JP3554374B2 - Polarimeter - Google Patents

Polarimeter Download PDF

Info

Publication number
JP3554374B2
JP3554374B2 JP24838694A JP24838694A JP3554374B2 JP 3554374 B2 JP3554374 B2 JP 3554374B2 JP 24838694 A JP24838694 A JP 24838694A JP 24838694 A JP24838694 A JP 24838694A JP 3554374 B2 JP3554374 B2 JP 3554374B2
Authority
JP
Japan
Prior art keywords
component
axis
polarization
light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24838694A
Other languages
Japanese (ja)
Other versions
JPH0886744A (en
Inventor
知行 深沢
充 佐野
吉田  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP24838694A priority Critical patent/JP3554374B2/en
Publication of JPH0886744A publication Critical patent/JPH0886744A/en
Application granted granted Critical
Publication of JP3554374B2 publication Critical patent/JP3554374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は偏光測定装置、特にその軸出し機構の改良に関する。
【0002】
【従来の技術】
物質の光学的特性の一つとして屈折が挙げられ、この屈折率は物質の結晶構造などにより決定される。そして、結晶体は二以上の屈折率を有することがあり、このような物質を異方性物質と呼ぶ。
【0003】
異方性物質に直線偏光が進入すると、一の入射光に対して二の屈折光が生じ、一方は常光、他方は異常光と呼ばれ、物質から出射された光は両屈折光が合成された楕円偏光になる。この楕円偏光の回転方向は、常光、異常光の位相の進む方向で決定され、位相速度の遅い光の振動方向を遅相軸、位相速度の速い光の振動方向を進相軸と呼ぶ。
この常光、異常光の位相差、すなわち複屈折位相差(リターデーション)は異方性物質の光学的性質の極めて重要な一因子であり、ガラスや未延伸フィルムの評価にはかかせないものとなりつつある。
【0004】
【発明が解決しようとする課題】
一方、前記リターデーションの正確な測定には、屈折光の進相軸ないし遅相軸と、進入光の直線偏光軸とを一致させる、いわゆる軸出し作業が要求される。
しかしながら、この軸出し作業は従来、経験と試行錯誤により行なわれるもので、作業者に多大の負荷を与えると共に、測定に長時間を要するものとなっていた。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的はリターデーション測定にあたっての軸出しを自動で行なうことのできる偏光測定装置を提供することにある。
【0005】
【課題を解決するための手段】
前記目的を達成するために本発明にかかる偏光測定装置は、ロックインアンプと、演算手段と、ステージ駆動手段とを備える。
そして、ロックインアンプは、検出器の出力から、変調周波数ω成分及び/または2倍高調波である2ω成分を抽出する。
また、演算手段は、前記ロックインアンプの出力するω成分及び/または2ω成分から、進相軸または遅相軸と、前記入射偏光軸との角度差を演算する。
また、ステージ駆動手段は、前記演算手段の出力する角度差に応じて、前記サンプルステージを回転させ、前記進相軸または遅相軸と、入射偏光軸とを一致させて軸出しを行なう。
【0006】
そして、演算手段は、2ω成分のゼロ値の検出により直接軸出しを行なう。
もしくは、演算手段は、ω成分及び2ω成分の両者がゼロ値となる位相角を検出し、45度移動させることにより軸出しを行なう。
また、演算手段は、ω成分ないし2ω成分の波形を、例えば公知のカーブフィッティング法により波形成形し、その成形波形に前記手法を適用し、軸出しを行なうことが好適である。
【0007】
【作用】
本発明にかかる偏光測定装置は、前述したようにロックインアンプから出力されるω成分及び/または2ω成分から、進相軸または遅相軸と、入射偏光面との位相差に基づきステージを駆動させるので、精度よく自動的に軸出しを行なうことができる。
ここで、ω成分の極小値を検出することで自動軸出しを行なえば、元ω成分のS/N比が高い場合には、簡易な手法で軸出しを行なうことができる。
【0008】
そして、請求項1記載の手法によれば、2ω成分のゼロ値検出を行なうことで直接軸出しを行なうことで、軸ズレ量が小さい場合には、精度よく、且つ簡便に軸出しを行なうことができる。
また、請求項記載の手法によれば、ω成分及び2ω成分の各ゼロ値(θ)を検出し、45度移動することにより軸出しを行なうことで、軸ズレ量が比較的大きく、しかもS/N比が大きい場合にも、精度よく、且つ簡便に軸出しを行なうことができる。
また、請求項記載の手法によれば、ω成分ないし2ω成分の波形を、例えば公知のカーブフィッティング法により波形成形し、その成形波形に前記手法を適用し、軸出しを行なうことで、元波形のS/N比が悪い場合にも、前記請求項2ないし4記載の手法を好適に適用することができる。
【0009】
【実施例】
以下、図面に基づき本発明の好適な実施例を説明する。
図1には本発明の一実施例にかかる偏光測定装置の概略構成が示されている。同図に示す偏光測定装置は、出光系10と、サンプル保持系12と、受光系14と、制御系16とを備える。
前記出光系10は、光源18を備えたモノクロメータ20と、偏光子21と、光弾性変調子(PEM)22とを含む。そして、光源18からの光はモノクロメータ20により所定波長の光のみが抽出され、偏光子21により所定の直線偏光に変え、さらにPEM22を介して所定変調周波数ωで変調を与える。
【0010】
また、サンプル保持系12は、透過型ステージ26よりなり、その保持した被測定試料の入射光軸回りでの回転位置を変更し得るように構成されている。
受光系14は、検光子28及びフォトマル(検出器)30よりなり、前記サンプル保持系12よりの被測定試料透過光を、検光子28を介してフォトマル30が受光し光電変換する。
制御系16は、前記フォトマル30の出力から、変調周波数ω及び2倍高調波である2ω成分を抽出するロックインアンプ31と、該ロックインアンプ31の出力に基づき、進相軸と入射変更面との位相差を演算する演算手段(CPU)32と、該CUP32の指示に基づき前記透過型サンプルステージ26の回転を行なうステージ駆動手段34とを含む。
【0011】
なお、前記CPU32は、PEMコントローラ38、モノクロドライバ40をそれぞれ制御し、またCUP32を介して得られる測定データはコンピュータ42により所望のデータ処理が行なわれる。コンピュータ32にはCRT44、プリンタ46、キーボード48が接続され、キーボード48を介して所望の機器設定が行なわれ、またCRT44、プリンタ46には各種制御状態、得られたデータなどが表示・出力される。
【0012】
以上のように構成された偏光測定装置は、被測定試料がサンプルステージ26上に載置・固定されると、該被測定試料の有する例えば進相軸と、被測定試料に照射される入射光の偏光軸とを一致させるための軸出しを行なう。
すなわち、まずCPU32は、進相軸方向不明の被測定試料に所定の偏光を入射し、その透過光出力をフォトマル30から得る。
【0013】
このフォトマル30の出力はCPU32により順次モニターされており、該CPU32は前記ステージ駆動手段34に指示を与え、ステージ26すなわち被測定試料の入射光軸回りでの回転を行なう。そして、フォトマル30の出力をロックインアンプ31によりω成分、2ω成分に分離する。このω成分、2ω成分はa(ω)=−cos(2θ)sin(Δ)
a(2ω)=sin(4θ)sin(Δ/2)
で示される。
ここで、
θ:進相軸の方位角
Δ:位相差角
従って、試料回転角(θ)と、ω成分、2ω成分の関係は図2のように示される。
【0014】
図2において、Yは入射光の偏光軸であり、偏光軸Yと被測定試料の進相軸とを一致させればよい。そして、偏光軸Yと進相軸とが一致した状態ではω成分が極小値、2ω成分がゼロを示す。
この軸出し手法のうち、特に簡便なものとして以下の手法が考えられる。
