JP3755303B2 - Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element - Google Patents

Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element Download PDF

Info

Publication number
JP3755303B2
JP3755303B2 JP18134798A JP18134798A JP3755303B2 JP 3755303 B2 JP3755303 B2 JP 3755303B2 JP 18134798 A JP18134798 A JP 18134798A JP 18134798 A JP18134798 A JP 18134798A JP 3755303 B2 JP3755303 B2 JP 3755303B2
Authority
JP
Japan
Prior art keywords
liquid crystal
chromaticity
crystal layer
twist angle
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18134798A
Other languages
Japanese (ja)
Other versions
JP2000002864A (en
Inventor
浩之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP18134798A priority Critical patent/JP3755303B2/en
Publication of JP2000002864A publication Critical patent/JP2000002864A/en
Application granted granted Critical
Publication of JP3755303B2 publication Critical patent/JP3755303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、液晶表示素子の液晶層厚とツイスト角度の測定方法に関するものである。
【0002】
【従来の技術】
従来、対向面に電極がそれぞれ形成された一対の基板の間に液晶分子がツイスト配向した液晶層を設けてなる液晶セルにおいて、その液晶層の層厚の測定は、(1)液晶セルにその一方の面から光を入射させ、一対の基板のそれぞれの内面と液晶層との2つの界面で反射した光の干渉光強度を測定して液晶層厚を算出する方法、或いは、(2)液晶セルを偏光軸が互いに平行に配置された一対の偏光板で挟み、透過光の透過率が極小となる波長を検出し、その波長からGooch and Tarry の理論式により液晶層厚を算出する方法が知られている。
上記(1)の測定方法は、液晶セルの一対の基板のうちの光の入射方向から見て前方の基板と液晶層との界面で反射した光と、背面側の基板の内面と液晶層との界面で反射される光との位相差による光の干渉に基づいて液晶層厚を算出するものである。
【0003】
この位相差は液晶層の屈折率と光路長に依存するが、基板間に封入された状態で液晶層の屈折率を正確に求めることは困難であり、特にツイスト配向された液晶層を透過した光の偏光状態を求めることは極めて困難である。さらに、実際の液晶セルでは基板内面の配向膜面と液晶層との界面だけでなく、基板面に形成された電極と基板との界面や、前記電極と配向膜との界面などでも光が反射するため、液晶層厚を精度良く測定することが困難である。
【0004】
また、上記(2)の測定方法は、液晶層のΔndに対する透過光強度の依存性に基づいて、透過光が極小を与える波長を求め、この波長からセルギャップを算出するものである。
【0005】
この測定方法では、液晶セルの基板間に分散状態で挟持されているギャップ材部分(液晶が存在しない部分)や液晶分子の配向が乱れた部分などのような液晶層の屈折率とは異なる屈折率を示す部分を透過したノイズ光の影響により測定精度が低下する。また、透過率が極小となる波長の検出にも大きな誤差が生じるため、液晶層厚を精度良く測定することが困難である。
【0006】
一方、液晶セルの液晶層厚及びツイスト角度の両方を測定する方法として、(3)ストークス・パラメータを求め、このストークスパラメータに基づいて、液晶層厚及びツイスト角を求める方法も提案されている。
【0007】
この測定方法は、Jpn.J.Appl.Phys.Vol.36(1997)pp.2760-2764に記述されているように、偏光子と検光子の間に液晶セルを配置し、y軸と平行な直線偏光を液晶セルに入射させ、透過光のx軸成分強度Ix,y軸成分強度Iy,及び45゜方向の成分強度I45゜を測定し、また1/4波長板を液晶セルと検光子との間に遅相軸をy軸と平行に配置した45゜方向の成分強度Iq,45゜を測定する。
【0008】
そして、これらのx軸成分強度Ix,y軸成分強度Iy,45゜方向の成分強度I45,及び1/4波長板を用いたときの45゜方向の成分強度Iq,45゜の測定値により、ストークス・パラメータS1,S2,S3を算出し、これらのストークス・パラメータS1,S2,S3から液晶層厚とツイスト角度を算出する方法である。
【0009】
【発明が解決しようとする課題】
しかし、上記(1)および(2)の液晶層厚測定方法は、いずれも、液晶層厚は測定できるもの、液晶分子がツイスト配向した液晶層のツイスト角度を測定することができず、また、液晶層厚の測定精度が悪いという問題をもっている。
【0010】
上記(3)の測定方法は、液晶層厚と、ツイスト角度を測定することができるが、この測定方法においても液晶層厚とツイスト角度とを高い精度で測定することがで困難である。
【0011】
すなわち、上記(3)の方法により、ツイスト角度を84゜〜96゜まで2゜間隔に選び、液晶層厚を4.6μm〜5.2μmまで変化せたときのストークス・パラメータS1,S2を求め、図7に示すように各液晶層厚に対応する点をS1,S2座標上にプロットした。
【0012】
この図7から明らかなように、ツイスト角度が84°,86゜の場合は、各液晶層厚に対応する点が曲線a,bに示すように異なる曲線上に存在するが、ツイスト角度が88゜〜96゜の範囲では、各液晶層厚に対応する点が実質的に曲線C上に分散して存在することとなり、前記ツイスト角度の違いを読み取ることが事実上困難である。
したがって、上記(3)の方法でも、液晶層厚とツイスト角度とを精度良く測定することができなかった。
この発明は、液晶セルの液晶層厚、及びツイスト角度とを高い精度で測定することができる液晶層厚とツイスト角度の測定方法を提供することを目的としたものである。
【0013】
【課題を解決するための手段】
上記目的を達成するため、この発明にかかる液晶層厚とツイスト角度の測定方法は、ツイスト配向させた液晶層を有する被測定用の液晶セルを挟んで、光学軸が互いに平行な一対の偏光板を配置した光学系において、前記偏光板の光学軸を前記液晶セルの一方の基板近傍の液晶分子の配向方向と所定の角度の第1の方向に向けた第1の偏光板配置で測定した透過光の分光分布に基づいて第1の色度を算出し、色度図上での前記第1の色度により表される第1の色度点と無彩色点を結ぶ直線の第1の傾きを求め、前記偏光板の光学軸を前記第1の方向とは異なる第2の方向に向けた第2の偏光板配置で測定した透過光の分光分布に基づいて第2の色度を算出し、色度図上での前記第2の色度により表される第2の色度点と無彩色点とを結ぶ直線の第2の傾きを求め、前記第1の傾きと前記第2の傾きに基づいて、前記液晶セルの液晶層厚とツイスト角とを求める前記液晶セルの液晶層厚とツイスト角とを求めることを特徴とする。
【0014】
この測定方法によれば、一対の偏光板の間に被測定用液晶セルを配置し、前記偏光板の光学軸と液晶セルの液晶分子の配列方向との成す角度を異ならせた少なくとも2つの状態で透過光の分光分布特性を測定し、それらの複数の透過光の色度図上での色度点と無彩色点とを結ぶ直線の傾きを求めるものであるため、被測定用液晶セルのセルギャップのみならず、ツイスト配向セルのツイスト角度をも精度良く測定することができる。
【0015】
そして、上記透過光の色度図上での色度点と無彩色点とを結ぶ直線の傾きは、液晶層を通過する際に生じるノイズ光の影響を受けないので、より高精度の測定が可能になる。
【0016】
上記少なくとも2回の透過光の測定は、前記偏光板の透過軸と液晶セルの液晶分子の配列方向との成す角度を45°ずらせて測定するのが望ましい。すなわち、第1の方向に対して第2の方向は、偏光板の透過軸と液晶セルの液晶分子の配列方向を、前記第1の方向に対してほぼ45゜の角度で交差する方向に配置して2つの偏光板配置における透過光の分光特性が測定される。
【0017】
被測定用の液晶セルは、前記液晶セルの液晶層の厚さ方向の中央に位置する液晶分子の配列方向とほぼ45°で交差する第1の方向に配置して透過光を測定し、この透過光の分光分布から第1の色度点の傾きが求められ、また液晶層のツイスト角度を二等分する第2の方向に配置して透過光を測定し、この透過光の分光分布から第2の色度点の傾きが求められる。
【0018】
