JPH02159540A - Double refraction measurement - Google Patents

Double refraction measurement

Info

Publication number
JPH02159540A
JPH02159540A JP31336088A JP31336088A JPH02159540A JP H02159540 A JPH02159540 A JP H02159540A JP 31336088 A JP31336088 A JP 31336088A JP 31336088 A JP31336088 A JP 31336088A JP H02159540 A JPH02159540 A JP H02159540A
Authority
JP
Japan
Prior art keywords
sample
phase difference
light
measurement
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31336088A
Other languages
Japanese (ja)
Other versions
JPH0623689B2 (en
Inventor
Nobuhiro Mochida
持田 悦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP31336088A priority Critical patent/JPH0623689B2/en
Publication of JPH02159540A publication Critical patent/JPH02159540A/en
Publication of JPH0623689B2 publication Critical patent/JPH0623689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable highly accurate measurement in an entire measuring range regardless of a size of a double refraction phase difference of a sample by using a plurality of measuring lights to determine a series of computed values containing a true value for measured values using a specified formula. CONSTITUTION:A plurality of measuring lights with different wavelengths is incident into a polarizer 3 through a semipermeable mirror 21 from light sources 1a and 1b and further into a photoelastic modulator 4 so that a measuring light modulated in phase irradiates a sample 16. Then, light refracted doubly and transmitted inside the sample 6 is inputted into an analyzer 8 through an analyzer 5 and a photo-multiplier tube 7 to calculate a double refraction phase difference of the sample 6. In this manner, the measuring light is refracted doubly to the same extent with respect to the same sample regardless of a difference in wavelength and when a computed value R is determined from a natural number m, a wavelength lambda and an apparent measured value (r) applying a formula of R=mlambda/2+ or -r for each measurement, a data corresponding to a true phase difference close to each other among each series of computed values. The series of computed values are compared in size between computed values to extract computed values the closest to each other thereby enabling determination of a true phase difference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被測定試料の複屈折を測定する方法、特に試料
の屈折率の大小及び厚みの制約を受けることなく広い測
定領域の全域に亘って複屈折位相差を高精度で測定し得
る複屈折測定方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring birefringence of a sample to be measured, and in particular a method that can be used over a wide measurement area without being subject to restrictions on the refractive index or thickness of the sample. The present invention relates to a birefringence measurement method that can measure birefringence phase difference with high precision.

〔従来の技術] 光学的異方体の複屈折を測定する方法の1つに位相変調
法と呼ばれる測定方法がある〔詳細は本願発明と同一の
発明者によって提案された特開昭63−82345号(
特願昭61−228814号を参照)]。
[Prior Art] One of the methods for measuring the birefringence of an optically anisotropic object is a measurement method called a phase modulation method [Details can be found in Japanese Patent Application Laid-Open No. 63-82345 proposed by the same inventor as the present invention. issue(
(See Japanese Patent Application No. 61-228814)].

この測定方法を第2図を参照して説明すると、図中、l
は測定用の光1(例えばHe−Neレーザー光)、2は
フィルタ(モノクロメータ)、3は該フィルタ2を通過
した光を直線偏光に変える偏光子(例えば4分の1波長
板)、4は該偏光子3から入射した直線偏光を円偏光に
、更に円偏光を直線偏光へと連続的に且つ周期的に変化
させ、位相が変調した測定用の光をつくる光弾性変調器
(Pho to−elastic modulator
 ) 、5は被測定試料6(以下試料と略記する)の内
部で複屈折した光を受光して直線偏光に変える検光子、
7は該検光子5がら入射した光を交流信号の光電流に変
換する光検知器(光電子増倍管)、8は該光検知器7か
ら送られた光電流信号を復調して解析し、式(1)、弐
(2)で規定される複屈折位相差Δnd(以下位相差と
略記する)を測定値として算出する解析装置、9は測定
した位相差Δndを例えば試料6の方位角θ(装置の軸
線IOの周りの回転角)の関数として極座標表示する表
示装置である。
This measurement method will be explained with reference to FIG. 2. In the figure, l
are measurement light 1 (for example, He-Ne laser light), 2 is a filter (monochromator), 3 is a polarizer (for example, a quarter-wave plate) that converts the light passing through the filter 2 into linearly polarized light, and 4 is a photoelastic modulator (Photo-elastic modulator) that continuously and periodically changes the linearly polarized light incident from the polarizer 3 into circularly polarized light, and further changes the circularly polarized light into linearly polarized light to create phase-modulated measurement light. -elastic modulator
), 5 is an analyzer that receives birefringent light inside the sample to be measured 6 (hereinafter abbreviated as sample) and converts it into linearly polarized light;
7 is a photodetector (photomultiplier tube) that converts the light incident from the analyzer 5 into an alternating current signal photocurrent; 8 demodulates and analyzes the photocurrent signal sent from the photodetector 7; An analyzer 9 calculates the birefringence phase difference Δnd (hereinafter abbreviated as phase difference) defined by equations (1) and 2 (2) as a measured value, and 9 is an analysis device that calculates the measured phase difference Δnd, for example, at the azimuth angle θ of the sample 6. This is a display device that displays polar coordinates as a function of (rotation angle around the axis IO of the device).