▲1▼ω成分の極小値ωの検出することで直接軸出しを行なう。
▲2▼2ω成分のゼロ値(2ω)の検出を行なうことで直接軸出しを行なう。
▲3▼ω成分及び2ω成分の両者がゼロ値となる位相角(ω,(2ω))を検出し、45度戻すことにより軸出しを行なう。
▲4▼ω成分ないし2ω成分の波形を、例えば公知のカーブフィッティング法により波形成形し、その成形波形に対し前記▲1▼〜▲3▼の手法を適用する。
本発明においては、いずれの手法も適用可能である。
▲1▼の手法は最も簡単な手法ではあるが、極小値附近では回転角θに対して出力変化の度合いが小さいため、特に元ω成分波形のS/N比が高い場合以外には適用しにくい。
▲2▼の手法は、ゼロ点検出であるため回転角θに対して出力変化の度合いが大きく▲1▼の手法に比較して精度は高いが、回転角θが45度単位でゼロ点となるため、試料の軸ズレ量が小さい場合には極めて簡便な手法となるが、軸ズレ量が大きい場合には適用しにくい。
▲3▼の手法は、ω成分、2ω成分の各ゼロ値を検出するため、精度が高く、しかも両成分ともゼロ値となるのは90度単位であるため、軸ズレ量が比較的大きい場合にも適用できるという利点がある。
▲4▼の装置は、元波形のS/N比が低い場合に特に好適である。カーブフィッティング後の修正波形は実質的に歪みがないため、前記▲1▼ないし▲3▼の方法を適用しても充分な軸出しを行なうことができる。また、例えばθ変更角を1度毎、5度毎、10度毎など必要に応じた各種間隔でデータを採取し、カーブ推定を行なうことができるので、処理時間の短縮を行なうことができる。
【0015】
以上のようにして軸出しを行なった後、リターデーションΓ等の算出を行なう。
なお、リターデーションΓは、位相差角Δと以下の関係を有する。
Δ=(Γ/λ)*360
=Δ+n*360
ここで、n:次数(自然数)、Δ:還元された位相差角(0≦Δ<360)である。
また、Δのゾーン判別には、試料を100度程度回転してa(2ω)の振幅a0(2ω)を求める。
そして、a(2ω)≦0.5のときは、Δは第一または第四象限、
また、a(2ω)>0.5のときは、Δは第二または第三象限である。
【0016】
以上のようにして得られた偏光変調分光透過測定装置は、1nm以下の微小リターデーションも検出可能なので、ガラスや未延伸フィルムなどの分光複屈折測定に有力な手段となり得る。
また、ガラス等に微小な歪みを加えた場合の光弾性係数の微小変化の追跡、或いは位相差、異方性の小さい透明フィルム、配向膜の配向状態等、異方性の小さいサンプルや波長分散測定を必要とする液小分野等での応用も期待される。
【0017】
【発明の効果】
本発明にかかる偏光測定装置は、前述したようにロックインアンプから出力されるω成分及び/または2ω成分から、進相軸または遅相軸と、入射偏光面との位相差に基づきステージを駆動させるので、精度よく自動的に軸出しを行なうことができる。
ここで、ω成分の極小値を検出することで自動軸出しを行なえば、元ω成分のS/N比が高い場合には、簡易な装置で軸出しを行なうことができる。
そして、請求項記載の装置によれば、2ω成分のゼロ値検出を行なうことで直接軸出しを行なうことで、軸ズレ量が小さい場合には、精度よく、且つ簡便に軸出しを行なうことができる。
また、請求項記載の装置によれば、ω成分及び2ω成分の各ゼロ値(θ1)を検出し、45度戻すことにより軸出しを行なうことで、軸ズレ量が比較的大きく、しかもS/N比が大きい場合にも、精度よく、且つ簡便に軸出しを行なうことができる。
また、請求項記載の装置によれば、ω成分ないし2ω成分の波形を、例えば公知のカーブフィッティング法により波形成形し、その成形波形により前記手法を適用し、軸出しを行なうことで、元波形のS/N比が悪い場合にも、前記請求項1ないし2記載の手法を好適に適用することができる。
【図面の簡単な説明】
【図1】本発明の一実施例にかかる偏光測定装置の概略構成の説明図である。
【図2】本発明の演算手段の作用の説明図である。
【符号の説明】
21 偏光子
22 光弾性変調子
26 サンプルステージ
30 検出器
31 ロックインアンプ
32 演算手段(CPU)
34 ステージ駆動手段
[0001]
[Industrial applications]
The present invention relates to a polarization measuring device, and more particularly to an improvement in a centering mechanism thereof.
[0002]
[Prior art]
One of the optical characteristics of a substance is refraction, and the refractive index is determined by the crystal structure of the substance. The crystal may have two or more refractive indexes, and such a substance is called an anisotropic substance.
[0003]
When linearly polarized light enters an anisotropic substance, two refracted lights are generated for one incident light, one is called ordinary light, the other is called extraordinary light, and the light emitted from the substance is combined with both refracted lights. Elliptically polarized light. The rotation direction of the elliptically polarized light is determined by the direction in which the phases of the ordinary light and the extraordinary light advance, and the vibration direction of the light having the slow phase velocity is called the slow axis, and the vibration direction of the light having the fast phase velocity is called the fast axis.
This phase difference between ordinary light and extraordinary light, that is, birefringence retardation (retardation) is a very important factor in the optical properties of anisotropic materials, and is indispensable for evaluating glass and unstretched films. It is getting.
[0004]
[Problems to be solved by the invention]
On the other hand, accurate measurement of the retardation requires a so-called centering operation for matching the fast axis or slow axis of the refracted light with the linear polarization axis of the incoming light.
However, this centering work has conventionally been performed by experience and trial and error, and has placed a great burden on the operator and has taken a long time for measurement.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the related art, and an object of the present invention is to provide a polarization measuring apparatus that can automatically perform axis alignment in measuring retardation.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a polarization measuring device according to the present invention includes a lock-in amplifier, an arithmetic unit, and a stage driving unit.