被測定用の液晶セルが、90°ツイストテットネマチック型の液晶素子であるときは、前記第1の方向を、前記液晶セルの入射側基板近傍の液晶分子の配向方向とほぼ平行な方向に設定し、前記第2の方向は、前記液晶セルの入射側基板近傍の液晶分子の配向方向とほぼ45゜の角度で交差する方向に設定してそれぞれの透過光が測定され、それぞれの色度点と無彩色点とを結ぶ直線の傾きを求め、この傾きに基づいて液晶素子のツイスト角とセルギャップとを求めることができる。
【0019】
また、この発明にかかる液晶層厚とツイスト角度の測定方法は、ツイスト配向させた液晶層を有する被測定用の液晶セルを挟んで配置された一対の偏光板の互いに平行な光学軸を、前記液晶セルの一方の基板近傍の液晶分子の配向方向に対して所定の角度の第1の方向に向けた配置で測定した透過光の分光分布を表す第1の分光分布データと、前記偏光板の光学軸を前記第1の方向とは異なる第2の方向に向ける配置で測定した透過光の分光分布を表す第2の分光分布データを測定する分光分布測定ステップと、前記分光分布測定ステップで得られた第1、第2の分光分布データに基づいてそれぞれの透過光の色度を表す第1の色度及び第2の色度を算出し、色度図上での前記第1及び第2の色度によりそれぞれ表される第1の色度点及び第2の無彩色点とを結ぶ直線の第1の傾き及び第2の傾きとを求めるパラメータ算出ステップと、前記パラメータ算出ステップにより算出された第1の傾きと前記第2の傾きに基づいて、前記液晶セルの液晶層厚とツイスト角とを求めるステップとからなることを特徴とする。
【0020】
この測定方法によれば、一対の偏光板の間に被測定用液晶セルを配置し、前記偏光板と液晶セルの液晶分子の配列方向との成す角度を異ならせた少なくとも2つの状態で透過光の分光分布を求め、それぞれの透過光の色度図上での色度点と無彩色点とを結ぶ2つの直線の傾きをパラメータとして用いているので、被測定用液晶セルのセルギャップと液晶層のツイスト角度を精度良く測定することがでる。
【0021】
【発明の実施の形態】
以下、この発明の1つの実施の形態にかかる測定方法を説明する。
【0022】
この発明のセルギャップとツイスト角度の測定方法は、一対の偏光板の間に被測定用の液晶セルを配置した光学系を用い、先ず前記偏光板の光学軸と液晶セルの液晶分子の配列方向とを所定の角度に設定した第1の状態で透過光の分光分布を測定し、その分光分布より色度図上の第1の色度点を算出し、その色度点と無彩色点とを結ぶ直線の第1の傾きを求める。
【0023】
次に、前記偏光板の光学軸と液晶セルの液晶分子の配列方向との角度を他の異なる角度に設定した第2の状態で透過光の分光分布を測定し、その分光分布より色度図上の第2の色度点を算出し、その色度点と無彩色点とを結ぶ直線の第2の傾きを求める。
【0024】
そして、これらの第1,第2の傾きをパラメータとして、予め求めておいた前記第1,第2の傾き、セルギャップとツイスト角度との関係に基づいて、液晶素子のセルギャップとツイスト角度を求めるものである。
【0025】
図1は、この発明の第1の実施の形態にかかる測定方法に用いる光学系の概略を示す概略構成図である。
【0026】
図1に示すように、この発明にかかる測定方法に用いる光学系は、一対の偏光板からなる偏光子1と検光子2と、この偏光子1と検光子2の間に配置された被測定用のツィストネマチック液晶セル3と、測定光を照射する光源4と、液晶セル3を透過した光の強度を検出する光検出器5とから構成されている。
【0027】
液晶セル3は、図2に示すように、対向する内面にそれぞれ電極31,32と配向膜33,34とが形成された下基板(光入射側基板)35と上基板(光出射側基板)36とが平行に配置され、前記上下基板35,36はシール材37により接合され、前記上下基板35,36間に液晶38が封入されている。
【0028】
図2及び図3は、90°ツイスト型のTN液晶セルの一例を示しており、前記上下基板35,36の内面に形成された配向膜33,34はそれぞれ配向処理が施されており、この配向膜33,34に隣接する液晶分子は、その分子長軸を配向処理方向33a,34aに向けて配向している。
【0029】
前記上下基板35,36間に封入されて液晶層を形成する前記液晶38は、それぞれの配向膜33,34に施された配向処理方向33a,34aが約90°ずれているので、液晶層の液晶分子は、下基板35に形成された配向膜33の配向処理方向33aから上基板36に形成された配向膜34の配向処理方向34a向かって図面上で矢印tで示すように、右回りにほぼ90°(φ)ツイスト配向している。
【0030】
そして、前記液晶38が形成する液晶層の厚さ方向の中央に位置する液晶分子38aは、下基板35の配向膜33の配向処理方向33aに対して、前記ツイスト角度φのほぼ1/2の角度で交差する方向に配向している。
【0031】
図1の光学系において、偏光子1と検光子2との間に液晶分子をツイスト配向させた液晶セル3を配置したときの透過光強度は、ジョーンズ行列に基づく解析により下記の式(1)で表される。この解析において、偏光子1と検光子2の透過軸1a,2bの方向、液晶セル3の光入射側の基板35の配向処理方向33a、及び光出射側基板36の配向処理方向34aは、それぞれ図4に示すように定義される。
【0032】
即ち、偏光子1と検光子2の透過軸1a,2aを互い平行に配置し、前記光入射側の基板の配向処理方向33aを基準にして、偏光子1と検光子2の透過軸1a,2aの成す角度をθ、前記光出射側基板の配向処理方向34aの成す角をφとし、光は図4の紙面裏側から垂直に入射する。
【0033】
【数1】

Figure 0003755303
【0034】
ここで、入射側基板35の配向処理方向33aに対して、偏光子1と検光子2の透過軸の方向1a,2aをツイスト角度φの1/2から45°を差し引いた角度θ(φ/2−π/4)に配置した第1の偏光板配置のとき、即ち、図3(a)で示すように、液晶層の層厚方向の中央の液晶分子38aの配向方向に対して45°で交差する方向に偏光子1と検光子2の透過軸の方向1a,2aを設置したときの透過光強度T(NB)は、下記の式(2)で表される。
【0035】
【数2】
Figure 0003755303
【0036】
また、入射側基板35の配向処理方向33aに対して、偏光子1と検光子2の透過軸1a,2aの方向をツイスト角度φの1/2の角度θに配置した第2の偏光板配置、即ち図3(b)で示すように、液晶層の層厚方向の中央の液晶分子38aの配向方向に偏光子1と検光子2の透過軸1a,2aの方向一致させて設置したときの透過光強度T(DAP)は、下記の式(3)で表される。
【0037】
【数3】
Figure 0003755303
【0038】
上記第1,第2の偏光板配置において、透過光の分光分布特性は、上記式(2)及び上記式(3)において、各波長毎の透過光強度T(NB),T(DAP)を算出することにより得られる。
【0039】
図1の光学系において、白色光を入射したときの出射光の色度座標P(x、y)は、前記透過光の分光分布から求めることができる。図5に示すように、色度図上の色度点Pと無彩色点Cとを結ぶ直線Lのx軸またはy軸に対する傾き角度Fは、前記色度座標P(x、y)と無彩色点Cの色度座標とから求めることができる。色度図上の色度点Pと無彩色点Cとを結ぶ直線Lの傾き角度Fは、液晶セル3のセルギャップdまたはツイスト角度φに対応している。
【0040】
即ち、第1の偏光板配置の透過光の色度座標P1(x1、y1)を求めて色度図上にプロットした色度点P1と無彩色点Cとを結ぶ直線L1のx軸に対する角度F1は、液晶層の層厚(セルギャップd)に対応する。そして、第2の偏光板配置の透過光の色度座標P2(x2、y2)を求めて、色度図上にプロットした色度点P2と無彩色点Cとを結ぶ直線L2のx軸に対する角度F2は、液晶層のツイスト角度φに対応する。
【0041】
このようにして求めた角度F2を横軸に,角度F1を縦軸にとり、ツイスト角度φを84°から96°まで2°おきに、セルギャップdを4.4μmから5.2μmまで0.1μmおきに設定して各ツイスト角度φに対するセルギャップdの値の関係を図6に示した。
【0042】
図6において、曲線Iはツイスト角度φを84°曲線IIはツイスト角度φを86°、曲線IIIはツイスト角度φを88°、曲線IVはツイスト角度φを90°、曲線Vはツイスト角度φを92°、曲線VIはツイスト角度φを94°、曲線VIIはツイスト角度φを96°にそれぞれ設定した液晶セルにおいて、セルギャップdを4.4μmから0.1μmずつ増加させたときの角度F1とF2との関係を示している。
【0043】
図6から明らかなように、偏光板1,2の透過軸1a,2aの設置角度を異ならせた2つの状態での透過光の分光分布特性から色度座標P1(x1、y1),P2(x2、y2)を求め、色度図上での無彩色点Cとを結ぶそれぞれの直線L1,L2の傾き角度F1及びF2の値に基づいて、液晶セル3のセルギャップ(液晶層厚)dと、液晶層のツイスト角度φを求めることができる。
【0044】
すなわち、図1に示した光学系において、光源4から発生する光を偏光子1,液晶セル3,検光子2に照射し、透過軸1a,2aを互いに平行に配置した偏光子1と検光子2の間に被測定用の液晶セル3を配置する。偏光子1と検光子2の透過軸1a,2aと前記液晶セル3の配向処理方向33a,34aを異ならせた2つの配置で透過光を光検出器5により検出して、2つの配置における透過光の分光分布を測定する。
【0045】
これらの分光分布から色度図上での各色度座標P1(x1、y1),P2(x2、y2)を求め、これらの色度座標P1(x1、y1),P2(x2、y2)からそれぞれ無彩色点Cとを結ぶ2つの直線L1、L2のそれぞれの傾き角度F1,F2を求め、これらの傾き角度F1,F2により、前記図6に示した関係に基づいて、被測定用の液晶セル3のセルギャップ(液晶層厚)dと、ツイスト角度φが得られる。
【0046】
上記分光分布の測定において、液晶セル3を透過しない光、及び液晶セル3内のギャップ材等を透過した光等のノイズ光も検出されるが、そのノイズ光は透過光の色純度を低下させるものであり、ノイズ光強度の変化は色度図上の色度点P1,P2が無彩色点Cから延びる直線L1、L2上での変化に対応する。
【0047】
よって、測定された分光分布により求めた色度座標P1(x1、y1),P2(x2、y2)により求められる色度点P1,P2と、無彩色点Cとを結ぶ直線L1、L2の傾き角度F1,F2は、ノイズ光による影響を受けることがないから、高い精度でセルギャップdとツイスト角度φの測定を行うことができる。
【0048】
本発明のセルギャップdとツイスト角度φの測定方法は、液晶分子がほぼ90°ツイスト配向したTN型の液晶セル、あるいは、液晶分子を180°〜250°ツイスト配向させたSTN型の液晶セルの測定に適用することができる。
【0049】
90°ツイスト型のTN液晶セルのセルギャップdとツイスト角度φを測定する場合、偏光子1及び検光子2の透過軸1a,2aと、光入射側基板35の配向処理方向33aとをほぼ一致させたノーマリーブラック型の第1の偏光板配置により透過光の分光分布を測定し、測定した分光分布から色度図上の色度座標P1(x1、y1)を算出し、この色度座標に基づいて無彩色点Cとを結ぶ直線L1の傾き角度F1を算出する。
【0050】
偏光子1及び検光子2の透過軸1a,2aと光入射側基板35の配向処理の方向33aとがほぼ45°で交差する複屈折効果型の第2の偏光板配置により透過光の分光分布を測定し、測定した分光分布から色度図上の色度座標P2(x2、y2)を算出し、この色度座標に基づいて無彩色点Cとを結ぶ直線L2の傾き角度F2を算出する。
【0051】
ノーマリーブラック型の偏光板配置により得られた傾き角度F1と、複屈折効果型の偏光板配置により得られた傾き角度F2とを基に、図6に示す傾き角度F1,傾き角度F2,セルギャップd,及びツイスト角度φとの関係から、被測定用のTN液晶セル3のセルギャップdとツイスト角度φを求めることができる。
【0052】
尚、上述した測定方法では、90°ツイストのTN型液晶セルのセルギャップとツイスト角度の測定方法について述べたが、本発明の測定方法は、これに限ることなく、180°〜270°ツイスト配向させたSTN型の液晶セルについても同様に測定することができる。
【0053】
この場合、与えられた液晶の屈折率異方性Δnを基に、複数のツイスト角度φ及び複数のセルギャップにそれぞれ対応する分光分布を式(1)〜(3)により算出し、その分光分布から色度座標P1(x1、y1),P2(x2、y2)を求め、この色度座標から無彩色点Cとを結ぶ直線L1、L2の傾き角度F1,F2を算出して、傾き角度F1,傾き角度F2,セルギャップd,及びツイスト角度φとの関係を予め求めておく。以下、TN型液晶セルと同様にしてSTN型液晶セルのセルギャップd,及びツイスト角度φとを求めることができる。
【0054】
また、上記測定方法では、液晶セル3の透過光強度の計算を簡略化するために、液晶セル3の分光分布の測定にあたって、偏光子1と検光子2の透過軸1a,2aに対して、液晶セル3の液晶層厚の中央に位置する液晶分子38aの配向方向を45°で交差する方向に配置した第1の偏光板配置と、前記液晶分子38aの配向方向を平行または直交する方向に配置した第2の偏光板配置を用いたが、これに限ることなく、偏光子1と検光子2の透過軸1a,2aに対する液晶分子の配向方向は任意に設定しても良く、偏光子1と検光子2の透過軸1a,2aに対する液晶分子の配向方向を少なくとも2つの異なる角度に配置したときの分光分布を測定することにより、液晶セルのセルギャップd,及びツイスト角度φとを求めることができる。
【0055】
以下に、90°ツイストのTN型液晶セルのセルギャップdとツイスト角度φを測定する場合について説明する。
【0056】
先ず、被測定用の液晶セル3に用いられている液晶の屈折率異方性Δnを求め、式(1)〜(3)によりノーマリーブラック型の偏光板配置と複屈折効果型の偏光板配置の分光分布を算出し、それらの分光分布から各配置における色度座標P1(x1、y1),P2(x2、y2)を求め、この色度座標から無彩色点Cとを結ぶ直線L1,L2の傾き角度であるF1,F2を算出して、傾き角度F1,F2,セルギャップd,及びツイスト角度φとの関係を求める。
【0057】
次に、被測定用の液晶セル3における液晶層厚の中央に位置する液晶分子38aの配列方向を求め、光学軸1a,2aを互いに平行に配置した偏光子1と検光子2との間に被測定用液晶セル3を配置し、前記偏光子1と検光子2の光学軸1a,2aを前記液晶層厚の中央に位置する液晶分子の配列方向と45°で交差する方向、即ち液晶セル3の光入射側基板35の配向処理方向33aとほぼ平行な方向に配置して分光分布を測定する。
【0058】
また、前記偏光子1と検光子2の光学軸1a,2aを前記液晶層厚の中央に位置する液晶分子の配列方向と平行な方向、即ち液晶セル3の光入射側基板36の配向処理方向34aとほぼ45°で交差する方向に配置して分光分布を測定する。
【0059】
測定したそれぞれの分光分布から色度図上の各色度点の色度座標P1(x1、y1),P2(x2、y2)を算出し、各色度点P1,P2と無彩色点Cとを結ぶ直線L1、L2のx軸に対する傾き角度F1,F2を算出する。
【0060】
上記計算により求めた傾き角度であるF1,F2に、測定により求められた傾き角度F1,傾き角度F2を対応させることにより,被測定用の液晶セル3のギャップdとツイスト角度φとを求めることがでる。
【0061】
ツイスト角度を90°、セルギャップを4.8μmの値に設計された液晶セルを上述した方法によりツイスト角度φとセルギャップdを測定した。分光分布の光学的測定により得られた各傾き角度F1,F2は、それぞれ約−43°,−10°であり、図6に示した各傾き角度F1,F2とツイスト角度φとセルギャップdとの関係から、前記液晶セルのツイスト角度φは90.2°、セルギャップdは4.75μmという測定結果が得られた。
【0062】
上記測定方法によれば、液晶セルのツイスト角度φを1/10度、セルギャップdを1/100μmの精度で正確に測定することができる。
【0063】
【発明の効果】
以上説明したように、この発明によれば、一対の偏光板1,2の間に被測定用の液晶セル3を配置し、前記偏光板1,2の光学軸1a,2aと液晶セル3の液晶分子の配列方向との成す角度θを異ならせた少なくとも2つの状態で透過光の分光分布特性を測定し、それらの複数の透過光の色度図上での色度点P1,P2と無彩色点Cとを結ぶ直線の傾きF1,F2を求めるものであるため、被測定用液晶セル3のセルギャップdのみならず、液晶層のツイスト角度φも精度良く測定することがでる。
【0064】
そして、上記透過光の色度図上での色度点P1,P2と無彩色点Cとを結ぶ直線の傾きF1,F2は、液晶層を通過する際に生じるノイズ光の影響を受けないので、より高精度の測定ができる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態にかかる測定方法に用いる光学系の構成を示す概略構成図である。
【図2】この発明の第1の実施の形態にかかる測定方法を適用してセルギャップdとツイスト角度φが測定される液晶セル3の構造を示す断面図である。
【図3】この測定方法に用いる液晶セル3の配向処理方向33a,34aと、偏光子1と検光子2の透過軸1a,2aとの関係を示し、(a)は配向処理方向33aに対して、偏光子1と検光子2の透過軸の方向1a,2aをツイスト角度φの1/2から45°を差し引いた角度θに配置した第1の偏光板配置を示す平面図である。(b)は、配向処理方向33aに対して、偏光子1と検光子2の透過軸1a,2aの方向をツイスト角度φの1/2の角度θに配置した第2の偏光板配置を示す平面図である。
【図4】図1に示した光学系において、入射側基板と出射側基板の配向処理方向33a,34aと、偏光子1及び検光子2の光学軸1a,2aと、相互の角度の定義を示する図である。
【図5】本発明の測定方法で用いられる透過光の色度点Pと、この色度点Pと無彩色点Cとを結ぶ直線Lの角度Fを表す色度図である。
【図6】本発明の測定方法により求められた傾き角度F1,F2と、液晶セル3のセルギャップdと、ツイスト角度φとの関係を表すグラフである。
【図7】ストークスパラメータ法によるストークスパラメータS1,S2と、セルギャップdとツイスト角度φとの関係を表すグラフである。
【符号の説明】
1・・・偏光子、1a・・・透過軸、2・・・検光子、2a・・・透過軸、3・・液晶セル、33,34・・・配向膜、33a,34a・・・配向処理方向、35・・・光入射側基板、36・・・光出射側基板、37・・・シール材、38・・・液晶、38a・・・液晶層中央の液晶分子、4・・・光源、5・・・光検出器、 θ・・・偏光板の設置角度、φ・・・ツイスト角度、d・・・セルギャップ、P・・・色度点、C・・・無彩色点、F1,F2・・・傾き角度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring a liquid crystal layer thickness and a twist angle of a liquid crystal display element.