Δnd= 1n、−n、  1・d (nm)    
式(1)Δnd−δ・λ/ 2 x (nm)    
   式(2)ここに、n、は異常光線に対する屈折率
、noは正常光線に対する屈折率、dは試料の厚み、δ
はn、とnoの位相角の差、λは測定用の光の波長であ
り、この測定方法によると、従来の測定方法(検光子回
転法1位相補償法等)が試料を透過した光の偏光状態(
楕円率の変化)を光強度の変化とし測定するのに対し、
位相変調した正常光線と異常光線の位相差の絶対値を直
接測定するので、ノイズに妨げられることがなく、0.
01nmまでの微小な位相差の測定が可能になり(従来
の測定方法による測定可能な最小複屈折位相差Δndは
約2r+m) 、更に試料6を軸線10に対し種々の角
度Bで傾斜させて測定を行うことにより、試料6内部に
おける厚み方向の分子の配向状態を測定できるという利
点がある。
Δnd= 1n, -n, 1・d (nm)
Formula (1) Δnd−δ・λ/ 2 x (nm)
Equation (2) where n is the refractive index for extraordinary rays, no is the refractive index for normal rays, d is the thickness of the sample, and δ
is the difference between the phase angles of n and no, and λ is the wavelength of the measurement light. According to this measurement method, conventional measurement methods (analyzer rotation method 1 phase compensation method, etc.) Polarization state (
In contrast to measuring the change in ellipticity (change in ellipticity) as a change in light intensity,
Since the absolute value of the phase difference between the phase-modulated normal ray and the extraordinary ray is directly measured, it is not disturbed by noise and can be measured at 0.
It is now possible to measure minute phase differences down to 0.01 nm (the minimum measurable birefringence phase difference Δnd by conventional measurement methods is approximately 2r+m), and the sample 6 can be measured at various angles B with respect to the axis 10. By performing this, there is an advantage that the orientation state of molecules in the thickness direction inside the sample 6 can be measured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この測定方法には、試料6の有する位相差が測
定用の光の波長の4分の1(λ−632.8nmのti
e−Neレーザー光を使用する場合、約150nm )
を越えると、測定値が従来の測定方法(検光子回転法1
位相補償法等)による測定値と一致しないという問題点
があった。
However, in this measurement method, the phase difference of the sample 6 is 1/4 of the wavelength of the measurement light (λ-632.8 nm ti
When using e-Ne laser light, approximately 150 nm)
If the measurement value exceeds the conventional measurement method (analyzer rotation method 1
There was a problem that the measured value did not match the measured value obtained by the phase compensation method, etc.).

この問題点は、位相速度を異にする2つ波が同じ方向に
進行するとき、位相速度の速い波の波頭が遅い波の波頭
を次々に追い越してゆくため、位相差の絶対値が一定の
周期で増減するという一般的な現象に起因するもので、
例えば第3図に示すようにλ/2+rnmの位相差を有
する試料6を測定光が透過する際、区間12では測定光
の位相差が曲線13で示すように逐次増大し、測定光が
λ/4nmのところに到達したときに最大値λ/4nr
sを示し、更に測定光が進行すると今度は逐次減少して
ゆき、測定光がλ/2nmところに到達すると測定光の
位相差はゼロになり、区間14では再び増大し、測定光
の位相差、がrnmになったときに試料6を出射し、こ
の位相差rnmが測定値とし検出される。従って測定値
は見掛は上の値であって試料6が有する位相差、すなわ
ち真の位相差を表わしていないことになる。又、第4図
に示すように真の位相差がλ/2−rnmである試料6
についても同様に測定値は見掛は上rnmとして測定さ
れる。
The problem is that when two waves with different phase velocities travel in the same direction, the wave crest of the wave with the faster phase velocity overtakes the crest of the slower wave one after another, so the absolute value of the phase difference is constant. This is due to the general phenomenon that it increases and decreases in cycles.
For example, when the measurement light passes through the sample 6 having a phase difference of λ/2+rnm as shown in FIG. When reaching 4nm, the maximum value λ/4nr
s, and as the measurement light advances further, it gradually decreases, and when the measurement light reaches λ/2 nm, the phase difference of the measurement light becomes zero, and in section 14 it increases again, and the phase difference of the measurement light decreases. , becomes rnm, the sample 6 is emitted, and this phase difference rnm is detected as a measurement value. Therefore, the measured value appears to be an upper value and does not represent the phase difference that the sample 6 has, that is, the true phase difference. In addition, as shown in FIG. 4, sample 6 has a true phase difference of λ/2-rnm.
Similarly, the measured value is measured assuming that the apparent value is above rm.

真の位相差が更に大きい試料にも適用できるように、前
記の事情を一般化して考えると、真の位相差と測定値と
の間に式(3)、又は第5図に示す関係があることが分
かる。
If we generalize the above situation so that it can be applied to samples with even larger true phase differences, we can find the relationship between the true phase difference and the measured value as shown in equation (3) or Figure 5. I understand that.

R=mλ/2±r           式(3)ここ
に、Rは演算値2mはゼロ及び自然数、λは波長、rは
測定値である。
R=mλ/2±r Equation (3) where R is the calculated value, 2m is zero and a natural number, λ is the wavelength, and r is the measured value.

従って、成る測定値rから真の位相差を求めるには、弐
(3)で示される一連の演算値Rの中から真の位相差に
相当する演算値を抽出する必要がある。
Therefore, in order to find the true phase difference from the measured value r, it is necessary to extract the calculated value corresponding to the true phase difference from the series of calculated values R shown in 2(3).

本発明は前記の問題点に鑑み、弐(3)で示される演算
値のうちから真の位相差を抽出して測定光の波長の4分
の1を越えるすべての測定を可能にし、その結果、微小
な位相差の測定を含む全測定領域に亘って高い精度で複
屈折位相差を測定し得る複屈折測定方法を提供すること
を技術的課題とする。
In view of the above problems, the present invention extracts the true phase difference from the calculated values shown in 2(3) to enable all measurements exceeding one-fourth of the wavelength of the measurement light, and as a result, It is a technical problem to provide a birefringence measurement method that can measure birefringence retardation with high precision over the entire measurement region including measurement of minute retardation.

[課題を解決するための手段] 前記の課題を達成する本発明の構成は、位相を変調させ
た測定用の光を被測定試料に照射し、前記試料を透過し
た光の偏光状態を検出して前記試料の複屈折位相差を測
定する複屈折測定方法において、波長が異なる複数の光
を個別に被測定試料に照射してそれぞれ複屈折位相差を
測定し、各測定ごとにそれぞれ演算式mλ/2±r(こ
こにλは測定用の光の波長、rは測定値2mはゼロ及び
自然数)を適用してmの異なる値に対応する一連の演算
値を求め、すべての測定について得られた前記一連の演
算値相互間で演算値の大小を比較し、最も接近した演算
値を複屈折位相差の真の値として採用するものである。
[Means for Solving the Problems] The configuration of the present invention for achieving the above-mentioned problems includes irradiating a measurement sample with phase-modulated measurement light and detecting the polarization state of the light transmitted through the sample. In the birefringence measurement method of measuring the birefringence phase difference of the sample, a plurality of lights with different wavelengths are individually irradiated onto the sample to be measured to measure the birefringence phase difference, and each calculation formula mλ is used for each measurement. /2±r (where λ is the wavelength of the light for measurement, r is the measured value 2m is zero and a natural number) to obtain a series of calculated values corresponding to different values of m, and the results are obtained for all measurements. The series of calculated values are compared in magnitude, and the closest calculated value is adopted as the true value of the birefringence phase difference.

〔作用〕[Effect]

複数の光源から照射される測定光は、波長が相違しても
同一試料に対し同程度に複屈折する。従って、各測定ご
とに式(3)を適用して一連の演算値を求めると、各一
連の演算値の中に、相互に接近した真の位相差に相当す
るデータがそれぞれ含まれている。そこで、一連の演算
値相互間で演算値の大小を比較し、尤も接近した演算値
を抽出することにより真の位相差を求めることができる
Measurement light irradiated from a plurality of light sources exhibits birefringence to the same degree for the same sample even if the wavelengths are different. Therefore, when formula (3) is applied to each measurement to obtain a series of calculated values, each series of calculated values includes data corresponding to true phase differences that are close to each other. Therefore, the true phase difference can be determined by comparing the magnitudes of a series of computed values and extracting the closest computed values.

〔実施例] 先ず、本発明の詳細な説明し、次いで本発明の実施例を
図面を参照して説明する。
[Examples] First, the present invention will be explained in detail, and then embodiments of the present invention will be explained with reference to the drawings.

本発明の測定方法は、次に述べる3つのプロセスによっ
て構成される。
The measurement method of the present invention consists of the following three processes.

(i〕複数の測定用の光(又は光源)を予め準備してお
き、各測定光ごとに従来と同じ要領で別個に測定を行い
、各測定ごとに測定値r (ntrr)を求める。この
測定値が測定光の波長λの174以下の場合、この測定
値は真の位相差を示す。又、測定値が1/4λを越える
場合は次のプロセスに移る。
(i) Prepare multiple measurement lights (or light sources) in advance, measure each measurement light separately in the same manner as before, and obtain the measured value r (ntrr) for each measurement. If the measured value is less than or equal to 174 of the wavelength λ of the measurement light, this measured value indicates a true phase difference.If the measured value exceeds 1/4λ, proceed to the next process.

(ii )各測定値ごとに前述の式(3)を用いて一連
の演算値Rを求める(この一連の演算値Rの中に真の位
相差が含まれている)。
(ii) A series of calculated values R is obtained for each measured value using the above-mentioned equation (3) (the true phase difference is included in this series of calculated values R).

(iii )各測定ごとに得られた一連の演算値相互間
で演算値の大小を比較し、最も接近した演算値を抽出す
ると、この演算値が真の位相差である。
(iii) When the magnitude of the calculated values is compared between a series of calculated values obtained for each measurement and the closest calculated value is extracted, this calculated value is the true phase difference.

単一の測定光では一連の演算値の中から真の位相差を抽
出できないが、可視領域内にある複数の測定光を用いる
と、波長が相違していても、位相差はほぼ同一の値を示
すので、真の位相差を容易に求めることができる。
A single measurement light cannot extract the true phase difference from a series of calculated values, but if multiple measurement lights within the visible range are used, the phase difference can be almost the same even if the wavelengths are different. Therefore, the true phase difference can be easily determined.

次に実施例について説明する。尚、図中の符号及び記号
については、従来の技術を説明した際の測定装置各部と
同じ機能を果たす部分に同じ符号及び記号を付して示し
、説明を省略する。
Next, an example will be described. Regarding the reference numerals and symbols in the drawings, the same reference numerals and symbols are attached to the parts that perform the same functions as the respective parts of the measuring device used when explaining the conventional technology, and the explanation thereof will be omitted.

第1図は本発明の方法を実施するための装置の一例を示
すもので、この装置には2種類の測定光、すなわちHe
 −Neレーザー光(λ= 632.8nm)及び半導
体レーザー光(λ= 780nm)を照射するための2
つの光i1a、lbが配置されており、各光源1a、l
bから照射された測定光は半透明の鏡21を介して偏光
子3に入射するようになっており、前記以外は従来の装
置と変わるところはない。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention, and this apparatus includes two types of measuring light: He
-2 for irradiating with Ne laser light (λ = 632.8 nm) and semiconductor laser light (λ = 780 nm)
Two lights i1a, lb are arranged, and each light source 1a, lb is arranged.
The measuring light irradiated from b is made to enter the polarizer 3 via the semi-transparent mirror 21, and other than the above, there is no difference from the conventional device.

次に、この装置を用いて複屈折位相差Δndを測定した
具体例について説明する。先ず、光′rA1aを用いて
1le−Neレーザー光を照射し、従来と同じ要領で測
定値rを求め、いま、r =50nmが得られたとする
Next, a specific example of measuring the birefringence phase difference Δnd using this device will be described. First, it is assumed that a 1le-Ne laser beam is irradiated using the light 'rA1a, and a measured value r is determined in the same manner as in the conventional method, and that r = 50 nm is obtained.

ここで、式(3)において、λ= 632.8nm、 
 r =50nmと置き、m=o、1,2,3,4,5
.6”・とじて演算を行うとRの値として次の一連の演
算値が得られる。尚、各演算値は便宜上、添字を付して
示す。
Here, in equation (3), λ = 632.8 nm,
Set r = 50 nm, m = o, 1, 2, 3, 4, 5
.. 6''. When the calculation is performed, the following series of calculated values are obtained as the value of R. For convenience, each calculated value is shown with a subscript.

m÷6 ; R6・so” +50=1948.4nm 次に、光源1bを用いて半導体レーザー光を照射し、前
回と同じ要領で測定値を求め、いま、測定値としてr 
=80r++++が得られたとする。
m÷6; R6・so” +50=1948.4nm Next, use the light source 1b to irradiate semiconductor laser light, obtain the measured value in the same manner as before, and now the measured value is r.
Suppose that =80r++++ is obtained.

ここで、式(3)においてλ= 780nm、  r=
80nmと置き、第1回目の測定と同様に、m=o、1
,2゜3.4.5.6・・・とじて演算を行うと、Rの
値として次の一連の演算値が得られる。
Here, in equation (3), λ = 780 nm, r =
Set it to 80 nm, m=o, 1 as in the first measurement.
, 2° 3.4.5.6..., the following series of calculated values is obtained as the value of R.

m = 0 ;  RO4a o ”” 80nmm=
Q;  Ro−go=  80nmm =1 ;  R
+ + 116 =470nWIm = l ;  R
+−go=310nmm = 2 ;  Rz−eo=
860nmm=2;  Rz−ao=700r+n+m
= 3 ;  R:++ao=1250nmm=3; 
 Rz3−5o=1090n◎m = 4 ;  R4
−go=1640nmm= 4 ;  R4−ao=1
480nmm = 5 ;  Rs+go=2030n
mm = 5  ;   Rs−no=1870nmm
 = 6  i   R6+io=2420nmm =
 6  ;  R66−l1o−2260n以上の演算
を行ったのち、r =50nmに対する一連の演算値と
r =80nmに対する一連の演算値を相互に比較する
とRs、so=1632nm、  R4*sa=164
0nm(各行の左欄に◎印を付しである)が最も接近し
ているので、試料の真の位相差は1640〜1632n
mであることが分かる。
m = 0; RO4a o ”” 80nmm=
Q; Ro-go=80nmm=1; R
+ + 116 = 470nWIm = l; R
+-go=310nmm=2; Rz-eo=
860nmm=2; Rz-ao=700r+n+m
= 3; R:++ao=1250nmm=3;
Rz3-5o=1090n◎m=4; R4
-go=1640nmm=4; R4-ao=1
480nmm = 5; Rs+go=2030n
mm=5; Rs-no=1870nmm
= 6 i R6+io=2420nmm =
6; After performing the above calculations for R66-l1o-2260n, a series of calculated values for r = 50 nm and a series of calculated values for r = 80 nm are compared with each other, Rs, so = 1632 nm, R4 * sa = 164
0 nm (marked with ◎ in the left column of each row) is the closest, so the true phase difference of the sample is 1640 to 1632 nm.
It turns out that m.

もし、被測定試料の複屈折位相差に波長分散特性がある
場合は、この波長分散特性に相当する係数を掛けて補正
をすればよい。
If the birefringence phase difference of the sample to be measured has a wavelength dispersion characteristic, it may be corrected by multiplying it by a coefficient corresponding to this wavelength dispersion characteristic.

尚、本発明は前述の実施例にのみ限定されるものではな
く、例えば2種類の光源を使用する代りに3種類以上の
光源を使用してもよいこと、又、光源としてHe −N
eレーザー光、半導体レーザー光を用いる代りに可視領
域内にある別の種類の光源を使用してもよいこと等、そ
の他本発明の要旨を逸脱しない範囲内で種々の変更を加
え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and that, for example, three or more types of light sources may be used instead of two types of light sources, and that He-N may be used as the light source.
It goes without saying that other types of light sources within the visible range may be used instead of e-laser light and semiconductor laser light, and other various changes may be made within the scope of the invention. It is.

〔発明の効果〕〔Effect of the invention〕

以上に述べたごとく本発明は次の優れた効果を発揮する
As described above, the present invention exhibits the following excellent effects.

(i)複数の測定光を使用して各測定ごとに測定値を求
め、各測定値に対し所定の演算式を用いて真の値を含む
一連の演算値を求め、各演算値相互間で演算値の大小を
比較し、最も接近した演算値を採用するので、試料の複
屈折位相差の大小に関係なく測定領域の全域に亘って高
精度で測定を行うことができる。
(i) Obtain a measured value for each measurement using multiple measurement lights, use a predetermined calculation formula for each measured value to obtain a series of calculated values including the true value, and Since the magnitudes of the calculated values are compared and the closest calculated value is adopted, it is possible to perform highly accurate measurements over the entire measurement region regardless of the magnitude of the birefringence phase difference of the sample.

〔11〕第(i)項の結果、例えばり、B、膜(光コン
ピュータの光メモリー用)、蒸着膜等複屈折位相差の小
さいものから複屈折位相差の大きいもの、例えば液晶テ
レビ用配向膜〔Δndが約800オングストローム〕、
ガラス、石英、 Langumur−Blozet(Δ
ndが約50オングストローム)等を含め、広範囲の材
料に対する測定を行うことができる。
[11] As a result of item (i), for example, B, films (for optical memory of optical computers), vapor deposited films, etc. with small birefringence retardation to large birefringence retardation, such as alignment for liquid crystal televisions. Membrane [Δnd is approximately 800 angstroms],
Glass, quartz, Langmur-Blozet (Δ
Measurements can be made on a wide range of materials, including materials with a nd of approximately 50 angstroms.

(iii )この方法を実施するための装置を1台設置
することにより、従来のように測定領域に対応させて複
数の測定装置を併置する必要がなくなり、設備費を大幅
に節約することができる。
(iii) By installing one device to carry out this method, there is no need to install multiple measuring devices in parallel according to the measurement area as in the past, and equipment costs can be significantly reduced. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するための複屈折測定装置
の一例を示すブロック図、第2図は従来の位相変調法に
よる複屈折測定装置の構成を示すブロック図、第3図、
第4図、第5図はいずれも真の位相差と測定値との関係
を示す説明図である。 la、lb・・・光源   3・・・偏光子4・・・光
弾性変調器   5・・・検光子6・・・被測定試料 
   7・・・光検知器8・・・解析装置     9
・・・表示装置21・・・半透明の鏡
FIG. 1 is a block diagram showing an example of a birefringence measurement device for carrying out the method of the present invention, FIG. 2 is a block diagram showing the configuration of a birefringence measurement device using a conventional phase modulation method, and FIG.
FIG. 4 and FIG. 5 are both explanatory diagrams showing the relationship between the true phase difference and the measured value. la, lb...Light source 3...Polarizer 4...Photoelastic modulator 5...Analyzer 6...Measurement sample
7... Photodetector 8... Analysis device 9
... Display device 21 ... Semi-transparent mirror

Claims (1)

【特許請求の範囲】[Claims] 位相を変調させた測定用の光を被測定試料に照射し、前
記試料を透過した光の偏光状態を検出して前記試料の複
屈折位相差を測定する複屈折測定方法において、波長が
異なる複数の光を個別に被測定試料に照射してそれぞれ
複屈折位相差を測定し、各測定ごとにそれぞれ演算式m
λ/2±r(ここにλは測定用の光の波長、rは測定値
、mはゼロ及び自然数)を適用してmの異なる値に対応
する一連の演算値を求め、すべての測定について得られ
た前記一連の演算値相互間で演算値の大小を比較し、最
も接近した演算値を複屈折位相差の真の値として採用す
ることを特徴とする複屈折測定方法。
In a birefringence measurement method that measures the birefringence phase difference of the sample by irradiating the sample with phase-modulated measurement light and detecting the polarization state of the light that has passed through the sample, multiple The birefringence phase difference is measured by irradiating each sample with the light of
Apply λ/2±r (where λ is the wavelength of the measurement light, r is the measured value, and m is zero and a natural number) to obtain a series of calculated values corresponding to different values of m, and for all measurements. A method for measuring birefringence, characterized in that the series of calculated values obtained are compared in magnitude, and the closest calculated value is adopted as the true value of the birefringence phase difference.
JP31336088A 1988-12-12 1988-12-12 Birefringence measurement method Expired - Lifetime JPH0623689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31336088A JPH0623689B2 (en) 1988-12-12 1988-12-12 Birefringence measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31336088A JPH0623689B2 (en) 1988-12-12 1988-12-12 Birefringence measurement method

Publications (2)

Publication Number Publication Date
JPH02159540A true JPH02159540A (en) 1990-06-19
JPH0623689B2 JPH0623689B2 (en) 1994-03-30

Family

ID=18040321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31336088A Expired - Lifetime JPH0623689B2 (en) 1988-12-12 1988-12-12 Birefringence measurement method

Country Status (1)

Country Link
JP (1) JPH0623689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511823A (en) * 2002-12-20 2006-04-06 ハインズ インスツルメンツ インコーポレイテッド Measurement of out-of-plane birefringence

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511823A (en) * 2002-12-20 2006-04-06 ハインズ インスツルメンツ インコーポレイテッド Measurement of out-of-plane birefringence
JP4657105B2 (en) * 2002-12-20 2011-03-23 ハインズ インスツルメンツ インコーポレイテッド Measurement of out-of-plane birefringence

Also Published As

Publication number Publication date
JPH0623689B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
De Martino et al. General methods for optimized design and calibration of Mueller polarimeters
US4589776A (en) Method and apparatus for measuring optical properties of materials
EP1693658B1 (en) Spectroscopic polarimetry
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
JP3910352B2 (en) Pretilt angle detection method and detection apparatus
JPH04307312A (en) Measuring method of thickness of gap of liquid crystal cell
EP0176827B1 (en) Method and apparatus for simultaneously determining gauge and orientation of polymer films
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
US5532488A (en) Apparatus and method for evaluating orientation film
JPS6382345A (en) Double refraction measurement and display
EP0737856B1 (en) A method of investigating samples by changing polarisation
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP3285365B2 (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
Chenault et al. Infrared spectropolarimetry
EP0603863B1 (en) Birefringent member cell gap measurement method and instrument
CN111896486A (en) Chiral substance optical activity measuring device and method
JP5041508B2 (en) Optical characteristic measuring apparatus and method
Graf et al. Polarization modulation Fourier transform infrared ellipsometry of thin polymer films
JPH02159540A (en) Double refraction measurement
JP2898298B2 (en) Liquid crystal layer thickness measuring apparatus and liquid crystal layer thickness measuring method using the liquid crystal layer thickness measuring apparatus
JP3855080B2 (en) Optical characteristic measuring method for liquid crystal element and optical characteristic measuring system for liquid crystal element
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
Jellison et al. Polarization modulation ellipsometry
JPH0518859A (en) Method for measuring thickness of liquid crystal layer
Sanaâ et al. Linear retardance and diattenuation dispersion measurements of anisotropic medium with Jones calculus based spectrometric technique