Then, the lock-in amplifier extracts the modulation frequency ω component and / or the 2ω component that is the second harmonic from the output of the detector.
The calculating means calculates an angle difference between a fast axis or a slow axis and the incident polarization axis from the ω component and / or the 2ω component output from the lock-in amplifier.
Further, the stage driving means rotates the sample stage in accordance with the angle difference output from the arithmetic means, and aligns the fast axis or slow axis with the incident polarization axis to perform centering.
[0006]
The arithmetic unit will row directly axes out by detection of zero value 2ω component.
Or, calculating means, both ω component and 2ω component detects the phase angle becomes zero values will rows the axial centering by moving 45 °.
Further, it is preferable that the calculation means shapes the waveform of the ω component or the 2ω component by, for example, a known curve fitting method, and applies the above-described method to the formed waveform to perform centering.
[0007]
[Action]
The polarization measuring device according to the present invention drives the stage based on the phase difference between the fast axis or the slow axis and the incident polarization plane from the ω component and / or 2ω component output from the lock-in amplifier as described above. Therefore, the centering can be automatically performed with high accuracy.
Here, if withered line automatic shaft out by detecting the minimum value of the ω component, when S / N ratio of the original ω component is high, it is possible to perform axial centering a simple technique.
[0008]
According to the method of the first aspect , the centering is performed directly by detecting the zero value of the 2ω component, so that when the amount of axis deviation is small, the centering can be performed accurately and easily. Can be.
According to the method of the second aspect, the zero value (θ 1 ) of each of the ω component and the 2ω component is detected, and the axis is set by moving by 45 degrees. In addition, even when the S / N ratio is large, centering can be performed accurately and easily.
According to the method of the third aspect , the waveform of the ω component or the 2ω component is shaped by, for example, a known curve fitting method, the method is applied to the formed waveform, and centering is performed. Even when the S / N ratio of the waveform is poor, the method according to claims 2 to 4 can be suitably applied.
[0009]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a polarization measuring device according to one embodiment of the present invention. The polarization measuring device shown in FIG. 1 includes a light emitting system 10, a sample holding system 12, a light receiving system 14, and a control system 16.
The light emitting system 10 includes a monochromator 20 having a light source 18, a polarizer 21, and a photoelastic modulator (PEM) 22. Then, only light having a predetermined wavelength is extracted from the light from the light source 18 by the monochromator 20, converted into predetermined linearly polarized light by the polarizer 21, and further modulated via the PEM 22 at a predetermined modulation frequency ω.
[0010]
The sample holding system 12 includes a transmission type stage 26, and is configured to change the rotational position of the held sample to be measured around the incident optical axis.
The light receiving system 14 includes an analyzer 28 and a photomultiplier (detector) 30. The photomultiplier 30 receives the transmitted light from the sample to be measured from the sample holding system 12 via the analyzer 28 and performs photoelectric conversion.
The control system 16 includes a lock-in amplifier 31 that extracts a modulation frequency ω and a 2ω component that is a second harmonic from the output of the photomultiplier 30, and controls the phase advance axis and incident change based on the output of the lock-in amplifier 31. It includes a calculating means (CPU) 32 for calculating a phase difference with the surface, and a stage driving means 34 for rotating the transmission type sample stage 26 based on an instruction of the CUP 32.
[0011]
The CPU 32 controls the PEM controller 38 and the monochrome driver 40, respectively, and the measurement data obtained through the CUP 32 is subjected to desired data processing by the computer 42. A CRT 44, a printer 46, and a keyboard 48 are connected to the computer 32, and desired device settings are made via the keyboard 48. Various control states, obtained data, and the like are displayed and output to the CRT 44 and the printer 46. .
[0012]
When the sample to be measured is mounted and fixed on the sample stage 26, for example, the fast axis of the sample to be measured and the incident light applied to the sample to be measured Centering is performed to make the polarization axis coincide with the polarization axis.
That is, first, the CPU 32 enters predetermined polarized light into the sample to be measured whose fast axis direction is unknown, and obtains the transmitted light output from the photomultiplier 30.
[0013]
The output of the photomultiplier 30 is sequentially monitored by a CPU 32. The CPU 32 gives an instruction to the stage driving means 34 to rotate the stage 26, that is, the sample to be measured around the incident optical axis. Then, the output of the photomultiplier 30 is separated by the lock-in amplifier 31 into an ω component and a 2ω component. The ω component and the 2ω component are a (ω) = − cos (2θ) sin (Δ)
a (2ω) = sin (4θ) sin 2 (Δ / 2)
Indicated by
here,
θ: azimuth angle of the fast axis Δ: phase difference angle Accordingly, the relationship between the sample rotation angle (θ) and the ω component and the 2ω component is shown in FIG.
[0014]
In FIG. 2, Y 1 is a polarization axis of the incident light, it is sufficient to match the fast axis of the sample to be measured and the polarization axis Y 1. Then, the polarization axis Y 1 and the fast axis and the minimum value ω component is matched state, 2 [omega component indicates zero.
Among the centering methods, the following method can be considered as a particularly simple one.
▲ 1 ▼ a direct axis out by detecting the minimum value omega 1 of omega component.
(2) Direct alignment is performed by detecting the zero value (2ω) 1 of the 2ω component.
{Circle around (3)} The phase angle (ω 2 , (2ω) 2 ) at which both the ω component and the 2ω component have zero values is detected, and the axis is set by returning the phase angle by 45 degrees.
(4) The waveform of the ω component or the 2ω component is shaped by, for example, a known curve fitting method, and the methods (1) to (3) are applied to the shaped waveform.
In the present invention, any of the methods is applicable.
The method (1) is the simplest method, but since the degree of output change is small with respect to the rotation angle θ near the minimum value, it is applied especially when the S / N ratio of the original ω component waveform is high. Hateful.
In the method (2), the degree of output change is large with respect to the rotation angle θ because the zero point is detected, and the accuracy is higher than in the method (1). Therefore, it is an extremely simple method when the amount of axis deviation of the sample is small, but it is difficult to apply when the amount of axis deviation is large.