[0002]
[Prior art]
Conventionally, in a liquid crystal cell in which a liquid crystal layer in which liquid crystal molecules are twist-aligned is provided between a pair of substrates each having electrodes formed on opposite surfaces, the thickness of the liquid crystal layer can be measured by: (1) A method of calculating the thickness of the liquid crystal layer by measuring the interference light intensity of light reflected from two interfaces between the inner surface of each of the pair of substrates and the liquid crystal layer, or (2) liquid crystal The cell is sandwiched between a pair of polarizing plates whose polarization axes are arranged parallel to each other, the wavelength at which the transmittance of transmitted light is minimized is detected, and the liquid crystal layer thickness is calculated from the wavelength using the theoretical equation of Gooch and Tarry. Are known.
In the measurement method of (1), the light reflected by the interface between the front substrate and the liquid crystal layer as viewed from the light incident direction of the pair of substrates of the liquid crystal cell, the inner surface of the back substrate, the liquid crystal layer, The liquid crystal layer thickness is calculated based on the interference of light due to the phase difference with the light reflected at the interface.
[0003]
This phase difference depends on the refractive index of the liquid crystal layer and the optical path length, but it is difficult to accurately determine the refractive index of the liquid crystal layer in a state where it is sealed between the substrates, and in particular, it has passed through the twist-aligned liquid crystal layer. It is extremely difficult to determine the polarization state of light. Furthermore, in an actual liquid crystal cell, light is reflected not only at the interface between the alignment film surface on the substrate inner surface and the liquid crystal layer, but also at the interface between the electrode formed on the substrate surface and the substrate, or the interface between the electrode and the alignment film. Therefore, it is difficult to accurately measure the liquid crystal layer thickness.
[0004]
In the measurement method (2), the wavelength at which transmitted light gives a minimum is obtained based on the dependence of transmitted light intensity on Δnd of the liquid crystal layer, and the cell gap is calculated from this wavelength.
[0005]
In this measurement method, the refractive index is different from the refractive index of the liquid crystal layer, such as a gap material portion (a portion where no liquid crystal exists) sandwiched between the substrates of the liquid crystal cell or a portion where the alignment of liquid crystal molecules is disturbed. The measurement accuracy decreases due to the influence of noise light that has passed through the portion indicating the rate. In addition, since a large error occurs in the detection of the wavelength at which the transmittance is minimized, it is difficult to accurately measure the liquid crystal layer thickness.
[0006]
On the other hand, as a method for measuring both the liquid crystal layer thickness and the twist angle of the liquid crystal cell, (3) a method for obtaining the Stokes parameter and obtaining the liquid crystal layer thickness and the twist angle based on the Stokes parameter has been proposed.
[0007]
In this measurement method, as described in Jpn.J.Appl.Phys.Vol.36 (1997) pp.2760-2764, a liquid crystal cell is arranged between the polarizer and the analyzer, and parallel to the y-axis. Linearly polarized light is incident on the liquid crystal cell, the x-axis component intensity Ix, the y-axis component intensity Iy, and the component intensity I45 ° in the 45 ° direction of the transmitted light are measured, and the quarter-wave plate is connected to the liquid crystal cell and analyzer. Measure the component intensity Iq, 45 ° in the 45 ° direction with the slow axis in parallel with the y-axis.
[0008]
The measured values of the x-axis component intensity Ix, the y-axis component intensity Iy, the component intensity I45 in the 45 ° direction, and the component intensity Iq in the 45 ° direction when using a quarter-wave plate, 45 °, In this method, Stokes parameters S1, S2, and S3 are calculated, and a liquid crystal layer thickness and a twist angle are calculated from the Stokes parameters S1, S2, and S3.
[0009]
[Problems to be solved by the invention]
However, the liquid crystal layer thickness measuring methods of (1) and (2) above can measure the liquid crystal layer thickness, but cannot measure the twist angle of the liquid crystal layer in which the liquid crystal molecules are twist-aligned, There is a problem that the measurement accuracy of the liquid crystal layer thickness is poor.
[0010]
Although the measurement method (3) can measure the liquid crystal layer thickness and the twist angle, it is difficult to measure the liquid crystal layer thickness and the twist angle with high accuracy even in this measurement method.
[0011]
That is, the Stokes parameters S1 and S2 when the twist angle is selected at intervals of 2 ° from 84 ° to 96 ° and the thickness of the liquid crystal layer is changed from 4.6 μm to 5.2 μm are obtained by the method (3). As shown in FIG. 7, points corresponding to the thicknesses of the liquid crystal layers were plotted on the S1 and S2 coordinates.
[0012]
As is apparent from FIG. 7, when the twist angles are 84 ° and 86 °, points corresponding to the thicknesses of the liquid crystal layers exist on different curves as shown by curves a and b, but the twist angle is 88. In the range of 0 ° to 96 °, points corresponding to the thicknesses of the respective liquid crystal layers are substantially dispersed on the curve C, and it is practically difficult to read the difference in twist angle.
Therefore, the method (3) also cannot accurately measure the liquid crystal layer thickness and the twist angle.
An object of the present invention is to provide a method for measuring a liquid crystal layer thickness and a twist angle, which can measure a liquid crystal layer thickness and a twist angle of a liquid crystal cell with high accuracy.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a method for measuring the thickness and twist angle of a liquid crystal layer according to the present invention includes a pair of polarizing plates having optical axes parallel to each other with a liquid crystal cell to be measured having a liquid crystal layer having twist alignment. Is measured in a first polarizing plate arrangement in which the optical axis of the polarizing plate is oriented in a first direction at a predetermined angle with the alignment direction of liquid crystal molecules in the vicinity of one substrate of the liquid crystal cell. A first slope of a straight line connecting the first chromaticity point and the achromatic color point represented by the first chromaticity on the chromaticity diagram is calculated based on the spectral distribution of light. And calculating the second chromaticity based on the spectral distribution of the transmitted light measured with the second polarizing plate arrangement in which the optical axis of the polarizing plate is oriented in a second direction different from the first direction. A straight line connecting the second chromaticity point represented by the second chromaticity and the achromatic color point on the chromaticity diagram Obtaining a second inclination, and obtaining a liquid crystal layer thickness and a twist angle of the liquid crystal cell to obtain a liquid crystal layer thickness and a twist angle of the liquid crystal cell based on the first inclination and the second inclination. Features.
[0014]
According to this measuring method, a liquid crystal cell to be measured is arranged between a pair of polarizing plates, and transmission is performed in at least two states in which the angle formed by the optical axis of the polarizing plate and the alignment direction of the liquid crystal molecules of the liquid crystal cell is different. Since the spectral distribution characteristics of light are measured and the slope of the straight line connecting the chromaticity point and the achromatic color point on the chromaticity diagram of these transmitted lights is obtained, the cell gap of the liquid crystal cell to be measured In addition, the twist angle of the twist alignment cell can be measured with high accuracy.
[0015]
Since the slope of the straight line connecting the chromaticity point and the achromatic color point on the chromaticity diagram of the transmitted light is not affected by noise light generated when passing through the liquid crystal layer, more accurate measurement can be performed. It becomes possible.
[0016]
The transmitted light is preferably measured at least twice by shifting the angle formed between the transmission axis of the polarizing plate and the alignment direction of the liquid crystal molecules of the liquid crystal cell by 45 °. That is, the second direction with respect to the first direction is arranged in a direction that intersects the transmission axis of the polarizing plate and the alignment direction of the liquid crystal molecules of the liquid crystal cell at an angle of approximately 45 ° with respect to the first direction. Then, the spectral characteristics of the transmitted light in the two polarizing plate arrangements are measured.
[0017]
The liquid crystal cell to be measured is arranged in a first direction intersecting with the alignment direction of the liquid crystal molecules located at the center in the thickness direction of the liquid crystal layer of the liquid crystal cell at approximately 45 °, and the transmitted light is measured. The inclination of the first chromaticity point is obtained from the spectral distribution of the transmitted light, and the transmitted light is measured in the second direction that bisects the twist angle of the liquid crystal layer. From the spectral distribution of the transmitted light, The slope of the second chromaticity point is determined.
[0018]
When the liquid crystal cell to be measured is a 90 ° twisted nematic liquid crystal element, the first direction is set to a direction substantially parallel to the alignment direction of the liquid crystal molecules in the vicinity of the incident side substrate of the liquid crystal cell. The second direction is set to a direction intersecting with the alignment direction of liquid crystal molecules in the vicinity of the incident side substrate of the liquid crystal cell at an angle of about 45 °, and each transmitted light is measured, and each chromaticity point is measured. And the twist angle of the liquid crystal element and the cell gap can be obtained based on the inclination.
[0019]
Also, the method for measuring the thickness and the twist angle of the liquid crystal layer according to the present invention is such that the optical axes parallel to each other of a pair of polarizing plates arranged with a liquid crystal cell to be measured having a twist-aligned liquid crystal layer interposed therebetween, First spectral distribution data representing a spectral distribution of transmitted light measured in an arrangement oriented in a first direction at a predetermined angle with respect to the alignment direction of liquid crystal molecules in the vicinity of one substrate of the liquid crystal cell; Obtained in a spectral distribution measuring step for measuring second spectral distribution data representing a spectral distribution of transmitted light measured in an arrangement in which the optical axis is directed in a second direction different from the first direction, and in the spectral distribution measuring step Based on the obtained first and second spectral distribution data, a first chromaticity and a second chromaticity representing the chromaticity of each transmitted light are calculated, and the first and second chromaticities on the chromaticity diagram are calculated. The first chromaticity point and the first chromaticity point respectively represented by the chromaticity of A parameter calculating step for obtaining a first inclination and a second inclination of a straight line connecting the achromatic point of the liquid crystal, and the liquid crystal based on the first inclination and the second inclination calculated by the parameter calculating step. And a step of obtaining a liquid crystal layer thickness and a twist angle of the cell.
[0020]
According to this measuring method, a liquid crystal cell to be measured is disposed between a pair of polarizing plates, and the transmitted light is split in at least two states in which the angle between the polarizing plate and the alignment direction of the liquid crystal molecules of the liquid crystal cell is different. Since the distribution is obtained and the slope of two straight lines connecting the chromaticity point and the achromatic color point on the chromaticity diagram of each transmitted light is used as a parameter, the cell gap of the liquid crystal cell to be measured and the liquid crystal layer It is possible to measure the twist angle with high accuracy.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The measurement method according to one embodiment of the present invention will be described below.
[0022]
The cell gap and twist angle measuring method of the present invention uses an optical system in which a liquid crystal cell to be measured is disposed between a pair of polarizing plates. First, the optical axis of the polarizing plate and the alignment direction of the liquid crystal molecules of the liquid crystal cell are determined. A spectral distribution of transmitted light is measured in a first state set at a predetermined angle, a first chromaticity point on the chromaticity diagram is calculated from the spectral distribution, and the chromaticity point and the achromatic color point are connected. Find the first slope of the straight line.
[0023]
Next, the spectral distribution of the transmitted light is measured in a second state in which the angle between the optical axis of the polarizing plate and the alignment direction of the liquid crystal molecules of the liquid crystal cell is set to another different angle, and a chromaticity diagram is obtained from the spectral distribution. The upper second chromaticity point is calculated, and the second slope of the straight line connecting the chromaticity point and the achromatic color point is obtained.
[0024]
Then, using the first and second inclinations as parameters, the cell gap and the twist angle of the liquid crystal element are determined based on the relationship between the first and second inclinations, the cell gap and the twist angle, which are obtained in advance. It is what you want.
[0025]
FIG. 1 is a schematic configuration diagram showing an outline of an optical system used in the measurement method according to the first embodiment of the present invention.
[0026]
As shown in FIG. 1, the optical system used in the measurement method according to the present invention includes a polarizer 1 and an analyzer 2 made up of a pair of polarizing plates, and a device to be measured disposed between the polarizer 1 and the analyzer 2. The twisted nematic liquid crystal cell 3, a light source 4 for irradiating measurement light, and a photodetector 5 for detecting the intensity of light transmitted through the liquid crystal cell 3.
[0027]
As shown in FIG. 2, the liquid crystal cell 3 includes a lower substrate (light incident side substrate) 35 and an upper substrate (light emitting side substrate) having electrodes 31, 32 and alignment films 33, 34 formed on the inner surfaces facing each other. 36 is arranged in parallel, and the upper and lower substrates 35 and 36 are joined by a sealing material 37, and a liquid crystal 38 is sealed between the upper and lower substrates 35 and 36.
[0028]
2 and 3 show an example of a 90 ° twist type TN liquid crystal cell, and the alignment films 33 and 34 formed on the inner surfaces of the upper and lower substrates 35 and 36 are respectively subjected to an alignment treatment. The liquid crystal molecules adjacent to the alignment films 33 and 34 are aligned with their molecular long axes in the alignment processing directions 33a and 34a.
[0029]
In the liquid crystal 38 encapsulated between the upper and lower substrates 35 and 36 to form a liquid crystal layer, the alignment processing directions 33a and 34a applied to the alignment films 33 and 34 are shifted by about 90 °. The liquid crystal molecules are rotated clockwise as indicated by an arrow t in the drawing from the alignment treatment direction 33a of the alignment film 33 formed on the lower substrate 35 to the alignment treatment direction 34a of the alignment film 34 formed on the upper substrate 36. The orientation is almost 90 ° (φ).
[0030]
The liquid crystal molecules 38a located at the center in the thickness direction of the liquid crystal layer formed by the liquid crystal 38 are approximately ½ of the twist angle φ with respect to the alignment treatment direction 33a of the alignment film 33 of the lower substrate 35. Oriented in a direction that intersects at an angle.
[0031]
In the optical system of FIG. 1, the transmitted light intensity when the liquid crystal cell 3 in which liquid crystal molecules are twist-aligned is disposed between the polarizer 1 and the analyzer 2 is expressed by the following equation (1) by analysis based on the Jones matrix. It is represented by In this analysis, the directions of the transmission axes 1a and 2b of the polarizer 1 and the analyzer 2, the alignment processing direction 33a of the substrate 35 on the light incident side of the liquid crystal cell 3, and the alignment processing direction 34a of the light emission side substrate 36 are respectively It is defined as shown in FIG.
[0032]
That is, the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 are arranged in parallel to each other, and the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 are set with reference to the alignment processing direction 33a of the substrate on the light incident side. The angle formed by 2a is θ, the angle formed by the alignment direction 34a of the light emission side substrate is φ, and the light enters perpendicularly from the back side of the sheet of FIG.
[0033]
[Expression 1]
Figure 0003755303
[0034]
Here, with respect to the alignment processing direction 33a of the incident-side substrate 35, the transmission axis directions 1a and 2a of the polarizer 1 and the analyzer 2 are obtained by subtracting 45 ° from 1/2 of the twist angle φ (φ / φ / When the first polarizing plate is disposed at 2-π / 4), that is, as shown in FIG. 3A, 45 ° with respect to the alignment direction of the central liquid crystal molecule 38a in the layer thickness direction of the liquid crystal layer. The transmitted light intensity T (NB) when the transmission axis directions 1a and 2a of the polarizer 1 and the analyzer 2 are installed in the direction intersecting with (1) is expressed by the following equation (2).
[0035]
[Expression 2]
Figure 0003755303
[0036]
Further, a second polarizing plate arrangement in which the directions of the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 are arranged at an angle θ that is ½ of the twist angle φ with respect to the alignment processing direction 33a of the incident side substrate 35. That is, as shown in FIG. 3B, when the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 are aligned with the alignment direction of the central liquid crystal molecule 38a in the thickness direction of the liquid crystal layer. The transmitted light intensity T (DAP) is expressed by the following formula (3).
[0037]
[Equation 3]
Figure 0003755303
[0038]
In the first and second polarizing plate arrangements, the spectral distribution characteristics of the transmitted light are the transmitted light intensity T (NB) and T (DAP) for each wavelength in the above formula (2) and the above formula (3). It is obtained by calculating.
[0039]
In the optical system of FIG. 1, the chromaticity coordinates P (x, y) of the outgoing light when white light is incident can be obtained from the spectral distribution of the transmitted light. As shown in FIG. 5, the inclination angle F with respect to the x-axis or y-axis of the straight line L connecting the chromaticity point P and the achromatic color point C on the chromaticity diagram is the same as the chromaticity coordinate P (x, y). It can be obtained from the chromaticity coordinates of the chromatic point C. The inclination angle F of the straight line L connecting the chromaticity point P and the achromatic color point C on the chromaticity diagram corresponds to the cell gap d or the twist angle φ of the liquid crystal cell 3.
[0040]
That is, the angle with respect to the x axis of the straight line L1 connecting the chromaticity point P1 and the achromatic color point C plotted on the chromaticity diagram by obtaining the chromaticity coordinates P1 (x1, y1) of the transmitted light of the first polarizing plate arrangement. F1 corresponds to the layer thickness (cell gap d) of the liquid crystal layer. Then, the chromaticity coordinates P2 (x2, y2) of the transmitted light of the second polarizing plate arrangement are obtained, and the x-axis of the straight line L2 connecting the chromaticity point P2 and the achromatic color point C plotted on the chromaticity diagram. The angle F2 corresponds to the twist angle φ of the liquid crystal layer.
[0041]
The angle F2 thus determined is taken on the horizontal axis, the angle F1 is taken on the vertical axis, the twist angle φ is changed every 2 ° from 84 ° to 96 °, and the cell gap d is set to 0.1 μm from 4.4 μm to 5.2 μm. FIG. 6 shows the relationship between the value of the cell gap d with respect to each twist angle φ set every other time.
[0042]
In FIG. 6, curve I is twist angle φ 84 ° curve II is twist angle φ 86 °, curve III is twist angle φ 88 °, curve IV is twist angle φ 90 °, and curve V is twist angle φ. In a liquid crystal cell in which the twist angle φ is set to 94 ° and the twist angle φ is set to 96 °, the curve VI is an angle F1 when the cell gap d is increased from 4.4 μm by 0.1 μm. The relationship with F2 is shown.
[0043]
As apparent from FIG. 6, chromaticity coordinates P1 (x1, y1), P2 (from the spectral distribution characteristics of transmitted light in two states where the installation angles of the transmission axes 1a, 2a of the polarizing plates 1, 2 are different. x2, y2) is determined, and the cell gap (liquid crystal layer thickness) d of the liquid crystal cell 3 is determined based on the values of the inclination angles F1 and F2 of the straight lines L1 and L2 connecting the achromatic color point C on the chromaticity diagram. Then, the twist angle φ of the liquid crystal layer can be obtained.
[0044]
That is, in the optical system shown in FIG. 1, the polarizer 1, the liquid crystal cell 3, and the analyzer 2 are irradiated with light generated from the light source 4, and the transmission axes 1a and 2a are arranged in parallel to each other. A liquid crystal cell 3 to be measured is disposed between the two. The transmitted light is detected by the photodetector 5 in two arrangements in which the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 are different from the alignment processing directions 33a and 34a of the liquid crystal cell 3, and transmission in the two arrangements is performed. Measure the spectral distribution of light.
[0045]
From these spectral distributions, chromaticity coordinates P1 (x1, y1) and P2 (x2, y2) on the chromaticity diagram are obtained, and from these chromaticity coordinates P1 (x1, y1) and P2 (x2, y2), respectively. The respective inclination angles F1 and F2 of the two straight lines L1 and L2 connecting the achromatic color point C are obtained, and based on the relation shown in FIG. 6 based on the inclination angles F1 and F2, the liquid crystal cell to be measured 3 cell gap (liquid crystal layer thickness) d and a twist angle φ are obtained.
[0046]
In the spectral distribution measurement, noise light such as light that does not pass through the liquid crystal cell 3 and light that passes through the gap material in the liquid crystal cell 3 is also detected, but the noise light reduces the color purity of the transmitted light. Therefore, the change in the noise light intensity corresponds to the change on the straight lines L1 and L2 where the chromaticity points P1 and P2 on the chromaticity diagram extend from the achromatic color point C.
[0047]
Therefore, the slopes of the straight lines L1 and L2 connecting the chromaticity points P1 and P2 obtained from the chromaticity coordinates P1 (x1, y1) and P2 (x2, y2) obtained from the measured spectral distribution and the achromatic color point C. Since the angles F1 and F2 are not affected by noise light, the cell gap d and the twist angle φ can be measured with high accuracy.
[0048]
The method for measuring the cell gap d and the twist angle φ of the present invention is based on a TN type liquid crystal cell in which liquid crystal molecules are twisted by about 90 °, or an STN type liquid crystal cell in which liquid crystal molecules are twisted by 180 ° to 250 °. It can be applied to measurement.
[0049]
When measuring the cell gap d and the twist angle φ of the 90 ° twist type TN liquid crystal cell, the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 are substantially coincident with the alignment processing direction 33a of the light incident side substrate 35. The spectral distribution of the transmitted light is measured by the normally black first polarizing plate arrangement, and the chromaticity coordinates P1 (x1, y1) on the chromaticity diagram are calculated from the measured spectral distribution, and the chromaticity coordinates Based on the above, the inclination angle F1 of the straight line L1 connecting the achromatic color point C is calculated.
[0050]
Spectral distribution of transmitted light due to the birefringence effect type second polarizing plate arrangement in which the transmission axes 1a, 2a of the polarizer 1 and the analyzer 2 and the orientation processing direction 33a of the light incident side substrate 35 intersect at about 45 °. Then, chromaticity coordinates P2 (x2, y2) on the chromaticity diagram are calculated from the measured spectral distribution, and an inclination angle F2 of a straight line L2 connecting the achromatic color point C is calculated based on the chromaticity coordinates. .
[0051]
Based on the inclination angle F1 obtained by the arrangement of the normally black type polarizing plates and the inclination angle F2 obtained by the arrangement of the birefringence effect type polarizing plates, the inclination angle F1, the inclination angle F2, and the cell shown in FIG. From the relationship between the gap d and the twist angle φ, the cell gap d and the twist angle φ of the TN liquid crystal cell 3 to be measured can be obtained.
[0052]
In the measurement method described above, the measurement method of the cell gap and the twist angle of the TN type liquid crystal cell of 90 ° twist has been described. However, the measurement method of the present invention is not limited to this, and the 180 ° to 270 ° twist alignment. The same measurement can be performed for the STN liquid crystal cell.
[0053]
In this case, based on the refractive index anisotropy Δn of the given liquid crystal, spectral distributions respectively corresponding to a plurality of twist angles φ and a plurality of cell gaps are calculated by the equations (1) to (3), and the spectral distribution is calculated. Chromaticity coordinates P1 (x1, y1) and P2 (x2, y2) are obtained from the chromaticity coordinates, and inclination angles F1 and F2 of straight lines L1 and L2 connecting the achromatic color point C are calculated from the chromaticity coordinates to obtain the inclination angle F1. , The inclination angle F2, the cell gap d, and the twist angle φ are obtained in advance. Hereinafter, the cell gap d and the twist angle φ of the STN type liquid crystal cell can be obtained in the same manner as the TN type liquid crystal cell.
[0054]
Further, in the above measurement method, in order to simplify the calculation of the transmitted light intensity of the liquid crystal cell 3, when measuring the spectral distribution of the liquid crystal cell 3, the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 are A first polarizing plate arrangement in which the alignment direction of the liquid crystal molecules 38a located at the center of the liquid crystal layer thickness of the liquid crystal cell 3 is crossed at 45 ° and a direction in which the alignment directions of the liquid crystal molecules 38a are parallel or orthogonal to each other. Although the arranged second polarizing plate arrangement is used, the alignment direction of the liquid crystal molecules with respect to the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 may be arbitrarily set. And the cell gap d of the liquid crystal cell and the twist angle φ are determined by measuring the spectral distribution when the alignment directions of the liquid crystal molecules with respect to the transmission axes 1a and 2a of the analyzer 2 are arranged at at least two different angles. Can do.
[0055]
Hereinafter, a case where the cell gap d and the twist angle φ of the 90 ° twist TN liquid crystal cell are measured will be described.
[0056]
First, the refractive index anisotropy Δn of the liquid crystal used in the liquid crystal cell 3 to be measured is obtained, and the normally black type polarizing plate arrangement and the birefringent effect type polarizing plate are obtained by the equations (1) to (3). The spectral distribution of the arrangement is calculated, chromaticity coordinates P1 (x1, y1) and P2 (x2, y2) in each arrangement are obtained from the spectral distribution, and the straight lines L1, L1 connecting the achromatic point C from the chromaticity coordinates are calculated. F1 and F2 which are inclination angles of L2 are calculated, and the relationship between the inclination angles F1 and F2, the cell gap d, and the twist angle φ is obtained.
[0057]
Next, the alignment direction of the liquid crystal molecules 38a located at the center of the liquid crystal layer thickness in the liquid crystal cell 3 to be measured is obtained, and between the polarizer 1 and the analyzer 2 in which the optical axes 1a and 2a are arranged in parallel to each other. A liquid crystal cell 3 to be measured is arranged, and the direction in which the optical axes 1a and 2a of the polarizer 1 and the analyzer 2 intersect at 45 ° with the alignment direction of the liquid crystal molecules located in the center of the liquid crystal layer thickness, that is, the liquid crystal cell 3 is arranged in a direction substantially parallel to the alignment processing direction 33a of the light incident side substrate 35 and the spectral distribution is measured.
[0058]
In addition, the optical axes 1a and 2a of the polarizer 1 and the analyzer 2 are parallel to the alignment direction of the liquid crystal molecules located in the center of the liquid crystal layer thickness, that is, the alignment processing direction of the light incident side substrate 36 of the liquid crystal cell 3. The spectral distribution is measured by arranging in a direction intersecting with 34a at approximately 45 °.
[0059]
Chromaticity coordinates P1 (x1, y1) and P2 (x2, y2) of each chromaticity point on the chromaticity diagram are calculated from each measured spectral distribution, and each chromaticity point P1, P2 and achromatic color point C are connected. The inclination angles F1 and F2 of the straight lines L1 and L2 with respect to the x axis are calculated.
[0060]
The gap d and the twist angle φ of the liquid crystal cell 3 to be measured are obtained by associating the inclination angles F1 and F2 obtained by the measurement with the inclination angles F1 and F2 obtained by the above calculation. I get out.
[0061]
A liquid crystal cell designed to have a twist angle of 90 ° and a cell gap of 4.8 μm was measured for the twist angle φ and the cell gap d by the method described above. The inclination angles F1 and F2 obtained by optical measurement of the spectral distribution are about −43 ° and −10 °, respectively. The inclination angles F1 and F2, the twist angle φ, the cell gap d and the cell gap d shown in FIG. From the relationship, the measurement results were obtained that the twist angle φ of the liquid crystal cell was 90.2 ° and the cell gap d was 4.75 μm.
[0062]
According to the above measuring method, the twist angle φ of the liquid crystal cell can be accurately measured with an accuracy of 1/10 degree and the cell gap d with an accuracy of 1/100 μm.
[0063]
【The invention's effect】
As described above, according to the present invention, the liquid crystal cell 3 to be measured is disposed between the pair of polarizing plates 1 and 2, and the optical axes 1 a and 2 a of the polarizing plates 1 and 2 and the liquid crystal cell 3 The spectral distribution characteristics of the transmitted light are measured in at least two states with different angles θ with respect to the alignment direction of the liquid crystal molecules, and the chromaticity points P1 and P2 on the chromaticity diagram of the plurality of transmitted lights are not present. Since the slopes F1 and F2 of the straight line connecting the chromatic point C are obtained, not only the cell gap d of the liquid crystal cell 3 to be measured but also the twist angle φ of the liquid crystal layer can be measured with high accuracy.
[0064]
The slopes F1 and F2 of the straight line connecting the chromaticity points P1 and P2 and the achromatic color point C on the chromaticity diagram of the transmitted light are not affected by noise light generated when passing through the liquid crystal layer. , More accurate measurement is possible.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a configuration of an optical system used in a measurement method according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a structure of a liquid crystal cell 3 in which a cell gap d and a twist angle φ are measured by applying the measurement method according to the first embodiment of the present invention.
FIG. 3 shows the relationship between the alignment treatment directions 33a and 34a of the liquid crystal cell 3 used in this measurement method and the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2. FIG. 3A shows the alignment treatment direction 33a. FIG. 6 is a plan view showing a first polarizing plate arrangement in which the transmission axis directions 1a and 2a of the polarizer 1 and the analyzer 2 are arranged at an angle θ obtained by subtracting 45 ° from ½ of the twist angle φ. (B) shows the 2nd polarizing plate arrangement | positioning which has arrange | positioned the direction of the transmission axes 1a and 2a of the polarizer 1 and the analyzer 2 to angle (theta) of 1/2 of twist angle (phi) with respect to the alignment process direction 33a. It is a top view.
4 is a diagram illustrating the definition of mutual angles between the orientation processing directions 33a and 34a of the incident side substrate and the outgoing side substrate and the optical axes 1a and 2a of the polarizer 1 and the analyzer 2 in the optical system shown in FIG. FIG.
FIG. 5 is a chromaticity diagram showing a chromaticity point P of transmitted light used in the measurement method of the present invention and an angle F of a straight line L connecting the chromaticity point P and the achromatic color point C.
FIG. 6 is a graph showing the relationship between tilt angles F1 and F2 obtained by the measurement method of the present invention, the cell gap d of the liquid crystal cell 3, and the twist angle φ.
FIG. 7 is a graph showing the relationship between Stokes parameters S1, S2 by the Stokes parameter method, the cell gap d, and the twist angle φ.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Polarizer, 1a ... Transmission axis, 2 ... Analyzer, 2a ... Transmission axis, 3 ... Liquid crystal cell, 33, 34 ... Orientation film, 33a, 34a ... Orientation Processing direction, 35... Light incident side substrate, 36... Light emitting side substrate, 37... Sealing material, 38... Liquid crystal, 38 a. 5 ... photodetector, θ ... installation angle of polarizing plate, φ ... twist angle, d ... cell gap, P ... chromaticity point, C ... achromatic point, F1 , F2 ... Tilt angle

Claims (6)

ツイスト配向させた液晶層を有する被測定用の液晶セルを挟んで、光学軸が互いに平行な一対の偏光板を配置した光学系において、前記偏光板の光学軸を前記液晶セルの一方の基板近傍の液晶分子の配向方向と所定の角度の第1の方向に向けた第1の偏光板配置で測定した透過光の分光分布に基づいて第1の色度を算出し、色度図上での前記第1の色度により表される第1の色度点と無彩色点とを結ぶ直線の第1の傾きを求め、
前記偏光板の光学軸を前記第1の方向とは異なる第2の方向に向けた第2の偏光板配置で測定した透過光の分光分布に基づいて第2の色度を算出し、色度図上での前記第2の色度により表される第2の色度点と無彩色点とを結ぶ直線の第2の傾きを求め、
前記第1の傾きと前記第2の傾きに基づいて、前記液晶セルの液晶層厚とツイスト角度とを求めることを特徴とする液晶素子における液晶層厚とツイスト角度の測定方法。
In an optical system in which a pair of polarizing plates whose optical axes are parallel to each other are arranged across a liquid crystal cell to be measured having a liquid crystal layer with twist alignment, the optical axis of the polarizing plate is set near one substrate of the liquid crystal cell. The first chromaticity is calculated on the basis of the spectral distribution of the transmitted light measured by the first polarizing plate arrangement in the first direction at a predetermined angle with the alignment direction of the liquid crystal molecules, and on the chromaticity diagram Determining a first slope of a straight line connecting a first chromaticity point represented by the first chromaticity and an achromatic color point;
A second chromaticity is calculated based on a spectral distribution of transmitted light measured by a second polarizing plate arrangement in which the optical axis of the polarizing plate is directed in a second direction different from the first direction, and the chromaticity is calculated. Determining a second slope of a straight line connecting the second chromaticity point represented by the second chromaticity on the figure and the achromatic color point;
A method for measuring a liquid crystal layer thickness and a twist angle in a liquid crystal element, wherein a liquid crystal layer thickness and a twist angle of the liquid crystal cell are obtained based on the first tilt and the second tilt.
前記第2の方向は、前記第1の方向に対してほぼ45゜の角度で交差する方向であることを特徴とする請求項1に記載の液晶素子における液晶層厚とツイスト角度の測定方法。The method for measuring a liquid crystal layer thickness and a twist angle in a liquid crystal element according to claim 1, wherein the second direction intersects the first direction at an angle of approximately 45 °. 前記第1の方向は、前記液晶セルの液晶層の厚さ方向の中央に位置する液晶分子の配列方向とほぼ45°で交差する方向であることを特徴とする請求項1または2に記載の液晶素子における液晶層厚とツイスト角度の測定方法。3. The first direction according to claim 1, wherein the first direction is a direction that intersects with an alignment direction of liquid crystal molecules located at a center of a thickness direction of the liquid crystal layer of the liquid crystal cell at approximately 45 °. Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element. 前記第2の方向は、液晶層のツイスト角度を二等分する方向であることを特徴とする請求項3に記載の液晶素子における液晶層厚とツイスト角度の測定方法。4. The method for measuring a liquid crystal layer thickness and a twist angle in a liquid crystal element according to claim 3, wherein the second direction is a direction that bisects the twist angle of the liquid crystal layer. 被測定用の液晶セルは、90°ツイストネマチック型の液晶素子であり、
前記第1の方向は、前記液晶セルの入射側基板近傍の液晶分子の配向方向とほぼ平行な方向であり、
前記第2の方向は、前記液晶セルの入射側基板近傍の液晶分子の配向方向とほぼ45゜の角度で交差する方向であることを特徴とする請求項1乃至4のいずれか1項に記載の液晶素子における液晶層厚とツイスト角度の測定方法。
The liquid crystal cell to be measured is a 90 ° twisted nematic liquid crystal element,
The first direction is a direction substantially parallel to the alignment direction of liquid crystal molecules in the vicinity of the incident side substrate of the liquid crystal cell,
5. The second direction according to claim 1, wherein the second direction is a direction intersecting with an alignment direction of liquid crystal molecules in the vicinity of an incident side substrate of the liquid crystal cell at an angle of approximately 45 °. Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element.
ツイスト配向させた液晶層を有する被測定用の液晶セルを挟んで配置された一対の偏光板の互いに平行な光学軸を、前記液晶セルの一方の基板近傍の液晶分子の配向方向に対して所定の角度の第1の方向に向けた配置で測定した透過光の光分布を表す第1の分光分布データと、前記偏光板の光学軸を前記第1の方向とは異なる第2の方向に向ける配置で測定した透過光の分光分布を表す第2の分光分布データを測定する分光分布測定ステップと、
前記分光分布測定ステップで得られた第1、第2の分光分布データに基づいてそれぞれの透過光の色度を表す第1の色度及び第2の色度を算出し、色度図上での前記第1及び第2の色度によりそれぞれ表される第1の色度点及び第2の色度点と無彩色点とを結ぶ直線の第1の傾き及び第2の傾きとを求めるパラメータ算出ステップと、
前記パラメータ算出ステップにより算出された第1の傾きと前記第2の傾きに基づいて、前記液晶セルの液晶層厚とツイスト角とを求めるステップとからなることを特徴とする液晶素子における液晶層厚とツイスト角度の測定方法。
The optical axes parallel to each other of a pair of polarizing plates arranged with a liquid crystal cell to be measured having a twist-aligned liquid crystal layer interposed therebetween are predetermined with respect to the alignment direction of liquid crystal molecules in the vicinity of one substrate of the liquid crystal cell. The first spectral distribution data representing the light distribution of the transmitted light measured in the first direction of the angle and the optical axis of the polarizing plate are directed in a second direction different from the first direction. A spectral distribution measurement step of measuring second spectral distribution data representing the spectral distribution of transmitted light measured in the arrangement;
Based on the first and second spectral distribution data obtained in the spectral distribution measurement step, a first chromaticity and a second chromaticity representing the chromaticity of each transmitted light are calculated, and are displayed on the chromaticity diagram. Parameters for determining the first slope and the second slope of the straight line connecting the first chromaticity point and the second chromaticity point and the achromatic color point respectively represented by the first and second chromaticities A calculation step;
A liquid crystal layer thickness in a liquid crystal element, comprising: obtaining a liquid crystal layer thickness and a twist angle of the liquid crystal cell based on the first inclination and the second inclination calculated in the parameter calculation step; And twist angle measurement method.
JP18134798A 1998-06-15 1998-06-15 Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element Expired - Fee Related JP3755303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18134798A JP3755303B2 (en) 1998-06-15 1998-06-15 Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18134798A JP3755303B2 (en) 1998-06-15 1998-06-15 Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element

Publications (2)

Publication Number Publication Date
JP2000002864A JP2000002864A (en) 2000-01-07
JP3755303B2 true JP3755303B2 (en) 2006-03-15

Family

ID=16099128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18134798A Expired - Fee Related JP3755303B2 (en) 1998-06-15 1998-06-15 Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element

Country Status (1)

Country Link
JP (1) JP3755303B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014347A (en) * 2000-06-30 2002-01-18 Nec Corp Method for manufacturing liquid crystal display device and device for manufacturing the same
JP2002169135A (en) 2000-09-07 2002-06-14 Seiko Epson Corp Cell gap adjusting device, pressure-sealing device and manufacturing method of liquid crystal display device
US6633358B1 (en) * 2000-11-15 2003-10-14 The Hong Kong University Of Science And Technology Methods and apparatus for measurement of LC cell parameters

Also Published As

Publication number Publication date
JP2000002864A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
JP3910352B2 (en) Pretilt angle detection method and detection apparatus
TWI485382B (en) And a measuring device for measuring the inclination angle of the reflective liquid crystal cell
JP3399773B2 (en) Liquid crystal display
KR101296905B1 (en) Apparatus and method for measuring polarized direction of polarizer for liquid crystal display
JP3399795B2 (en) Liquid crystal display
JP3452742B2 (en) Liquid crystal display
JP3755303B2 (en) Measuring method of liquid crystal layer thickness and twist angle in liquid crystal element
KR20100048907A (en) Method and apparatus for measuring tilt angle of liquid crystal cell
JP3813800B2 (en) Liquid crystal cell parameter detector
WO2017181451A1 (en) Method and device for measuring liquid crystal azimuth angle of liquid crystal panel
JP3704950B2 (en) Liquid crystal layer thickness measurement method
TWI437220B (en) System and method for measuring pre-tilt angle of liquid crystal
US9804438B2 (en) Liquid crystal display device
JP2898501B2 (en) Liquid crystal display
JP3599176B2 (en) Liquid crystal display
JP2001242040A (en) Evaluation method for liquid crystal display element
JP3711813B2 (en) Cell thickness measuring method and cell thickness measuring apparatus for liquid crystal panel
JP3006806B2 (en) Cell thickness measurement method for liquid crystal cell
JP3792315B2 (en) Cell thickness measuring method, cell thickness measuring apparatus, and liquid crystal display manufacturing method
JP3452744B2 (en) Liquid crystal display
JPH03269305A (en) Method for measuring thickness of liquid crystal layer in liquid crystal cell
JP2770481B2 (en) Method for measuring cell thickness of liquid crystal display panel and its measuring device
JP3773056B2 (en) Liquid crystal display
JP2009198354A (en) Inspection device and inspection method of electrooptical device
JPH0518859A (en) Method for measuring thickness of liquid crystal layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees