JPH08271409A - Photoelastic measuring equipment - Google Patents

Photoelastic measuring equipment

Info

Publication number
JPH08271409A
JPH08271409A JP9615395A JP9615395A JPH08271409A JP H08271409 A JPH08271409 A JP H08271409A JP 9615395 A JP9615395 A JP 9615395A JP 9615395 A JP9615395 A JP 9615395A JP H08271409 A JPH08271409 A JP H08271409A
Authority
JP
Japan
Prior art keywords
light
sin
modulation
modulator
photoelasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9615395A
Other languages
Japanese (ja)
Inventor
Tomoyuki Fukazawa
知行 深沢
Mitsuru Sano
充 佐野
Yutaka Yoshida
吉田  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP9615395A priority Critical patent/JPH08271409A/en
Publication of JPH08271409A publication Critical patent/JPH08271409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To measure the photoelastic constant of an object under relatively low load by measuring the photoelastic characteristics of the object based on the intensity of light detected through a detection means and the modulation characteristics of a modulator. CONSTITUTION: A monochromator 104 selects a specified wavelength component from the light emitted from a light source 102 and a polarizer 106 further selects a specified linearly polarized component which is then subjected to phase modulation, depending on the wavelength, through a phase modulator 108 before impinging on an object 118. A specified load is applied to the object 118 by means of a load cell 120. The light transmitted through the object 118 enters, while containing retardation caused by the load, into a detector 112 through an analyzer 110 and the output from the detector 120 is digitized before being fed to a control means 126. Photoelastic constant can be determined based on the modulation frequency and the output from the detector by irradiating the object 118 with a light modulated through the modulator 108.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光弾性測定装置、特にそ
の光学系の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelastic measuring device, and more particularly to improvement of its optical system.

【0002】[0002]

【従来の技術】等方等質、かつ透明な弾性体に外力を加
えると、応力を生じ一時的異方性により光学的には複屈
折すなわち光弾性効果を示す。各種光学装置のレンズな
どの均質性の評価としてこの光弾性の測定が行われる。
通常この光弾性の測定にあたっては、被測定物である透
明な弾性体たとえばガラスに加重を加え、セナルモン法
で測定が行われていた。
2. Description of the Related Art When an external force is applied to an isotropic, isotropic and transparent elastic body, a stress is generated, and birefringence, that is, a photoelastic effect is optically exhibited due to temporary anisotropy. This photoelasticity measurement is performed as an evaluation of the homogeneity of the lenses of various optical devices.
Usually, in measuring the photoelasticity, a weight is applied to a transparent elastic body which is an object to be measured, for example, glass, and the Senarmont method is used for the measurement.

【0003】すなわち、セナルモン法においては、図1
に示すように被測定物10に対し、その入光側に直線偏
光子12を配し、出光側に1/4波長板14及び直線偏
光子16が配置されている。そして、前記被測定物10
は加重により複屈折を生じており、リターデーション
δ、その第一軸はOx軸に対して45度の角度を有して
いる。
That is, in the Senarmont method, FIG.
As shown in, the linear polarizer 12 is arranged on the light incident side of the DUT 10, and the quarter-wave plate 14 and the linear polarizer 16 are arranged on the light outgoing side. Then, the DUT 10
Causes birefringence due to weighting, retardation δ, and its first axis has an angle of 45 degrees with respect to the Ox axis.

【0004】一方、前記入光側直線偏光子12はその光
学軸が垂直となっている。また1/4波長板14は、そ
の第一軸が水平となっている。さらに出光側直線偏光子
16はその光学軸がOx軸に対してθの角度を有して配
置されている。以上のように構成された光弾性測定装置
によれば、光源からの光はモノクロメータなどにより単
色光とされた後に入光側直線偏光子12に入射し、さら
に被測定物により所定のリターデーションが付加された
後、1/4波長板14及び出光側直線偏光子16を介し
て検知器により検知される。
On the other hand, the optical axis of the light-incident-side linear polarizer 12 is vertical. The first axis of the quarter-wave plate 14 is horizontal. Further, the light output side linear polarizer 16 is arranged such that its optical axis forms an angle of θ with the Ox axis. According to the photoelasticity measuring device configured as described above, the light from the light source is made into monochromatic light by the monochromator or the like, and then enters the light-incident side linear polarizer 12, and further the predetermined retardation by the object to be measured. After being added, the light is detected by the detector through the quarter-wave plate 14 and the light output side linear polarizer 16.

【0005】そして、前記被測定物に加重をかけた場合
には、その加重に応じてリターデーションに変化が生
じ、該リターデーションを出光側直線偏光子16の回転
角θに基づき算出し、前記被測定物の光弾性評価を行う
のである。
When the object to be measured is weighted, the retardation changes depending on the weight, and the retardation is calculated based on the rotation angle θ of the light-outgoing linear polarizer 16, and The photoelasticity of the object to be measured is evaluated.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記セ
ナルモン法は感度が1度程度と低く、異方性の小さいガ
ラスでは、該ガラスが割れる直前まで加重をかけないと
光弾性定数の測定を行うことができない。
However, the Senarmont method has a low sensitivity of about 1 degree, and in the case of glass with small anisotropy, the photoelastic constant must be measured unless a weight is applied just before the glass is broken. I can't.

【0007】従って、特に大型航空カメラや屈折式望遠
鏡の大口径レンズ、干渉計や大型光学系、半導体製造の
ステッパー(縮小投影露光装置)用光学系など、高精度
並びに高解像度が要求される装置に必須となる、高い均
質性を有した光学ガラスなどの評価に前記セナルモン法
を適用することは困難であった。しかも1/4波長板が
不可欠であり、その波長依存性のために測定光の波長を
変更して行う分光測定が困難であるという課題を有して
いた。
Therefore, particularly high-precision and high-resolution devices such as large-sized aerial cameras and large-diameter lenses for refracting telescopes, interferometers and large-scale optical systems, and optical systems for steppers (reduction projection exposure apparatus) in semiconductor manufacturing are required. It was difficult to apply the Senarmont method to the evaluation of optical glass having high homogeneity, which is essential for Moreover, the quarter-wave plate is indispensable, and there is a problem that it is difficult to perform the spectroscopic measurement by changing the wavelength of the measurement light due to its wavelength dependence.

【0008】さらに、被測定物に大加重を加えるロード
セルが必要となり、装置が大がかりになるという課題も
有していた。本発明は前記従来技術の課題に鑑みなされ
たものであり、その目的は比較的低加重で被測定物の光
弾性定数の測定を行うことのできる光弾性測定方法及び
測定装置を提供することにある。
Further, there is a problem that a load cell for applying a large weight to the object to be measured is required, and the device becomes large in size. The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a photoelasticity measuring method and a measuring apparatus capable of measuring the photoelasticity constant of an object to be measured with a relatively low weight. is there.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に本発明は、光を出射する光源と、前記光に所定周波数
fの変調を与える変調手段と、被測定物に所定の加重F
を印加する加重印加手段と、前記加重の印加された被測
定物を透過した光を検出する検知手段と、前記検知手段
により検知される光強度と、前記変調子の変調特性より
被測定物の光弾性特性を測定する演算制御手段と、を備
えたことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a light source for emitting light, a modulating means for modulating the light with a predetermined frequency f, and a predetermined weight F on an object to be measured.
A weighting application means for applying a force, a detection means for detecting light transmitted through the weighted object to be measured, a light intensity detected by the detection means, and a modulation characteristic of the modulator to determine the object to be measured. Arithmetic control means for measuring the photoelastic characteristics.

【0010】ここで、前記光源と変調手段の間に分光手
段を備え、該分光手段は前記演算制御手段により波長走
査が行われることが好適である。また、演算手段は下記
式に基づき光弾性定数Cを演算することが好適である。
Here, it is preferable that a spectroscopic unit is provided between the light source and the modulation unit, and the spectroscopic unit is wavelength-scanned by the arithmetic control unit. Further, it is preferable that the calculation means calculates the photoelastic constant C based on the following equation.

【0011】[0011]

【数2】 検知手段出力Iout=1+sin(Δ)sin(δ) sin(δ)=sin(δ0sin(ωt)) ここで、δ0:変調子のリターデーションの振幅 ω:2πf (fは変調周波数) 被測定物のリターデーションΓ=(Δ/360)・λ ここで、λ:入射光の波長 C=(S/f)・Γ ここで、Sは加重の印加される面積[Number 2] detection means output I out = 1 + sin (Δ ) sin (δ) sin (δ) = sin (δ 0 sin (ωt)) here, δ 0: amplitude of the retardation of the strange tone ω: 2πf (f Is the modulation frequency) Retardation of the DUT Γ = (Δ / 360) · λ where λ: wavelength of the incident light C = (S / f) · Γ, where S is the area to which the weight is applied.

【0012】[0012]

【作用】本発明にかかる光弾性測定装置は、前述したよ
うに変調手段を用いて変調した光を被測定物に照射して
いるので、異方性が小さい場合にもきわめて高精度で光
弾性特性の測定を行うことができる。また、1/4波長
板など、波長依存性の高い光学素子を用いないので、光
源からの光を分光し、波長走査した場合にも光弾性特性
の測定を行うことができる。
Since the photoelasticity measuring device according to the present invention irradiates the object to be measured with the light modulated by the modulating means as described above, the photoelasticity can be extremely accurately measured even when the anisotropy is small. A property measurement can be performed. Further, since an optical element having a high wavelength dependency such as a quarter-wave plate is not used, it is possible to measure the photoelastic characteristics even when the light from the light source is dispersed and the wavelength is scanned.

【0013】[0013]

【実施例】以下、図面に基づき本発明の好適な実施例に
ついて説明する。図1には本発明の一実施例にかかる光
弾性測定装置が開示されている。同図に示す装置100
は、光源102と、該光源102から出射される光を分
光するモノクロメータ(分光器)104と、直線偏光子
106と、波長プログラムされた位相変調子(位相変調
手段)108と、検光子110と、検知器(検知手段)
112とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 discloses a photoelasticity measuring device according to an embodiment of the present invention. Device 100 shown in FIG.
Is a light source 102, a monochromator (spectrometer) 104 that disperses the light emitted from the light source 102, a linear polarizer 106, a wavelength-programmed phase modulator (phase modulator) 108, and an analyzer 110. And a detector (detection means)
And 112.

【0014】そして、前記モノクロメータ102のドラ
イバー114、位相変調子108のコントローラー11
6、位相変調子108と検光子110の間に置かれた被
測定物118に所望の加重を印加するロードセル12
0、前記検知器112の出力を増幅するロックインアン
プ122が各所定のインターフェース124を介して演
算制御手段126に接続される。
The driver 114 of the monochromator 102 and the controller 11 of the phase modulator 108
6. The load cell 12 for applying a desired weight to the DUT 118 placed between the phase modulator 108 and the analyzer 110.
0, a lock-in amplifier 122 that amplifies the output of the detector 112 is connected to the arithmetic control means 126 via each predetermined interface 124.

【0015】本実施例にかかる光弾性測定装置は概略以
上のように構成され、次にその作用について説明する。
まず、該演算制御手段126は、インターフェース12
4を介してドライバー114の制御を行い、モノクロメ
ータ104から所定の単色光を順次波長を変えながら出
力させる。また、同じく制御手段126はインターフェ
ース124及びコントローラー116を介して位相変調
子108の制御を行う。
The photoelasticity measuring device according to the present embodiment is constructed as described above, and its operation will be described below.
First, the arithmetic and control unit 126 uses the interface 12
The driver 114 is controlled via 4 to cause the monochromator 104 to output predetermined monochromatic light while sequentially changing the wavelength. Similarly, the control means 126 controls the phase modulator 108 via the interface 124 and the controller 116.

【0016】従って、前記光源102から出射した光の
うちモノクロメータ104により選択された所定の波長
成分から、さらに偏光子106により所定の直線偏光成
分が選択され、位相変調子108により波長に応じた位
相に変調が行われて被測定物118に入射される。
Therefore, of the light emitted from the light source 102, a predetermined linear polarization component is selected by the polarizer 106 from the predetermined wavelength components selected by the monochromator 104, and the phase modulator 108 responds to the wavelength. The phase is modulated and incident on the DUT 118.

【0017】該被測定物118には、前記ロードセル1
20により所定の加重が印加されており、その加重に応
じた異方性が生じている。このため、被測定物118に
入射された光はその加重に対応したリターデーションを
生じる。なお、ロードセル120による加重データは、
前記インターフェース124を介して制御手段126に
送られている。
The load cell 1 is attached to the object to be measured 118.
A predetermined weight is applied by 20 and anisotropy is generated according to the weight. Therefore, the light incident on the DUT 118 has a retardation corresponding to its weight. The weighted data by the load cell 120 is
It is sent to the control means 126 via the interface 124.

【0018】被測定物118を透過した光は、加重付加
によるリターデーションを含んだまま検光子110を介
して検知器112に入射し、その検知器出力はロックイ
ンアンプ122を介してインターフェース124に設け
られたA/D変換器によりデジタル化され、さらに制御
手段126に送られる。以上の光学系の各特性は、下記
数1に示す行列式により表される。
The light transmitted through the object to be measured 118 is incident on the detector 112 via the analyzer 110 while containing the retardation due to the weighted addition, and the detector output is transmitted to the interface 124 via the lock-in amplifier 122. It is digitized by the provided A / D converter and is further sent to the control means 126. Each characteristic of the above optical system is expressed by the determinant shown in the following Expression 1.

【0019】[0019]

【数1】上記数1より明らかなように、検光子110か
ら出射する光、すなわち検知器112により検出される
光強度Ioutは、下記数2により表される。
## EQU00001 ## As is clear from the above equation 1, the light emitted from the analyzer 110, that is, the light intensity I.sub.out detected by the detector 112 is expressed by the following equation 2.

【0020】[0020]

【数2】Iout=1+sin(Δ)sin(δ) sin(δ)=sin(δ0sin(ωt)) =sin2J1(δ0)sin(ωt)+2J3(δ0)sin(3
ωt)+… ここで、δ0 :変調子のリターデーションの振幅 ω :2πf (f=変調子周波数) そして、前記fを50kHzとし、規格化した50kHzの信
号をa(ω)とすると、
[Number 2] I out = 1 + sin (Δ ) sin (δ) sin (δ) = sin (δ 0 sin (ωt)) = sin2J 1 (δ 0) sin (ωt) + 2J 3 (δ 0) sin (3
ωt) + ... Here, δ 0 : amplitude of retardation of modulator ω: 2πf (f = modulator frequency) Then, when f is 50 kHz and a standardized signal of 50 kHz is a (ω),

【0021】[0021]

【数3】a(ω)=sinΔ リターデーションΓ(nm)は位相差Δから## EQU00003 ## a (.omega.) = Sin .DELTA. Retardation .GAMMA. (Nm) is calculated from the phase difference .DELTA.

【0022】[0022]

【数4】Γ=(Δ/360)・λ なお、λはモノクロメータから出力される光の波長であ
る。従って、光弾性定数Cは、加重をF、該加重を受け
る断面積をSとして、
Γ = (Δ / 360) · λ where λ is the wavelength of the light output from the monochromator. Therefore, the photoelastic constant C is defined as F is the weight and S is the cross-sectional area that receives the weight.

【0023】[0023]

【数5】Γ=C・(F/S) C=(S/F)・Γ 以上のように本実施例にかかる光弾性測定装置によれ
ば、変調子により変調を加えた光を被測定物に照射する
ことにより、該変調周波数及び検知器出力より光弾性定
数の算出を行うことが可能となる。
## EQU00005 ## .GAMMA. = C. (F / S) C = (S / F) .GAMMA. As described above, according to the photoelasticity measuring apparatus of the present embodiment, the light modulated by the modulator is measured. By irradiating an object, the photoelastic constant can be calculated from the modulation frequency and the detector output.

【0024】そして、本実施例によれば波長依存性の高
い1/4波長板などを用いていないため、モノクロメー
タにより波長走査を行うことができる。このため、たと
えば図3に示すように加重変化による光弾性定数の測定
のみならず、光弾性定数の波長依存性などを測定するこ
とも可能となる。
Further, according to the present embodiment, since the quarter wavelength plate having a high wavelength dependency is not used, it is possible to perform wavelength scanning by the monochromator. Therefore, for example, as shown in FIG. 3, not only the measurement of the photoelastic constant due to the weight change but also the wavelength dependence of the photoelastic constant can be measured.

【0025】[0025]

【発明の効果】以上説明したように本発明にかかる光弾
性測定装置によれば、変調子により変調を加えた光を被
測定物に照射することにより、正確に光弾性特性を測定
することが可能となる。
As described above, according to the photoelasticity measuring apparatus of the present invention, the photoelasticity characteristics can be accurately measured by irradiating the object to be measured with the light modulated by the modulator. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の光弾性測定機構の説明図である。FIG. 1 is an explanatory view of a conventional photoelasticity measuring mechanism.

【図2】本発明の一実施例にかかる光弾性測定装置の構
成説明図である。
FIG. 2 is a structural explanatory view of a photoelasticity measuring device according to an embodiment of the present invention.

【図3】本発明の一実施例にかかる光弾性測定装置によ
る光弾性定数の波長依存性の測定例である。
FIG. 3 is a measurement example of wavelength dependence of a photoelastic constant by a photoelasticity measuring device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

102 光源 108 変調子 120 ロードセル(加重印加手段) 102 light source 108 modulator 120 load cell (weight applying means)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月10日[Submission date] May 10, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

【図2】 [Fig. 2]

【図3】 [Figure 3]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光を出射する光源と、 前記光に所定周波数fの変調を与える変調手段と、 被測定物に所定の加重Fを印加する加重印加手段と、 前記加重の印加された被測定物を透過した光を検出する
検知手段と、 前記検知手段により検知される光強度と、前記変調子の
変調特性より被測定物の光弾性特性を測定する演算制御
手段と、を備えた光弾性測定装置。
1. A light source for emitting light, a modulation means for applying a modulation of a predetermined frequency f to the light, a weight applying means for applying a predetermined weight F to an object to be measured, and a measured object to which the weight is applied. Photoelasticity comprising a detection means for detecting light transmitted through an object, a light intensity detected by the detection means, and an arithmetic control means for measuring the photoelasticity of the object to be measured from the modulation characteristics of the modulator. measuring device.
【請求項2】 請求項1記載の装置において、前記光源
と変調手段の間に分光手段を備え、該分光手段は前記演
算制御手段により波長走査が行われることを特徴とする
光弾性測定装置。
2. The photoelasticity measuring device according to claim 1, further comprising a spectroscopic unit between the light source and the modulation unit, wherein the spectroscopic unit is wavelength-scanned by the arithmetic control unit.
【請求項3】 請求項1又は2記載の装置において、演
算器は下記式に基づき光弾性定数Cを演算することを特
徴とする光弾性測定装置。 【数1】 検知器出力Iout=1+sin(Δ)sin(δ) sin(δ)=sin(δ0sin(ωt)) ここで、δ0:変調子のリターデーションの振幅 ω:2πf (fは変調周波数) 被測定物のリターデーションΓ=(Δ/360)・λ ここで、λ:入射光の波長 C=(S/f)・Γ ここで、Sは加重の印加される面積
3. The photoelasticity measuring device according to claim 1, wherein the calculator calculates the photoelastic constant C based on the following equation. [Equation 1] Detector output I out = 1 + sin (Δ) sin (δ) sin (δ) = sin (δ 0 sin (ωt)) where δ 0 : amplitude of retardation of the modulator ω: 2πf (f is a modulation frequency) Retardation of DUT Γ = (Δ / 360) · λ where λ: wavelength of incident light C = (S / f) · Γ, where S is an area to which a weight is applied.
JP9615395A 1995-03-29 1995-03-29 Photoelastic measuring equipment Pending JPH08271409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9615395A JPH08271409A (en) 1995-03-29 1995-03-29 Photoelastic measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9615395A JPH08271409A (en) 1995-03-29 1995-03-29 Photoelastic measuring equipment

Publications (1)

Publication Number Publication Date
JPH08271409A true JPH08271409A (en) 1996-10-18

Family

ID=14157430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9615395A Pending JPH08271409A (en) 1995-03-29 1995-03-29 Photoelastic measuring equipment

Country Status (1)

Country Link
JP (1) JPH08271409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351893B1 (en) * 2018-02-26 2018-07-04 日本分光株式会社 Phase difference control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351893B1 (en) * 2018-02-26 2018-07-04 日本分光株式会社 Phase difference control device
JP2019148430A (en) * 2018-02-26 2019-09-05 日本分光株式会社 Phase difference controller

Similar Documents

Publication Publication Date Title
US5956145A (en) System and method for improving data acquisition capability in spectroscopic rotatable element, rotating element, modulation element, and other ellipsometer and polarimeter and the like systems
US6473179B1 (en) Birefringence measurement system
JP5904793B2 (en) Spectroscopic polarimetry apparatus and method in visible and near infrared region
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
US6268914B1 (en) Calibration Process For Birefringence Measurement System
Oakberg Measurement of low-level strain birefringence in optical elements using a photoelastic modulator
CN105758625B (en) A kind of device and method for the linear polarization sensitivity measuring remote sensing instrument
US20040233434A1 (en) Accuracy calibration of birefringence measurement systems
US6947137B2 (en) System and method for measuring birefringence in an optical material
Wang et al. Accuracy assessment of a linear birefringence measurement system using a Soleil–Babinet compensator
Su et al. High speed stress measurement technique based on photoelastic modulator (PEM) and galvano-scanner
US6697157B2 (en) Birefringence measurement
JP3285365B2 (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
WO2016173399A1 (en) Calibration method and device for broad-band achromatic composite wave plate and corresponding measurement system
JPH08271409A (en) Photoelastic measuring equipment
CN113820052B (en) Characterization method for stress in dielectric material
JPH10153500A (en) Method and device for measuring photoelastic constant
JP3341928B2 (en) Dichroic dispersion meter
Oakberg Measurement of waveplate retardation using a photoelastic modulator
JP3340145B2 (en) Stork meter
JPH046444A (en) Method and apparatus for measuring photo-elastic constant
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
Nagib et al. Simultaneous spectral calibration of two phase plates
JP2006153503A (en) Birefrigence measuring device and stress distribution measuring device
JPH02118406A (en) Liquid crystal cell gap measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019