The method of (3) detects the zero value of each of the ω component and the 2ω component, so that the accuracy is high. Further, since the zero value of both components is in units of 90 degrees, the case where the axial deviation amount is relatively large There is an advantage that it can also be applied.
The device (4) is particularly suitable when the S / N ratio of the original waveform is low. Since the corrected waveform after the curve fitting has substantially no distortion, sufficient centering can be performed even by applying the above methods (1) to (3). Further, for example, data can be collected at various intervals as necessary, such as every 1 degree, every 5 degrees, every 10 degrees, and the like, and the curve can be estimated, so that the processing time can be reduced.
[0015]
After the centering is performed as described above, the calculation of retardation Γ and the like is performed.
Note that the retardation Γ has the following relationship with the phase difference angle Δ.
Δ = (Γ / λ) * 360
= Δ 0 + n * 360
Here, n: order (natural number), Δ 0 : reduced phase difference angle (0 ≦ Δ 0 <360).
To determine the zone of Δ, the amplitude a0 (2ω) of a (2ω) is obtained by rotating the sample by about 100 degrees.
When a 0 (2ω) ≦ 0.5, Δ is the first or fourth quadrant,
When a 0 (2ω)> 0.5, Δ is the second or third quadrant.
[0016]
The polarization modulation spectral transmission measuring device obtained as described above can detect minute retardation of 1 nm or less, and thus can be a powerful means for measuring spectral birefringence of glass, unstretched film, and the like.
In addition, tracking small changes in photoelastic coefficient when a small strain is applied to glass, etc., or samples with small anisotropy or wavelength dispersion such as phase difference, transparent film with small anisotropy, alignment state of alignment film, etc. It is also expected to be applied in small liquid fields that require measurement.
[0017]
【The invention's effect】
The polarization measuring device according to the present invention drives the stage based on the phase difference between the fast axis or the slow axis and the incident polarization plane from the ω component and / or 2ω component output from the lock-in amplifier as described above. Therefore, the centering can be automatically performed with high accuracy.
Here, if the line of example an automatic shaft out by detecting the minimum value of the ω component, when S / N ratio of the original ω component is high, it is possible to perform axial centering a simple device.
Then, according to the apparatus of claim 1, wherein, by performing the direct axis out by performing the zero value detection of 2ω component, when the amount of axial deviation is small, accurately, and easily by performing the axial centering Can be.
According to the second aspect of the present invention, the zero value (θ1) of each of the ω component and the 2ω component is detected, and the axis is set by returning the axis by 45 degrees. Even when the / N ratio is large, centering can be performed accurately and easily.
According to the apparatus of the third aspect , the waveform of the ω component or the 2ω component is shaped by, for example, a known curve fitting method, the method is applied by the formed waveform, and centering is performed. Even when the S / N ratio of the waveform is poor, the method according to claim 1 or 2 can be suitably applied.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a schematic configuration of a polarization measuring device according to one embodiment of the present invention.
FIG. 2 is an explanatory diagram of an operation of a calculation means of the present invention.
[Explanation of symbols]
Reference Signs List 21 polarizer 22 photoelastic modulator 26 sample stage 30 detector 31 lock-in amplifier 32 arithmetic means (CPU)
34 Stage driving means

Claims (3)

光源から出光された光に所定の直線偏光を与える偏光子と、
光に所定変調周波数ωで変調を与える光弾性変調子と、
被測定試料を載置し、前記偏光変調の与えられた入射光に対しその光軸回りで回転位置を変更し得るサンプルステージと、
前記サンプルステージ上の被測定試料を介した光強度を測定する検出器と、
を備えた偏光測定装置において、
前記検出器の出力から、変調周波数ω成分及び/または2倍高調波である2ω成分を抽出するロックインアンプと、
前記ロックインアンプの出力するω成分及び/または2ω成分から、進相軸または遅相軸と、前記偏光子の偏光軸との角度差を演算する演算手段と、
前記演算手段の出力する角度差に応じて前記サンプルステージを回転させ、前記進相軸または遅相軸と、偏光子の偏光軸とを一致させて軸出しを行なうステージ駆動手段と、を備え、
前記演算手段は、2ω成分のゼロ値の検出を行なうことで直接軸出しを行なうことを特徴とする偏光測定装置。
A polarizer that gives predetermined linearly polarized light to light emitted from the light source,
A photoelastic modulator for modulating light at a predetermined modulation frequency ω,
A sample stage on which the sample to be measured is placed, and the rotation position of which can be changed around the optical axis with respect to the incident light given the polarization modulation ,
A detector for measuring light intensity through the sample to be measured on the sample stage,
In a polarimeter equipped with
A lock-in amplifier that extracts a modulation frequency ω component and / or a 2ω component that is a second harmonic from an output of the detector;
Calculating means for calculating an angle difference between a fast axis or a slow axis and a polarization axis of the polarizer from the ω component and / or the 2ω component output from the lock-in amplifier;
Stage drive means for rotating the sample stage according to the angle difference output by the arithmetic means, aligning the fast axis or slow axis, and the polarization axis of the polarizer, and performing centering ,
A polarimeter according to claim 1, wherein said calculating means directly performs centering by detecting a zero value of a 2ω component .
光源から出光された光に所定の直線偏光を与える偏光子と、
光に所定変調周波数ωで変調を与える光弾性変調子と、
被測定試料を載置し、前記偏光変調の与えられた入射光に対しその光軸回りで回転位置を変更し得るサンプルステージと、
前記サンプルステージ上の被測定試料を介した光強度を測定する検出器と、
を備えた偏光測定装置において、
前記検出器の出力から、変調周波数ω成分及び/または2倍高調波である2ω成分を抽出するロックインアンプと、
前記ロックインアンプの出力するω成分及び/または2ω成分から、進相軸または遅相軸と、前記偏光子の偏光軸との角度差を演算する演算手段と、
前記演算手段の出力する角度差に応じて前記サンプルステージを回転させ、前記進相軸または遅相軸と、偏光子の偏光軸とを一致させて軸出しを行なうステージ駆動手段と、を備え、
前記演算手段は、ω成分及び2ω成分の両者がゼロ値となる位相角を検出し、そこから45度移動させることにより軸出しを行なうことを特徴とする偏光測定装置。
A polarizer that gives predetermined linearly polarized light to light emitted from the light source,
A photoelastic modulator for modulating light at a predetermined modulation frequency ω,
A sample stage on which the sample to be measured is placed, and the rotation position of which can be changed around the optical axis with respect to the incident light given the polarization modulation ,
A detector for measuring light intensity through the sample to be measured on the sample stage,
In a polarimeter equipped with
A lock-in amplifier that extracts a modulation frequency ω component and / or a 2ω component that is a second harmonic from an output of the detector;
Calculating means for calculating an angle difference between a fast axis or a slow axis and a polarization axis of the polarizer from the ω component and / or the 2ω component output from the lock-in amplifier;
Stage drive means for rotating the sample stage according to the angle difference output by the arithmetic means, aligning the fast axis or slow axis, and the polarization axis of the polarizer, and performing centering ,
A polarization measuring apparatus , wherein the calculating means detects a phase angle at which both the ω component and the 2ω component have a zero value, and performs a centering by moving the phase angle by 45 degrees therefrom .
請求項1または2記載の装置において、演算手段は、ω成分ないし2ω成分の波形を、カーブフィッティング法により波形成形し、その成形波形に前記請求項1ないし2記載の手法を適用し、軸出しを行なうことを特徴とする偏光測定装置。Apparatus according to claim 1 or 2, wherein calculating means, a waveform of from ω component 2ω component, waveform shaping by the curve fitting method, by applying the method of claim 1 or 2, wherein in the forming the waveform, the axis out A polarization measuring device.
JP24838694A 1994-09-16 1994-09-16 Polarimeter Expired - Fee Related JP3554374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24838694A JP3554374B2 (en) 1994-09-16 1994-09-16 Polarimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24838694A JP3554374B2 (en) 1994-09-16 1994-09-16 Polarimeter

Publications (2)

Publication Number Publication Date
JPH0886744A JPH0886744A (en) 1996-04-02
JP3554374B2 true JP3554374B2 (en) 2004-08-18

Family

ID=17177339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24838694A Expired - Fee Related JP3554374B2 (en) 1994-09-16 1994-09-16 Polarimeter

Country Status (1)

Country Link
JP (1) JP3554374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940376B2 (en) * 2003-05-21 2007-07-04 独立行政法人科学技術振興機構 Spectrometer for gel sample

Also Published As

Publication number Publication date
JPH0886744A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
JP5198980B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP3910352B2 (en) Pretilt angle detection method and detection apparatus
CN100378445C (en) Intelligent synthesized measuring apparatus for half wave voltage of extinction ratio in crystal, and phase delay of wave plate
US5319194A (en) Apparatus for measuring birefringence without employing rotating mechanism
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
JPH0470582B2 (en)
CN100381877C (en) Parameter checkout method and device for object being checked
US6633358B1 (en) Methods and apparatus for measurement of LC cell parameters
JP3554374B2 (en) Polarimeter
CN112945864B (en) Generalized ellipsometry analysis device based on double fast axis adjustable photoelastic modulation
CN108645516A (en) Based on the adjustable full Stokes vector detection device and method for playing light modulation of fast axle
JP3341928B2 (en) Dichroic dispersion meter
KR20040035125A (en) Apparatus for residual stress measuring of optical fiber
JP3340145B2 (en) Stork meter
JPH06109623A (en) Method and device for measuring birefringence quantity
JP3539006B2 (en) Method and apparatus for measuring retardation of composite layer
JP3108938B2 (en) Method for measuring tilt angle of liquid crystal molecules
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
JP2924938B2 (en) Method for measuring retardation of composite film
JP2645252B2 (en) Automatic birefringence meter
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
JP2010271279A (en) Measuring apparatus and measurement method
JP2565147B2 (en) Method of measuring twist angle and cell gap
JPH06100535B2 (en) Birefringence measuring device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees