セル20を透過した光
の分光分布を測定するのに、分光器2により各波長光の
透過光強度をそれぞれ測定しなければならないため、分
光分布の測定に時間がかかり、したがって液晶層厚を能
率良く測定できないという問題をもっていた。本発明
は、液晶セルの液晶層厚を能率良く測定することができ
る液晶層厚測定方法を提供することを目的としたもので
ある。
However, in the above-described conventional liquid crystal layer thickness measuring method, in order to measure the spectral distribution of the light transmitted through the liquid crystal cell 20, the spectroscope 2 measures the transmitted light intensity of each wavelength light. Since it has to be measured, there is a problem that it takes time to measure the spectral distribution, so that the liquid crystal layer thickness cannot be measured efficiently. An object of the present invention is to provide a liquid crystal layer thickness measuring method capable of efficiently measuring the liquid crystal layer thickness of a liquid crystal cell.

【0008】[0008]

【課題を解決するための手段】本発明の液晶層厚測定方
法は、
The liquid crystal layer thickness measuring method of the present invention comprises:

【0009】レーザとこのレーザからの光を検出する光
検出器との間に偏光子と光弾性変調器と検光子とをそれ
ぞれ前記レーザからの光の光軸に対して垂直に配置した
光学系を用い、この光学系の光弾性変調器と検光子との
間に、前記液晶セルをその基板面を前記光軸に対して垂
直にして配置して、この液晶セル、あるいは前記光学系
の偏光子と光弾性変調器と検光子とを、前記光軸に沿う
線を中心として回転させながら、前記レーザからの光を
前記偏光子と光弾性変調器とを介して前記液晶セルに入
射させるとともにこの液晶セルを透過した光の強度を前
記検光子を介して前記光検出器で検出し、
An optical system in which a polarizer, a photoelastic modulator, and an analyzer are respectively arranged between a laser and a photodetector for detecting the light from the laser, in a direction perpendicular to the optical axis of the light from the laser. Between the photoelastic modulator and the analyzer of this optical system, the liquid crystal cell is placed with its substrate surface perpendicular to the optical axis, and the liquid crystal cell or the polarization of the optical system is While rotating the child, the photoelastic modulator and the analyzer about a line along the optical axis, while allowing the light from the laser to enter the liquid crystal cell through the polarizer and the photoelastic modulator. The intensity of light transmitted through the liquid crystal cell is detected by the photodetector via the analyzer,

【0010】この光検出器で検出した光の直流成分およ
び周波数成分と、既知の値である、液晶セルの液晶の複
屈折性と液晶分子のツイスト角とから、液晶層厚を算出
することを特徴とするものである。
The liquid crystal layer thickness can be calculated from the DC component and frequency component of the light detected by this photodetector, and the known values of the birefringence of the liquid crystal of the liquid crystal cell and the twist angle of the liquid crystal molecules. It is a feature.

【0011】[0011]

【作用】このように、液晶セルあるいは光学系の偏光子
と光弾性変調器と検光子とを光軸に沿う線を中心として
回転させながら透過光強度を検出すれば、この検出光の
直流成分および周波数成分と、既知の値である液晶セル
の液晶の複屈折性と液晶分子のツイスト角とから、液晶
セルの液晶層厚を算出できる。
In this way, if the transmitted light intensity is detected while rotating the polarizer of the liquid crystal cell or the optical system, the photoelastic modulator and the analyzer about the line along the optical axis, the DC component of the detected light is detected. Further, the liquid crystal layer thickness of the liquid crystal cell can be calculated from the frequency component, the birefringence of the liquid crystal of the liquid crystal cell and the twist angle of the liquid crystal molecules, which are known values.

【0012】そして、この測定方法では、液晶セルを透
過した光の強度を単一波長光についてだけ検出すればよ
いから、従来の測定方法のように各波長光の透過光強度
を測定する必要はなく、したがって液晶層厚を能率良く
測定できる。
In this measuring method, the intensity of light transmitted through the liquid crystal cell need only be detected for light of a single wavelength. Therefore, it is not necessary to measure the intensity of transmitted light of each wavelength as in the conventional measuring method. Therefore, the liquid crystal layer thickness can be measured efficiently.

【0013】[0013]

【実施例】以下、本発明の第1の実施例を図面を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は液晶セルの透過光強度の測定するた
めの光学系の構成図であり、この光学系は、レーザ11
と、このレーザ11からの光を検出する光検出器12と
の間に、偏光子13と光弾性変調器14と検光子15と
をそれぞれレーザ11からの光の光軸Oに対して垂直に
配置して構成されている。
FIG. 1 is a block diagram of an optical system for measuring the intensity of transmitted light of a liquid crystal cell. This optical system comprises a laser 11
And the photodetector 12 for detecting the light from the laser 11, the polarizer 13, the photoelastic modulator 14, and the analyzer 15 are respectively arranged perpendicular to the optical axis O of the light from the laser 11. It is arranged and configured.

【0015】上記偏光子13と光弾性変調器14および
検光子15の光学軸は、図2に示すような方向にある。
すなわち、図2において、(a)は偏光子13の透過
軸、(b)は光弾性変調器14の光学軸、(d)は検光
子15の透過軸を示しており、偏光子13は、その透過
軸13aを、光弾性変調器14の互いに直交する2つの
光学軸14a,14bに対して45゜の角度で交差する
方向に合わせて配置され、検光子15は、その透過軸1
5aを、偏光子13の偏光軸13aに対して45゜の角
度で交差する方向(光弾性変調器14の一方の光学軸と
平行な方向)に合わせて配置されている。
The optical axes of the polarizer 13, the photoelastic modulator 14 and the analyzer 15 are oriented as shown in FIG.
That is, in FIG. 2, (a) shows the transmission axis of the polarizer 13, (b) shows the optical axis of the photoelastic modulator 14, and (d) shows the transmission axis of the analyzer 15. The transmission axis 13a is aligned with a direction intersecting the two optical axes 14a and 14b of the photoelastic modulator 14 which are orthogonal to each other at an angle of 45 °, and the analyzer 15 has the transmission axis 1a.
5a is aligned with a direction intersecting the polarization axis 13a of the polarizer 13 at an angle of 45 ° (direction parallel to one optical axis of the photoelastic modulator 14).

【0016】上記光弾性変調器3は、例えば結晶体に弾
性歪みを生じさせて光の屈折率を所定の方向に変化させ
るもので、互いに直交する面に振動面をもった2つの成
分の光(常光と異常光)に速度差を生じさせ、この速度
差を一定の周波数で変化させる。この光弾性変調器14
には変調用制御部16が接続されており、この光弾性変
調器14は、変調用制御部16からの変調周波数信号に
よって駆動される。
The photoelastic modulator 3 changes the refractive index of light in a predetermined direction by, for example, causing elastic distortion in a crystal body, and is composed of two components of light having oscillating planes orthogonal to each other. A speed difference is generated between (ordinary light and extraordinary light), and this speed difference is changed at a constant frequency. This photoelastic modulator 14
A modulation control section 16 is connected to the photoelastic modulator 14, and the photoelastic modulator 14 is driven by the modulation frequency signal from the modulation control section 16.

【0017】また、上記光検出器12は、液晶層厚を算
出する演算部17に接続されており、この演算部17に
は、上記変調用制御部16から光弾性変調器14に送ら
れる変調周波数信号と、光検出器12で検出される光強
度信号とが入力される。
Further, the photodetector 12 is connected to an arithmetic unit 17 for calculating the liquid crystal layer thickness, and the arithmetic unit 17 is modulated by the modulation control unit 16 to the photoelastic modulator 14. The frequency signal and the light intensity signal detected by the photodetector 12 are input.

【0018】この演算部17は、上記光検出器12で検
出した光の直流成分および周波数成分と、既知の値であ
る、液晶セル20の液晶の複屈折性Δnと液晶分子のツ
イスト角τとから、液晶セル20の液晶層厚dを算出す
る。
The calculation unit 17 calculates the DC component and the frequency component of the light detected by the photodetector 12, and the known values of the birefringence Δn of the liquid crystal of the liquid crystal cell 20 and the twist angle τ of the liquid crystal molecule. From this, the liquid crystal layer thickness d of the liquid crystal cell 20 is calculated.

【0019】次に、液晶層厚を測定しようとする液晶セ
ル20について説明すると、この液晶セル20は、例え
ばTN型またはSTN型のものであり、液晶24の分子
は、両基板21,22間において所定のツイスト角でツ
イスト配列されている。なお、この液晶セル20は、図
6に示したものと同じ構成であるから、その説明は図に
同符号を付して省略する。
Next, the liquid crystal cell 20 for measuring the thickness of the liquid crystal layer will be described. The liquid crystal cell 20 is, for example, of the TN type or the STN type, and the molecules of the liquid crystal 24 are between the substrates 21 and 22. In, the twist arrangement is performed at a predetermined twist angle. Since the liquid crystal cell 20 has the same structure as that shown in FIG. 6, the description thereof will be omitted by giving the same reference numerals to the drawing.

【0020】図2(C)は、上記液晶セル20の液晶分
子配向方向を示しており、液晶24の分子は、光入射側
基板21面の配向方向21aと、出射側基板22面の配
向方向22aとの交差角度に対応するツイスト角τでツ
イスト配列している。そして、上記液晶セル20の液晶
層厚dの測定は、次のようなステップで行なう。 (第1ステップ)
FIG. 2C shows the alignment directions of the liquid crystal molecules of the liquid crystal cell 20. The molecules of the liquid crystal 24 are aligned in the alignment direction 21a of the light incident side substrate 21 and in the exit side substrate 22. The twist arrangement is performed at a twist angle τ corresponding to the intersection angle with 22a. Then, the liquid crystal layer thickness d of the liquid crystal cell 20 is measured in the following steps. (First step)

【0021】まず、図1に示すように、上記光学系の光
弾性変調器14と検光子15との間に、液晶セル20を
その基板21,22面を光学系の光軸(レーザ11から
の光の光軸)Oに対して垂直にして配置し、この液晶セ
ル20を図に矢印で示すように光学系の光軸Oに沿う線
(この実施例では光軸Oと一致する線)を中心として回
転させながら、レーザ11からの光を偏光子13と光弾
性変調器14とを介して液晶セル20に入射させるとと
もに、この液晶セル20を透過した光の強度を検光子1
5を介して光検出器12で検出する。
First, as shown in FIG. 1, between the photoelastic modulator 14 and the analyzer 15 of the optical system, the liquid crystal cell 20 is provided with its substrates 21, 22 on the optical axis of the optical system (from the laser 11). Of the liquid crystal cell 20 is arranged so as to be perpendicular to the optical axis O of the optical system, and the liquid crystal cell 20 is a line along the optical axis O of the optical system as shown by the arrow in the figure (a line that coincides with the optical axis O in this embodiment). The light from the laser 11 is made incident on the liquid crystal cell 20 via the polarizer 13 and the photoelastic modulator 14 while rotating about the center of the light, and the intensity of the light transmitted through the liquid crystal cell 20 is analyzed by the analyzer 1
It is detected by the photodetector 12 via 5.

【0022】この光検出器12で検出される光について
説明すると、レーザ11からの出力光は、偏光子13を
通って直線偏光となり、さらに光弾性変調器14を通っ
て液晶セル20に入射する。上記光弾性変調器14を通
った光は、光弾性変調器14の変調周波数に応じて偏光
状態を変調された光であり、この変調光の偏光状態は、
直線偏光と楕円偏光との間で変化する。
The light detected by the photodetector 12 will be described. The output light from the laser 11 passes through the polarizer 13 to become linearly polarized light, and further passes through the photoelastic modulator 14 to enter the liquid crystal cell 20. .. The light that has passed through the photoelastic modulator 14 is light whose polarization state is modulated according to the modulation frequency of the photoelastic modulator 14, and the polarization state of this modulated light is
It changes between linearly polarized light and elliptically polarized light.

【0023】この変調光が液晶セル20に入射すると、
その偏光状態が液晶セル20を透過する過程でその液晶
24の複屈折性により変化し、上記変調光が、その常光
と異常光との位相差に液晶24の複屈折性による位相差
が重畳した偏光状態の光となる。
When this modulated light enters the liquid crystal cell 20,
The polarization state changes due to the birefringence of the liquid crystal 24 in the process of passing through the liquid crystal cell 20, and the modulated light has a phase difference due to the birefringence of the liquid crystal 24 superimposed on the phase difference between the ordinary light and the extraordinary light. The light is polarized.

【0024】液晶セル20を透過した光は、検光子15
に入射し、この検光子15を透過した偏光成分の光が光
検出器12に入射して、その強度を検出される。この光
検出器12で検出される光の強度は、液晶セル20の液
晶の複屈折性によって生ずる常光と異常光との位相差に
応じた値であり、この値は、光弾性変調器14の変調周
波数に重畳されている。そして、上記検光子12は、検
出した光強度に応じた信号を演算部17に出力する。 (第2ステップ)次に、演算部17において、液晶セル
20の液晶層厚dを算出する。
The light transmitted through the liquid crystal cell 20 is analyzed by the analyzer 15
To the photodetector 12, and the intensity of the light of the polarized component that has passed through the analyzer 15 is detected. The intensity of the light detected by the photodetector 12 is a value corresponding to the phase difference between the ordinary light and the extraordinary light generated by the birefringence of the liquid crystal of the liquid crystal cell 20, and this value is the value of the photoelastic modulator 14. It is superimposed on the modulation frequency. Then, the analyzer 12 outputs a signal according to the detected light intensity to the calculation unit 17. (Second Step) Next, the calculation unit 17 calculates the liquid crystal layer thickness d of the liquid crystal cell 20.

【0025】この液晶層厚dは、光検出器12から入力
された光強度信号から光弾性変調器14の変調周波数に
対応する成分を抽出し、その直流成分および周波数成分
と、液晶セル20の液晶の複屈折性Δnおよび液晶分子
のツイスト角τとから算出できる。
With respect to the liquid crystal layer thickness d, a component corresponding to the modulation frequency of the photoelastic modulator 14 is extracted from the light intensity signal input from the photodetector 12, and its DC component and frequency component and the liquid crystal cell 20 are extracted. It can be calculated from the birefringence Δn of the liquid crystal and the twist angle τ of the liquid crystal molecule.

【0026】すなわち、上記光学系により、液晶セル2
0を光軸Oに沿う線を中心として回転させながら透過光
を検光子15で検出したとき、この光検出器12で検出
される透過光強度Iは、次の (1)式で表わされる。
That is, by the above optical system, the liquid crystal cell 2
When the transmitted light is detected by the analyzer 15 while rotating 0 around the line along the optical axis O, the transmitted light intensity I detected by the photodetector 12 is expressed by the following equation (1).

【0027】[0027]

【数1】 一方、液晶セル20の見掛けのリタデーションRe は、
次の (2)式で表わされる。
[Equation 1] On the other hand, the apparent retardation Re of the liquid crystal cell 20 is
It is expressed by the following equation (2).

【0028】[0028]

【数2】 この (2)式において、液晶セル20の回転角θの関数で
あるf(θ)は、次の(3)式の関係にある。
[Equation 2] In this equation (2), f (θ), which is a function of the rotation angle θ of the liquid crystal cell 20, has the relationship of the following equation (3).

【0029】[0029]

【数3】 また、上記 (1)式をジョーンズ行列を用いて解くと、透
過光強度Iの直流成分IDCおよび周波数成分Iωを光学
的パラメータで表わすことができる。そこで、上記 (3)
式の|f(θ)|をジョーンズ行列を用いて解き、光学
的パラメータで表わすと、次の (4)式になる。
[Equation 3] Further, if the above equation (1) is solved using the Jones matrix, the direct current component I DC and the frequency component I ω of the transmitted light intensity I can be expressed by optical parameters. Therefore, above (3)
When | f (θ) | in the equation is solved using the Jones matrix and expressed by optical parameters, the following equation (4) is obtained.

【0030】[0030]

【数4】 ここで、A,B,a,bは複素数であり、右肩に*を付
しているのは複素共役の意味である。
[Equation 4] Here, A, B, a, and b are complex numbers, and * is attached to the right shoulder to mean the complex conjugate.

【0031】したがって、液晶セル20を回転させなが
ら上記光検出器12で検出した透過光強度Iの直流成分
DCおよび周波数成分Iωのパラメータに基づいて、
(3)式から|f(θ)|の値を求めれば、上記 (4)式よ
り、u=πΔnd/τの関係から、液晶セル20の液晶
層厚dを算出できる。
Therefore, based on the parameters of the DC component I DC and the frequency component I ω of the transmitted light intensity I detected by the photodetector 12 while rotating the liquid crystal cell 20,
If the value of | f (θ) | is obtained from the equation (3), the liquid crystal layer thickness d of the liquid crystal cell 20 can be calculated from the equation (4) based on the relationship of u = πΔnd / τ.

【0032】そして、液晶セル20の液晶分子のツイス
ト角τは、液晶セル20の設計段階で決まり、また、液
晶24の複屈折性Δnも使用する液晶によって決まるた
め、これらτ,Δnの値は既知であるから、液晶セル2
0を透過する光の直流成分および周波数成分が分れば、
液晶セル20の液晶層厚dを算出できる。
Since the twist angle τ of the liquid crystal molecules of the liquid crystal cell 20 is determined at the design stage of the liquid crystal cell 20 and the birefringence Δn of the liquid crystal 24 is also determined by the liquid crystal used, the values of τ and Δn are Liquid crystal cell 2 because it is known
If the DC component and the frequency component of the light passing through 0 are known,
The liquid crystal layer thickness d of the liquid crystal cell 20 can be calculated.

【0033】したがって、図1に示したように、液晶セ
ル20を光学系の光軸Oに沿う線を中心として回転させ
ながら、この液晶セル20を透過した光の強度を光検出
器12で検出すれば、この透過光強度の直流成分および
周波数成分に基づいて、上記(3), (4)式より、液晶セ
ル20の液晶層厚dを求めることができる。
Therefore, as shown in FIG. 1, while rotating the liquid crystal cell 20 about the line along the optical axis O of the optical system, the photodetector 12 detects the intensity of the light transmitted through the liquid crystal cell 20. Then, the liquid crystal layer thickness d of the liquid crystal cell 20 can be obtained from the equations (3) and (4) based on the DC component and the frequency component of the transmitted light intensity.

【0034】図3は、光検出器12で検出した透過光強
度から (2)式によって求められる液晶セル20の見掛け
のリタデーションRe と、最終的に算出された液晶層厚
dとの関係を示しており、ここでは、液晶の複屈折性が
Δn=0.1 ,液性分子のツイスト角がτ= 240゜の液晶
セルの液晶層厚dを測定した結果を示している。
FIG. 3 shows the relationship between the apparent retardation Re of the liquid crystal cell 20 obtained from the transmitted light intensity detected by the photodetector 12 by the equation (2) and the finally calculated liquid crystal layer thickness d. Here, the result of measuring the liquid crystal layer thickness d of the liquid crystal cell in which the birefringence of the liquid crystal is Δn = 0.1 and the twist angle of the liquid molecule is τ = 240 ° is shown.

【0035】そして、上記測定方法においては、液晶セ
ル20を透過した光の強度を単一波長光についてだけ検
出すればよいから、従来の測定方法のように各波長光の
透過光強度を測定する必要はなく、したがって液晶層厚
dを能率良く測定できる。
In the above measuring method, since the intensity of the light transmitted through the liquid crystal cell 20 only needs to be detected for the single wavelength light, the transmitted light intensity of each wavelength light is measured as in the conventional measuring method. It is not necessary, and therefore the liquid crystal layer thickness d can be measured efficiently.

【0036】なお、上記第1の実施例では、液晶セル2
0を回転させながら透過光強度を検出しているが、この
透過光強度の検出は、図4に示す第2の実施例のよう
に、液晶セル20を固定し、光学系の偏光子13と光弾
性変調器14と検光子15とを、光軸Oに沿う線(光軸
Oと一致する線)を中心として回転させながら行なって
もよい。
In the first embodiment, the liquid crystal cell 2
Although the transmitted light intensity is detected while rotating 0, the transmitted light intensity is detected by fixing the liquid crystal cell 20 to the polarizer 13 of the optical system as in the second embodiment shown in FIG. The photoelastic modulator 14 and the analyzer 15 may be rotated while rotating about a line along the optical axis O (a line coinciding with the optical axis O).

【0037】また、液晶セル20を回転させながら透過
光強度を検出する場合は、この液晶セル20を、図5に
示す第3の実施例のように、光学系の光軸Oからずれた
平行線Oaを中心として回転させてもよい。この実施例
では、液晶セル20の光透過点が、液晶セル20の回転
中心Oaを中心とする円(光学系の光軸Oと液晶セル2
0の回転中心Oaとの距離に相当する半径の円)に沿っ
てずれるが、この円に沿う領域の液晶分子のツイスト角
τ等が均一であれば、上記第1の実施例と同様にして液
晶セル20の液晶層厚dを測定することができる。
When the transmitted light intensity is detected while rotating the liquid crystal cell 20, the liquid crystal cell 20 is parallel to the optical axis O of the optical system as in the third embodiment shown in FIG. It may be rotated about the line Oa. In this embodiment, the light transmission point of the liquid crystal cell 20 is a circle centered on the rotation center Oa of the liquid crystal cell 20 (the optical axis O of the optical system and the liquid crystal cell 2).
Although it is displaced along a circle having a radius corresponding to the distance from the rotation center Oa of 0), if the twist angle τ of the liquid crystal molecules in the region along this circle is uniform, the same as in the first embodiment. The liquid crystal layer thickness d of the liquid crystal cell 20 can be measured.

【0038】[0038]

【発明の効果】本発明によれば、液晶セルあるいは光学
系の偏光子と光弾性変調器と検光子とを光軸に沿う線を
中心として回転させながら透過光強度を検出し、この検
出光の直流成分および周波数成分と、既知の値である液
晶セルの液晶の複屈折性と液晶分子のツイスト角とか
ら、液晶セルの液晶層厚を算出するものであるため、液
晶セルを透過した光の強度を単一波長光についてだけ検
出すればよく、したがって従来の測定方法のように各波
長光の透過光強度を測定する必要はないから、液晶セル
の液晶層厚を能率良く測定することができる。
According to the present invention, the transmitted light intensity is detected by rotating the polarizer of the liquid crystal cell or the optical system, the photoelastic modulator and the analyzer about a line along the optical axis, and the detected light intensity is detected. Since the liquid crystal layer thickness of the liquid crystal cell is calculated from the DC component and frequency component of the liquid crystal and the known values of the liquid crystal birefringence of the liquid crystal cell and the twist angle of the liquid crystal molecules, the light transmitted through the liquid crystal cell is calculated. Since it is only necessary to detect the intensity of a single wavelength light, and therefore it is not necessary to measure the transmitted light intensity of each wavelength light as in the conventional measurement method, it is possible to efficiently measure the liquid crystal layer thickness of the liquid crystal cell. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す透過光強度測定光
学系の構成図。
FIG. 1 is a configuration diagram of a transmitted light intensity measurement optical system showing a first embodiment of the present invention.

【図2】上記光学系の偏光子と光弾性変調器および検光
子の光学軸と、液晶セルの液晶分子配向方向を示す図。
FIG. 2 is a diagram showing optical axes of a polarizer, a photoelastic modulator, and an analyzer of the optical system, and liquid crystal molecule alignment directions of a liquid crystal cell.

【図3】液晶セルの見掛けのリタデーションと液晶層厚
との関係を示す図。
FIG. 3 is a diagram showing a relationship between an apparent retardation of a liquid crystal cell and a liquid crystal layer thickness.

【図4】本発明の第2の実施例を示す透過光強度測定光
学系の構成図。
FIG. 4 is a configuration diagram of a transmitted light intensity measuring optical system showing a second embodiment of the present invention.

【図5】本発明の第2の実施例を示す透過光強度測定光
学系の構成図。
FIG. 5 is a configuration diagram of a transmitted light intensity measuring optical system showing a second embodiment of the present invention.

【図6】従来の液晶層厚測定方法を示す光学系の構成
図。
FIG. 6 is a configuration diagram of an optical system showing a conventional liquid crystal layer thickness measuring method.

【図7】図6の光学系で測定された透過光の分光分布の
一例を示す図。
7 is a diagram showing an example of a spectral distribution of transmitted light measured by the optical system of FIG.

【符号の説明】[Explanation of symbols]

11…レーザ、12…光検出器、13…偏光子、14…
光弾性変調器、15…検光子、20…液晶セル、21,
22…基板、24…液晶。
11 ... Laser, 12 ... Photodetector, 13 ... Polarizer, 14 ...
Photoelastic modulator, 15 ... Analyzer, 20 ... Liquid crystal cell 21,
22 ... Substrate, 24 ... Liquid crystal.

Claims (1)

【特許請求の範囲】 【請求項1】液晶セルの液晶層厚を測定する方法におい
て、 レーザとこのレーザからの光を検出する光検出器との間
に偏光子と光弾性変調器と検光子とをそれぞれ前記レー
ザからの光の光軸に対して垂直に配置した光学系を用
い、この光学系の光弾性変調器と検光子との間に、前記
液晶セルをその基板面を前記光軸に対して垂直にして配
置して、この液晶セル、あるいは前記光学系の偏光子と
光弾性変調器と検光子とを、前記光軸に沿う線を中心と
して回転させながら、前記レーザからの光を前記偏光子
と光弾性変調器とを介して前記液晶セルに入射させると
ともにこの液晶セルを透過した光の強度を前記検光子を
介して前記光検出器で検出し、 この光検出器で検出した光の直流成分および周波数成分
と、既知の値である、液晶セルの液晶の複屈折性と液晶
分子のツイスト角とから、液晶層厚を算出することを特
徴とする液晶層厚測定方法。
Claim: What is claimed is: 1. A method for measuring a liquid crystal layer thickness of a liquid crystal cell, comprising a polarizer, a photoelastic modulator and an analyzer between a laser and a photodetector for detecting light from the laser. And an optical system each of which is arranged perpendicularly to the optical axis of the light from the laser, and the liquid crystal cell is disposed between the photoelastic modulator and the analyzer of the optical system with the substrate surface of the optical axis being the optical axis. The liquid crystal cell, or the polarizer, the photoelastic modulator, and the analyzer of the optical system, which are arranged perpendicular to the optical axis, are rotated about a line along the optical axis while the light from the laser is rotated. Is incident on the liquid crystal cell through the polarizer and the photoelastic modulator, and the intensity of light transmitted through the liquid crystal cell is detected by the photodetector through the analyzer, and detected by the photodetector. The DC and frequency components of the generated light and the known values , The liquid crystal layer thickness measuring method characterized in that the twist angle of the liquid crystal of the birefringence of the liquid crystal molecules of the liquid crystal cell, and calculates the liquid crystal layer thickness.
JP17261191A 1991-07-12 1991-07-12 Method for measuring thickness of liquid crystal layer Pending JPH0518859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17261191A JPH0518859A (en) 1991-07-12 1991-07-12 Method for measuring thickness of liquid crystal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17261191A JPH0518859A (en) 1991-07-12 1991-07-12 Method for measuring thickness of liquid crystal layer

Publications (1)

Publication Number Publication Date
JPH0518859A true JPH0518859A (en) 1993-01-26

Family

ID=15945087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17261191A Pending JPH0518859A (en) 1991-07-12 1991-07-12 Method for measuring thickness of liquid crystal layer

Country Status (1)

Country Link
JP (1) JPH0518859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532823A (en) * 1993-03-08 1996-07-02 Matsushita Electric Industrial Co., Ltd. Method of measuring optical characteristics of liquid crystal cells, measurement equipment therefor and method for manufacturing liquid crystal devices
US6580078B1 (en) * 2000-04-07 2003-06-17 Displaytech, Inc. Ferroelectric liquid crystal infrared chopper
US6914661B2 (en) 2000-09-07 2005-07-05 Seiko Epson Corporation Cell gap adjusting device, pressurizing seal device and liquid crystal display device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532823A (en) * 1993-03-08 1996-07-02 Matsushita Electric Industrial Co., Ltd. Method of measuring optical characteristics of liquid crystal cells, measurement equipment therefor and method for manufacturing liquid crystal devices
US6580078B1 (en) * 2000-04-07 2003-06-17 Displaytech, Inc. Ferroelectric liquid crystal infrared chopper
US6914661B2 (en) 2000-09-07 2005-07-05 Seiko Epson Corporation Cell gap adjusting device, pressurizing seal device and liquid crystal display device manufacturing method
CN1316292C (en) * 2000-09-07 2007-05-16 精工爱普生株式会社 Liquid crystal cell gap adjusting device, pressure packaged device and manufacture method for liquid crystal display

Similar Documents

Publication Publication Date Title
US6822737B2 (en) Pretilt angle measuring method and measuring instrument
JPH04307312A (en) Measuring method of thickness of gap of liquid crystal cell
JPH0518858A (en) Method for measuring optical characteristic of membrane
US6992777B2 (en) Birefringent Mach-Zehnder interferometer
US6628389B1 (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
US6633358B1 (en) Methods and apparatus for measurement of LC cell parameters
US6757062B2 (en) Method and device for measuring thickness of liquid crystal layer
JPH0518859A (en) Method for measuring thickness of liquid crystal layer
JP3108938B2 (en) Method for measuring tilt angle of liquid crystal molecules
JP2898298B2 (en) Liquid crystal layer thickness measuring apparatus and liquid crystal layer thickness measuring method using the liquid crystal layer thickness measuring apparatus
JP3875116B2 (en) Method for measuring wavelength dispersion of birefringence of birefringent body, program, and recording medium
JP3331624B2 (en) Phase difference measurement method
JP3755303B2 (en) Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element
JP2002311406A (en) Apparatus for detecting parameter of liquid crystal panel
JP2509692B2 (en) Optical measuring device
JP3554374B2 (en) Polarimeter
JP2565147B2 (en) Method of measuring twist angle and cell gap
JPH055656A (en) Measurement of phase difference
JP3792315B2 (en) Cell thickness measuring method, cell thickness measuring apparatus, and liquid crystal display manufacturing method
JP3260928B2 (en) Electric field sensor and voltage sensor
JP2024034056A (en) electric field sensor
JPH02159540A (en) Double refraction measurement
JP3224124B2 (en) Evaluation method of liquid crystal display element
JPH0989760A (en) Measuring method for anchoring energy in azimuth direction of nematic liquid-crystal element
JP2820163B2 (en) Cell thickness measurement device for liquid crystal cells