JP2017009338A - Measurement method of optical characteristic and measurement instrument of optical characteristic - Google Patents

Measurement method of optical characteristic and measurement instrument of optical characteristic Download PDF

Info

Publication number
JP2017009338A
JP2017009338A JP2015122819A JP2015122819A JP2017009338A JP 2017009338 A JP2017009338 A JP 2017009338A JP 2015122819 A JP2015122819 A JP 2015122819A JP 2015122819 A JP2015122819 A JP 2015122819A JP 2017009338 A JP2017009338 A JP 2017009338A
Authority
JP
Japan
Prior art keywords
measurement
polarization
optical
measuring
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015122819A
Other languages
Japanese (ja)
Inventor
蓮花 金
Lianhua Jin
蓮花 金
翔貴 春日
Shoki Kasuga
翔貴 春日
高和 宏行
Hiroyuki Kowa
宏行 高和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uniopt Co Ltd
University of Yamanashi NUC
Original Assignee
Uniopt Co Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uniopt Co Ltd, University of Yamanashi NUC filed Critical Uniopt Co Ltd
Priority to JP2015122819A priority Critical patent/JP2017009338A/en
Publication of JP2017009338A publication Critical patent/JP2017009338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, when a measurement cell is used in a polarization characteristic measurement system, accurate measurement is difficult due to an incidence window and an exit window of the measurement cell, and the problem that accurate measurement of microscopic optical characteristics using an objective lens, optical characteristics of respective layers of a laminate film, and optical characteristics of a retina in medical applications is difficult.SOLUTION: A method for measuring optical characteristics by using probe light in accordance with this invention is characterized by comprising a step of disposing a plurality of measurement objects having polarization characteristics in a path of the probe light; a step of measuring a Mueller matrix of the plurality of measurement objects from polarized incident light and outgoing light obtained from the incident light through the plurality of measurement objects, a step of selecting respective polarization characteristic models of the plurality of measurement objects, and a step of setting up simultaneous equations in accordance with respective selected polarization characteristic models and solving them to obtain respective polarization characteristics of the plurality of measurement objects.SELECTED DRAWING: Figure 1

Description

本発明は、ミューラーマトリックスポラリメトリーを利用して複数の測定対象物の光学特性を測定する方法において、複数のそれぞれの測定対象物の光学特性を正確に測定する方法に関する。   The present invention relates to a method for accurately measuring optical characteristics of a plurality of measurement objects in a method for measuring optical characteristics of a plurality of measurement objects using Mueller matrix polarimetry.

光は電磁波であり、横波の性質を有する。互いに直交する3軸(x、y、z)座標系を前提として、光の進行方向をz軸方向とすると、光の電界ベクトル(または磁界ベクトル)の振動方向はxy平面に沿った方向であり、x軸成分とy軸成分に分けることができる。そのときx軸成分とy軸成分の位相差と振幅比が時間と共にランダムに変化する光を無偏光、変化なしで一定の光を偏光という。光の偏光状態はx軸成分とy軸成分の位相差と振幅比の値と関係がある。   Light is an electromagnetic wave and has the property of a transverse wave. Assuming a three-axis (x, y, z) coordinate system orthogonal to each other and the light traveling direction is the z-axis direction, the vibration direction of the electric field vector (or magnetic field vector) of the light is along the xy plane. Can be divided into an x-axis component and a y-axis component. At that time, light in which the phase difference and amplitude ratio of the x-axis component and y-axis component change randomly with time is referred to as non-polarized light, and constant light without change is referred to as polarized light. The polarization state of light is related to the phase difference between the x-axis component and the y-axis component and the value of the amplitude ratio.

光学的異方性をもつ透明測定対象物または測定対象物表面に対して、ある偏光状態の光を照射し、透過光や反射光等の出射光を取得すると、入射光と出射光との間で偏光状態の変化が観察される。この偏光状態の変化から、透明測定対象物の異方性または測定対象物表面の光学特性に関する情報を取得することを偏光計測と称する。なお、測定対象物の異方性は、分子構造の異方性、応力の存在などと関係があり、測定試料表面の光学特性は屈折率や薄膜の膜厚と関係がある。   When a transparent measurement object with optical anisotropy or the surface of the measurement object is irradiated with light in a certain polarization state and output light such as transmitted light or reflected light is obtained, the light is between the incident light and the output light. A change in the polarization state is observed. Obtaining information related to the anisotropy of the transparent measurement object or the optical properties of the surface of the measurement object from this change in polarization state is referred to as polarization measurement. The anisotropy of the measurement object is related to the anisotropy of the molecular structure, the presence of stress, and the optical characteristics of the measurement sample surface are related to the refractive index and the film thickness of the thin film.

測定対象物を透過したり、反射したりすることによる光の偏光状態の変化を測定する偏光計測方法をポラリメトリーという。直交する方向の偏光成分はそれぞれ異なる振る舞いをするため、測定対象物での反射や透過により直交する偏光成分のそれぞれの振幅および位相は大きく変化する。ポラリメトリーでは、透過波や反射波の直交する偏光成分から得られる複屈折特性を表す複屈折位相差δや主軸方位θ、振幅比を角度で表したΨや位相差Δなどの値を決定する。   A polarization measurement method that measures changes in the polarization state of light caused by being transmitted through or reflected from a measurement object is called polarimetry. Since the polarization components in the orthogonal directions behave differently, the amplitude and phase of each of the orthogonal polarization components change greatly due to reflection and transmission from the measurement object. In polarimetry, values such as a birefringence phase difference δ representing a birefringence characteristic obtained from orthogonal polarization components of a transmitted wave and a reflected wave, a principal axis azimuth θ, an amplitude ratio ψ, and a phase difference Δ are determined.

近年、ガラスや高分子材料など光学デバイスに用いられる光学的に透明な物質は、温度変化や外部応力が加わることにより光学特性が変化しないことが求められている。また光学デバイスの製造中に発生した応力に起因する残留複屈折が光学特性を劣化させることも知られており、残留応力を減らすことも求められている。従って物質の偏光特性の温度依存性や応力による光弾性効果、さらには光弾性効果の温度依存性を測定することが重要になってきている。   In recent years, optically transparent substances used for optical devices such as glass and polymer materials are required not to change optical properties due to temperature changes and external stress. It is also known that residual birefringence caused by stress generated during the manufacture of an optical device degrades optical characteristics, and there is a demand for reducing the residual stress. Accordingly, it has become important to measure the temperature dependence of the polarization property of a substance, the photoelastic effect due to stress, and the temperature dependence of the photoelastic effect.

偏光解析原理の種類は多く、複屈折計測法として多くの方法が知られている。例えば特許文献1には旋光手段を有する光学システムを備えた複屈折測定装置が開示されている。しかしそれらは測定対象物が光路中に1個存在するとし、その測定対象物の偏光特性を表わすジョーンズ行列またはミューラー行列のパラメータを求めるものである。そのため、測定対象物が真空セルや温調セルなどの測定用セルに設置されていて、セルの観測窓越しに計測を行わなければならない場合には、測定対象物の複屈折特性を独立して測定することができず、予め測定対象物の無い状態で測定操作を行い、その後に測定対象物を設置して測定を行い、両者の差分(以下、「差分測定」という)をとるといった作業を行わなければならなかった。   There are many types of ellipsometry principles, and many methods are known as birefringence measurement methods. For example, Patent Document 1 discloses a birefringence measuring apparatus including an optical system having an optical rotation means. However, it is assumed that there is one object to be measured in the optical path, and the parameters of the Jones matrix or Mueller matrix representing the polarization characteristics of the object to be measured are obtained. Therefore, when the measurement object is installed in a measurement cell such as a vacuum cell or a temperature control cell, and the measurement must be performed through the observation window of the cell, the birefringence characteristic of the measurement object is independent. An operation in which measurement cannot be performed and a measurement operation is performed in the absence of a measurement object in advance, then the measurement object is installed and measurement is performed, and a difference between the two (hereinafter referred to as “difference measurement”) is obtained. Had to be done.

エリプソメーターの場合の例として、特許文献2にはあらかじめ窓無状態での測定対象物からの反射光の偏光状態を測定し、続いてセル内で窓有状態での測定対象物からの反射光の偏光状態を測定し、窓の光弾性効果を求め、窓補正を行うことが開示されている。この窓補正式では計算の繁雑さを避けるため、入射窓と出射窓の光弾性効果による複屈折量が同じと仮定している。しかし、実際には入射窓と出射窓に生じる複屈折量が同じとは限らない。   As an example of an ellipsometer, Patent Document 2 previously measures the polarization state of reflected light from a measurement object in the absence of a window, and then reflects the reflected light from the measurement object in a cell with a window. It is disclosed that the polarization state is measured, the photoelastic effect of the window is obtained, and window correction is performed. In this window correction formula, it is assumed that the birefringence amount due to the photoelastic effect of the entrance window and the exit window is the same in order to avoid complicated calculation. However, in practice, the amount of birefringence generated in the entrance window and the exit window is not always the same.

また、この様な差分をとる作業は、セルの窓の複屈折量が時間的に変化しないということを前提としなければならず、測定用セルの内部の温度条件や圧力条件を変化させた時には観測窓に複屈折の変化が生じる。   In addition, the work to obtain such a difference must be based on the premise that the birefringence amount of the cell window does not change with time, and when the temperature condition or pressure condition inside the measurement cell is changed. Birefringence changes occur in the observation window.

観測窓の代わりに、測定対象物の両側に対物レンズを置き、複屈折特性測定における空間的な分解能を向上させる試みが提案されているが、一般に対物レンズの複屈折は有限値を持っているため、完全に対物レンズの影響を取除くことはできていない。   Although attempts have been made to improve the spatial resolution in measuring birefringence characteristics by placing objective lenses on both sides of the object to be measured instead of the observation window, the birefringence of objective lenses generally has a finite value. Therefore, the influence of the objective lens cannot be completely removed.

また、測定対象物が多層構造をもつような場合、複屈折を持つ物質の層が複数存在すると考えられる。このような複数の層を持つ場合の複屈折特性の合成に関しては、上記の差分測定によって解析可能であることが知られているが、温度変化によってそれぞれの層が独立した変化を示すような系の測定方法はこれまで提案されていない。   Further, when the measurement object has a multilayer structure, it is considered that there are a plurality of layers of a substance having birefringence. Regarding the synthesis of birefringence characteristics in the case of having such a plurality of layers, it is known that analysis can be performed by the above difference measurement, but a system in which each layer exhibits independent changes due to temperature changes. No measurement method has been proposed so far.

医療分野においては、緑内障の早期診断技術として網膜の繊維構造に起因する複屈折量を計測する試みがなされ、この方法による診断装置が市販されている。複屈折は網膜だけが持つ特性では無く角膜も複屈折特性を持ち、眼底網膜の計測を行うためには角膜由来の複屈折を除去する必要がある。これに対して市販されている診断装置は、角膜由来の複屈折は固定値として装置内に記憶して用いている。そのため実際の検査時においては、頭(=眼球)の姿勢や、左右眼の取り違えなどによって診断値が大きく変動する(=計測誤差)ということが報告されている。   In the medical field, attempts have been made to measure the amount of birefringence resulting from the fiber structure of the retina as an early diagnosis technique for glaucoma, and a diagnostic apparatus using this method is commercially available. Birefringence is not only a characteristic of the retina, but also the cornea has a birefringence characteristic. In order to measure the fundus retina, it is necessary to remove the birefringence derived from the cornea. On the other hand, a commercially available diagnostic apparatus uses cornea-derived birefringence as a fixed value stored in the apparatus. For this reason, it has been reported that the diagnostic value varies greatly (= measurement error) depending on the posture of the head (= eyeball) and the right and left eyes being mixed during actual examination.

特開平8-327498JP-A-8-327498 特開2012-52972JP2012-52972

従来の測定方法では、以上説明したように制約があり、十分な測定精度が得られないという課題がある。   As described above, the conventional measurement method has limitations, and there is a problem that sufficient measurement accuracy cannot be obtained.

以上のような課題を解決するため、本発明によるプローブ光を用いて光学特性を測定する方法は、偏光特性を持つ複数の測定対象物をプローブ光の経路に配置するステップと、偏光した入射光と、前記入射光を前記複数の測定対象物を通して得られる出射光とから、前記複数の測定対象物のミューラー行列を測定するステップと、前記複数の測定対象物のそれぞれの偏光特性モデルを選択するステップと、選択したそれぞれの偏光特性モデルに応じて連立方程式を立てて解くことにより、前記複数の測定対象物のそれぞれの偏光特性を求めるステップとを備えることを特徴としている。   In order to solve the above problems, a method for measuring optical characteristics using probe light according to the present invention includes a step of arranging a plurality of measurement objects having polarization characteristics in a path of probe light, and polarized incident light. Measuring the Mueller matrix of the plurality of measurement objects from the incident light obtained by passing the incident light through the plurality of measurement objects; and selecting a polarization characteristic model of each of the plurality of measurement objects And a step of obtaining each polarization characteristic of the plurality of measurement objects by solving simultaneous equations in accordance with each selected polarization characteristic model.

また、本発明による光学特性の測定装置は、プローブ光の光源と、偏光発生系と、偏光検出系と、光検出器とを備えた複数の測定対象物の光学特性の測定装置であって、前記偏光発生系から照射される入射光と、前記偏光検出系に入る出射光の偏光特性から、ミューラー行列を算出する演算部を備え、前記演算部は、さらに前記ミューラー行列から、前記複数の測定対象物の偏光特性モデルのモデルパラメータを算出することを特徴としている。   Further, the optical characteristic measuring apparatus according to the present invention is a measuring apparatus for optical characteristics of a plurality of measurement objects including a probe light source, a polarization generation system, a polarization detection system, and a photodetector, A calculation unit that calculates a Mueller matrix from the polarization characteristics of incident light irradiated from the polarization generation system and output light that enters the polarization detection system, and the calculation unit further includes the plurality of measurements from the Mueller matrix. It is characterized by calculating a model parameter of a polarization characteristic model of an object.

本発明によれば、一度の測定操作により、精度の高い光学特性の測定が可能であるという効果がある。   According to the present invention, it is possible to measure optical characteristics with high accuracy by a single measurement operation.

は、本発明による光学特性の測定装置の模式図である。These are the schematic diagrams of the measuring apparatus of the optical characteristic by this invention. は、本発明による光学特性の測定方法のフローを示す図である。These are figures which show the flow of the measuring method of the optical characteristic by this invention. は、本発明の実施例1による測定セルを備えた光学特性の測定装置を示す図である。These are figures which show the measuring apparatus of the optical characteristic provided with the measurement cell by Example 1 of this invention. は、本発明の実施例1による測定セルを備えた光学特性の測定装置を用いた光学特性の測定方法のフローを示す図である。These are figures which show the flow of the measuring method of the optical characteristic using the measuring apparatus of the optical characteristic provided with the measuring cell by Example 1 of this invention. は、本発明の実施例1による測定セルを備え、さらに応力印加装置と温度制御装置を備えた光学特性の測定装置を示す図である。These are figures which show the measuring apparatus of the optical property provided with the measurement cell by Example 1 of this invention, and also provided with the stress application apparatus and the temperature control apparatus. は、本発明の実施例1によるヒーターを備えた光学特性の測定装置であって、測定対象物に圧縮応力を加えた様子を示す図である。These are the optical characteristic measuring apparatuses provided with the heater by Example 1 of this invention, Comprising: It is a figure which shows a mode that compressive stress was added to the measuring object. は、本発明の実施例1によるヒーターを備えた光学特性の測定装置であって、測定対象物に引張応力を加えた様子を示す図である。These are the optical characteristic measuring apparatuses provided with the heater by Example 1 of this invention, Comprising: It is a figure which shows a mode that tensile stress was applied to the measuring object. は、本発明の実施例1による光学特性の測定装置を模して測定を行った結果を示す図である。These are figures which show the result of having measured by imitating the measuring device of the optical characteristic by Example 1 of the present invention. は、本発明の実施例2による対物レンズを備えた光学特性の測定装置を示す図である。These are figures which show the measuring apparatus of the optical characteristic provided with the objective lens by Example 2 of this invention. は、本発明の実施例3による多層フィルムを測定対象物とした場合の光学特性の測定を示す図である。These are figures which show the measurement of the optical characteristic at the time of setting the multilayer film by Example 3 of this invention as a measuring object. は、本発明の実施例4による眼球の網膜と角膜を測定対象物とした場合の光学特性の測定を示す図である。These are figures which show the measurement of the optical characteristic at the time of making the retina and cornea of the eyeball by Example 4 of this invention into a measuring object.

以下に、本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施するための光学特性の測定装置の模式図である。測定装置は、光を発光するための光源4と、この光源から光を受けて測定対象物へ入射するプローブ光の偏光状態を制御するための偏光発生系5と、この偏光発生系5から測定対象物1〜3を透過して得られる出射光の偏光状態を検出する偏光検出系6、光の強度を測定する光検出器7を備えている。8は演算部であり、入射光の偏光状態と出射光の偏光状態からミューラー行列を算出する。ここで、演算部は、光源4、偏光発生系5、偏光検出系6、光検出器7の制御部を兼ねていてもよい。9はプローブ光の経路を示している。   FIG. 1 is a schematic diagram of an optical characteristic measuring apparatus for carrying out the present invention. The measurement apparatus includes a light source 4 for emitting light, a polarization generation system 5 for controlling the polarization state of probe light that is received from the light source and is incident on a measurement object, and measurement is performed from the polarization generation system 5. A polarization detection system 6 for detecting the polarization state of outgoing light obtained through the objects 1 to 3 and a photodetector 7 for measuring the intensity of light are provided. An arithmetic unit 8 calculates a Mueller matrix from the polarization state of incident light and the polarization state of outgoing light. Here, the calculation unit may also serve as a control unit for the light source 4, the polarization generation system 5, the polarization detection system 6, and the photodetector 7. Reference numeral 9 denotes a probe light path.

ここで測定対象物1〜3はプローブ光の経路中に直列で配置されている。図ではすべての測定対象物が光が透過する系を示しているが、一部の測定対象物が反射系であっても構わない。   Here, the measurement objects 1 to 3 are arranged in series in the probe light path. Although the drawing shows a system in which all measurement objects transmit light, some of the measurement objects may be reflection systems.

図2は本発明を実施するための光学特性の測定方法のフローを示す図である。本発明による光学特性の測定方法を以下に説明する。   FIG. 2 is a diagram showing a flow of an optical characteristic measuring method for carrying out the present invention. A method for measuring optical characteristics according to the present invention will be described below.

まず、図1に示すように、複数の測定対象物が直列となるようにプローブ光の経路の中に配置する。図1では直線状のプローブ光の経路を示しているが、測定対象物が反射系の場合には所定の反射角をもってその経路を曲げても構わない。   First, as shown in FIG. 1, it arrange | positions in the path | route of probe light so that a several measurement target object may become in series. In FIG. 1, a linear probe light path is shown. However, when the object to be measured is a reflection system, the path may be bent with a predetermined reflection angle.

次に、偏光した入射光と、入射光を複数の測定対象物を通して得られる出射光とから、複数の測定対象物を合わせた系のミューラー行列を測定する。ミューラー行列を測定するミューラーマトリクスポラリメトリーとしては、二重回転法や4ディテクタポラリメータ法などがあるが、どれを用いても構わない。   Next, the Mueller matrix of the system that combines the plurality of measurement objects is measured from the polarized incident light and the emitted light obtained by passing the incident light through the plurality of measurement objects. As the Mueller matrix polarimetry for measuring the Mueller matrix, there are a double rotation method and a 4-detector polarimeter method, and any method may be used.

次に、個々の測定対象物の偏光特性モデルを選択する。測定対象物の偏光特性の種類が分かっている場合にはそのモデルを選択すればいいが、偏光特性の種類が未知の場合には、準備した偏光特性モデルを順次仮定して算出し、フィッティング等の手法により最も妥当と思えるものを選択して、偏光特性モデルを決定してもよい。   Next, a polarization characteristic model of each measurement object is selected. If the type of polarization characteristics of the measurement object is known, the model can be selected. However, if the type of polarization characteristics is unknown, it is calculated by assuming the prepared polarization characteristics model sequentially, and fitting, etc. The polarization characteristic model may be determined by selecting the most appropriate one by the above method.

複屈折位相差を持つ物質の光学特性の表記法としてミューラー行列がある。ミューラー行列は4×4=16個のパラメータを持ち、各パラメータは物質により異なる。一般にはミューラー行列を、

と記述する。
There is a Mueller matrix as a notation of optical properties of a substance having a birefringence phase difference. The Mueller matrix has 4 × 4 = 16 parameters, and each parameter varies depending on the substance. In general, Mueller matrix

Is described.

以下に種々の複屈折特性を持つ物質の偏光特性モデルを示す。   The following shows polarization characteristics models of materials having various birefringence characteristics.

直線複屈折特性をもつ物質の偏光特性モデルのミューラー行列は、

であり、δは複屈折位相差、θは直線複屈折の主軸方位を表している。
Mueller matrix of polarization property model of material with linear birefringence property is

Δ represents the birefringence phase difference, and θ represents the principal axis orientation of linear birefringence.

旋光複屈折特性をもつ物質の偏光特性モデルのミューラー行列は、

であり、φは施光角である。
The Mueller matrix of the polarization property model of a substance with optical rotatory birefringence is

And φ is a light application angle.

二色性複屈折特性をもつ物質の偏光特性モデルのミューラー行列は、

であり、βは直線二色性複屈折の主軸方位、qはβ方位に振動する光の透過率、rはβと垂直方位に振動する光の透過率である。
Mueller matrix of polarization property model of material with dichroic birefringence is

Β is the principal axis direction of linear dichroic birefringence, q is the transmittance of light oscillating in the β direction, and r is the transmittance of light oscillating in the direction perpendicular to β.

円二色性複屈折特性をもつ物質の偏光特性モデルのミューラー行列は、

であり、sは左回り円偏光の透過率、tは右回り円偏光の透過率である。
Mueller matrix of polarization property model for materials with circular dichroic birefringence is

S is the transmittance of counterclockwise circularly polarized light, and t is the transmittance of clockwise circularly polarized light.

反射型等方性複屈折特性をもつ物質の偏光特性モデルのミューラー行列は、

であり、Ψは振幅比の角度表示、Δは位相差である。
Mueller matrix of polarization property model of material with reflective isotropic birefringence is

Ψ is an angle display of the amplitude ratio, and Δ is a phase difference.

このように16個の行列要素はすべてが独立しているのではなく、ゼロと1の要素以外は1〜3つのパラメータの関数であり、お互いに関連のある量である。これらのパラメータが決まれば16個の行列要素が決まる。また、非対角要素間の対称性または反対称性をもつ。そのため、それぞれの物質の偏光特性を示すミューラー行列は以下の一般式で簡単に表すことができる。

ここで、符号+と―は、対称性と反対称性を示すもので、左の非対角要素が一斉に+または−になる訳ではない。
Thus, the 16 matrix elements are not all independent, but the elements other than zero and 1 are functions of 1 to 3 parameters, which are quantities related to each other. If these parameters are determined, 16 matrix elements are determined. Also, it has symmetry or antisymmetry between non-diagonal elements. Therefore, the Mueller matrix indicating the polarization characteristics of each substance can be simply expressed by the following general formula.

Here, the signs + and − indicate symmetry and antisymmetry, and the left off-diagonal elements are not simultaneously + or −.

ここで図1に表わされる3つの測定対象物のそれぞれのミューラー行列をM
、Mで表わすと、3つを合成した測定対象物系のミューラー行列M123は、3つのそれぞれの行列を乗算したものとなる。

すなわち、入射光が通過する順に行列を右から順に乗算すると全体の系のミューラー行列が得られる。ここで、行列の乗算は交換法則が成り立たないため、(3)式の偏光素子行列の順を入れ替えることは出来ない。
M 1 each Mueller matrix here three measuring object represented in Figure 1,
When represented by M 2 and M 3 , the Mueller matrix M 123 of the measurement object system obtained by combining the three is obtained by multiplying the three respective matrices.

That is, the entire system Mueller matrix is obtained by multiplying the matrix sequentially from the right in the order in which incident light passes. Here, since the multiplication of the matrix does not hold the exchange law, the order of the polarization element matrix of the equation (3) cannot be changed.

測定対象物の各ミューラー行列M
、Mで表わすと、3つの測定対象物を合成した系のミューラー行列M123は、

となる。ここで下付き数1、2、3はそれぞれ測定対象物1、2、3の行列要素であることを示す。
Each Mueller matrix M 1 of the measurement object,
When expressed by M 2 and M 3 , the Mueller matrix M 123 of a system in which three measurement objects are synthesized is

It becomes. Here, subscript numbers 1, 2, and 3 indicate matrix elements of measurement objects 1, 2, and 3, respectively.

式(4)は16元連立方程式になる。最後に、これらの連立方程式を解き、配置されている測定対象物のパラメータ(δ、θ)などを求める。連立方程式を解く方法としては、知られている加減法、代入法、ニュートン法、二分法などを用いればよい。式(2)の連立方程式は光路に配置される測定対象物の特性により元数が変わり、また符号も具体的な行列要素により変わる。   Equation (4) becomes a 16-element simultaneous equation. Finally, these simultaneous equations are solved to determine parameters (δ, θ) and the like of the object to be measured. As a method for solving simultaneous equations, a known addition / subtraction method, substitution method, Newton method, bisection method, or the like may be used. In the simultaneous equations of Equation (2), the numerator changes depending on the characteristics of the measurement object arranged in the optical path, and the sign also changes depending on specific matrix elements.

得られたパラメータを測定対象物のミューラー行列に代入し、演算することにより、所望の光学特性を得ることができる。   By substituting the obtained parameters into the Mueller matrix of the measurement object and calculating, desired optical characteristics can be obtained.

以下に、測定対象物の数と偏光特性モデルの種類に依る連立方程式とその元数および求めようとする特性パラメータの具体例を示す。   The following are specific examples of simultaneous equations, their genres, and characteristic parameters to be obtained depending on the number of objects to be measured and the type of polarization characteristic model.

<1−1.測定対象物が3つであり、すべて直線複屈折特性を持つ場合>
式(1-2)から、式(4)のA-Lは次式となり、

したがって、式(4)は次式となる。

式(6)の行列要素m22−m44は3つの測定対象物の未知パラメータ6個(δ1,δ2,δ3,θ1,θ2,θ3)を含む9元連立方程式となる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式は一義的な解を持つ。
<1-1. When there are three objects to be measured and all have linear birefringence characteristics>
From equation (1-2), AL in equation (4) becomes:

Therefore, Expression (4) becomes the following expression.

The matrix element m 22 -m 44 in the equation (6) is a nine-way simultaneous equation including six unknown parameters (δ 1 , δ 2 , δ 3 , θ 1 , θ 2 , θ 3 ) of the three measurement objects. . Since there are many simultaneous equations with unknown parameters, these simultaneous equations have a unique solution.

<1−2.さらに複屈折位相差δが小さく、δ<<1と近似できる場合>
測定対象物1、2、3の中で、1と3の複屈折位相差δが小さく、δ<<1として近似できる(sinδ=δ、cosδ=1)時、式(5)の各要素は

となり,したがって,式(6)は次式になる。

式(8)の行列要素m22−m44は3つの測定対象物の未知パラメータ6個(δ1,δ2,δ3,θ1,θ2,θ3)を含む9元連立方程式となる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式も一義的な解を持つ。
<1-2. When the birefringence phase difference [delta] is small and [delta] << 1 can be approximated>
Among the measurement objects 1, 2, and 3, when the birefringence phase difference δ between 1 and 3 is small and can be approximated as δ << 1 (sin δ = δ, cos δ = 1), each element of equation (5) is

Therefore, Equation (6) becomes

The matrix element m 22 -m 44 in the equation (8) is a nine-element simultaneous equation including six unknown parameters (δ 1 , δ 2 , δ 3 , θ 1 , θ 2 , θ 3 ) of the three measurement objects. . Since there are many elements of simultaneous equations for unknown parameters, these simultaneous equations also have a unique solution.

測定対象物1と3が直線複屈折特性で、測定対象物2が直線複屈折特性以外の場合でも、連立方程式を立てることにより各素子のパラメータ(δ、θ、φ、q、r、β等)を同時に求めることができる。その具体例を以下に示す。   Even when the measurement objects 1 and 3 have a linear birefringence characteristic and the measurement object 2 has a characteristic other than the linear birefringence characteristic, parameters (δ, θ, φ, q, r, β, etc.) of each element can be established by establishing simultaneous equations. ) At the same time. Specific examples are shown below.

<2−1.測定対象物1、3が直線複屈折特性であり、測定対象物2が旋光複屈折特性を持つ場合>
式(4)のA-Lは以下の式になり、


したがって、式(4)は次式になる。

式(10)の行列要素m22−m44は3つの測定対象物の未知パラメータ5個(δ、δ、θ、θ、φ)を含む9元連立方程式となる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式も一義的な解を持つ。
<2-1. When the measurement objects 1 and 3 have linear birefringence characteristics and the measurement object 2 has optical rotation birefringence characteristics>
AL in equation (4) becomes the following equation:


Therefore, Expression (4) becomes the following expression.

The matrix element m 22 -m 44 in the equation (10) is a nine-element simultaneous equation including five unknown parameters (δ 1 , δ 3 , θ 1 , θ 3 , φ) of the three measurement objects. Since there are many elements of simultaneous equations for unknown parameters, these simultaneous equations also have a unique solution.

<2−2.さらに複屈折位相差δが小さく、δ<<1と近似できる場合>
測定対象物1、2、3の中で、1と3の複屈折位相差δが小さく、δ<<1として近似できる(sinδ=δ、cosδ=1)時、式(7)を式(10)に代入すると次式になる。

式(11)の行列要素m22−m44は3つの測定対象物の未知パラメータ5個(δ、δ、θ、θ、φ)を含む9元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式も一義的な解を持つ。
<2-2. When the birefringence phase difference [delta] is small and [delta] << 1 can be approximated>
Among the measurement objects 1, 2, and 3, when the birefringence phase difference δ between 1 and 3 is small and can be approximated as δ << 1 (sin δ = δ, cos δ = 1), Equation (7) Substituting for) gives

The matrix element m 22 -m 44 in the equation (11) is a nine-element simultaneous equation including five unknown parameters (δ 1 , δ 3 , θ 1 , θ 3 , φ) of the three measurement objects. Since there are many elements of simultaneous equations for unknown parameters, these simultaneous equations also have a unique solution.

<3−1.測定対象物1、3が直線複屈折特性であり、測定対象物2が二色性複屈折特性を持つ場合>
式(4)のA-Lは以下の式になり、


したがって,式(4)は下式になる。

式(13)の行列要素m11−m44は3つの測定対象物の未知パラメータ7個(δ、δ、θ、θ、q、r、β)を含む16元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式も一義的な解を持つ。
<3-1. When the measurement objects 1 and 3 have linear birefringence characteristics and the measurement object 2 has dichroic birefringence characteristics>
AL in equation (4) becomes the following equation:


Therefore, Equation (4) becomes

The matrix element m 11 -m 44 in the equation (13) is a 16-way simultaneous equation including seven unknown parameters (δ 1 , δ 3 , θ 1 , θ 3 , q, r, β) of the three measurement objects. . Since there are many elements of simultaneous equations for unknown parameters, these simultaneous equations also have a unique solution.

<3−2.さらに複屈折位相差δが小さく、δ<<1と近似できる場合>
測定対象物1、2、3の中で、1と3の複屈折位相差δが小さく、δ<<1として近似できる(sinδ=δ、cosδ=1)時、式(5)を式(11)に代入すると次式になる。

式(14)の行列要素m11−m44は3つの測定対象物の未知パラメータ7個(δ、δ、θ、θ、q、r、β)を含む14元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式も一義的な解を持つ。
3-2. When birefringence phase difference δ is small and δ << 1 can be approximated>
Among the measurement objects 1, 2, and 3, when the birefringence phase difference δ between 1 and 3 is small and can be approximated as δ << 1 (sin δ = δ, cos δ = 1), Equation (5) Substituting for) gives

The matrix element m 11 -m 44 in the equation (14) is a 14-element simultaneous equation including seven unknown parameters (δ 1 , δ 3 , θ 1 , θ 3 , q, r, β) of the three measurement objects. . Since there are many elements of simultaneous equations for unknown parameters, these simultaneous equations also have a unique solution.

<4−1.測定対象物1、3が直線複屈折特性であり、測定対象物2が円二色性複屈折特性を持つ場合>
式(4)のA-Lは以下の式になり、


したがって、式(4)は次式になる。

式(16)の行列要素m11−m44は3つの測定対象物の未知パラメータ6個(δ、δ、θ、θ、s、t)を含む16元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式も一義的な解を持つ。
<4-1. Measurement objects 1 and 3 have linear birefringence characteristics, and measurement object 2 has circular dichroic birefringence characteristics>
AL in equation (4) becomes the following equation:


Therefore, Expression (4) becomes the following expression.

The matrix element m 11 -m 44 in the equation (16) is a 16-element simultaneous equation including six unknown parameters (δ 1 , δ 3 , θ 1 , θ 3 , s, t) of the three measurement objects. Since there are many elements of simultaneous equations for unknown parameters, these simultaneous equations also have a unique solution.

<4−2.さらに複屈折位相差δが小さく、δ<<1と近似できる場合>
測定対象物1、2、3の中で、1と3の複屈折位相差δが小さく、δ<<1として近似できる(sinδ=δ、cosδ=1)時、式(15)を式(16)に代入すると次式になる。

式(17)の行列要素m11−m44は3つの測定対象物の未知パラメータ6個(δ、δ、θ、θ、s、tを含む15元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式も一義的な解を持つ。
<4-2. Case where birefringence phase difference δ is small and δ <<1>
Among the measurement objects 1, 2, and 3, when the birefringence phase difference δ between 1 and 3 is small and can be approximated as δ << 1 (sin δ = δ, cos δ = 1), Equation (15) Substituting for) gives

The matrix element m 11 -m 44 in the equation (17) is a 15-element simultaneous equation including six unknown parameters (δ 1 , δ 3 , θ 1 , θ 3 , s, t) of the three measurement objects. Since there are many elements of simultaneous equations, this simultaneous equation also has a unique solution.

<5.測定対象物1、3が直線複屈折特性であり、測定対象物2が反射型等方性複屈折特性を持つ場合>
式(4)は次式になる。

式(18)の行列要素行列要素m12-44は3つの測定対象物の未知パラメータ6個(δ、δ、θ、θ、Δ、Ψ)を含む15元連立方程式になる。測定対象物1、3のE-Lが関連性のないパラメータの場合、式(18)は未知のパラメータ14個(E-L、 E-L、Δ、Ψ)を含む15元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式も一義的な解を持つ。
<5. Measurement objects 1 and 3 have linear birefringence characteristics and measurement object 2 has reflective isotropic birefringence characteristics>
Equation (4) becomes the following equation.

The matrix element m 12 -m 44 in the equation (18) becomes a 15-way simultaneous equation including six unknown parameters (δ 1 , δ 3 , θ 1 , θ 3 , Δ, ψ) of the three measurement objects. . When the ELs of the measurement objects 1 and 3 are irrelevant parameters, the equation (18) is a 15-way simultaneous equation including 14 unknown parameters (E 1 -L 2 , E 2 -L 2 , Δ, Ψ). become. Since there are many elements of simultaneous equations for unknown parameters, these simultaneous equations also have a unique solution.

本方法は以下の測定対象物が2つの場合の偏光パラメータを決めることもできる。その具体例を以下に示す。測定対象物1、2の時、式(4)のA-Lは次式になり、

したがって、式(4)は次式になる。
This method can also determine the polarization parameters when there are two objects to be measured. Specific examples are shown below. When measuring objects 1 and 2, A 3 -L 3 in equation (4) becomes:

Therefore, Expression (4) becomes the following expression.

<6.測定対象物が2つであり、どちらも直線複屈折特性を持つ場合>
式(20)は次式になる。

式(21)の行列要素m22-44は2つの測定対象物の未知パラメータ4個(δ、δ、θ、θ)を含む9元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式は一義的な解を持つ。
<6. When there are two objects to be measured and both have linear birefringence characteristics>
Equation (20) becomes the following equation.

The matrix element m 22- m 44 in the equation (21) is a nine-way simultaneous equation including four unknown parameters (δ 1 , δ 3 , θ 1 , θ 3 ) of the two measurement objects. Since there are many simultaneous equations with unknown parameters, these simultaneous equations have a unique solution.

<7−1.測定対象物1が直線性、測定対象物2が旋光性の複屈折特性を持つ場合>
式(20)は次式になる。

式(22)の行列要素m22-44は2つの測定対象物の未知パラメータ3個(δ、θ、φ)を含む9元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式は一義的な解を持つ。
<7-1. When the measurement object 1 has linearity and the measurement object 2 has optical rotatory birefringence>
Equation (20) becomes the following equation.

The matrix element m 22- m 44 in the equation (22) is a nine-way simultaneous equation including three unknown parameters (δ, θ, φ) of two measurement objects. Since there are many simultaneous equations with unknown parameters, these simultaneous equations have a unique solution.

<7−2.測定対象物1が旋光性、測定対象物2が直線性の複屈折特性を持つ場合>
式(20)は次式になる。

式(23)の行列要素m22-44は2つの測定対象物の未知パラメータ3個(δ、θ、φ)を含む9元連立方程式になる。未知パラメータに対して連立方程式の元数が多いため、この連立方程式は一義的な解を持つ。
<7-2. When measurement object 1 has optical rotation and measurement object 2 has linear birefringence characteristics>
Equation (20) becomes the following equation.

The matrix element m 22- m 44 in the equation (23) is a nine-element simultaneous equation including three unknown parameters (δ, θ, φ) of two measurement objects. Since there are many simultaneous equations with unknown parameters, these simultaneous equations have a unique solution.

<8−1.測定対象物1が直線性、測定対象物2が直線二色性の複屈折特性を持つ場合>
式(20)は次式になる。
<8-1. When the measuring object 1 has linearity and the measuring object 2 has linear dichroic birefringence characteristics>
Equation (20) becomes the following equation.

<8−2. さらに複屈折位相差δが小さく、δ<<1と近似できる場合>
測定対象物1の複屈折位相差δが小さく、δ<<1として近似できる(sinδ=δ、cosδ=1)時、式(20)は次式になる。
<8-2. When birefringence phase difference δ is small and δ << 1 can be approximated>
When the birefringence phase difference δ of the measurement object 1 is small and can be approximated as δ << 1 (sin δ = δ, cos δ = 1), the equation (20) becomes the following equation.

<8−3. 測定対象物1が直線二色性、測定対象物2が直線性の複屈折特性を持つ場合>
式(20)は下式になる。
<8-3. When measurement object 1 has linear dichroism and measurement object 2 has linear birefringence characteristics>
Equation (20) becomes the following equation.

<8−4. さらに複屈折位相差δが小さく、δ<<1と近似できる場合>
測定対象物2の複屈折位相差δが小さく、δ<<1として近似できる(sinδ=δ、cosδ=1)時、式(20)は次式になる。

式(24-27)の行列要素m11-44はそれぞれ2つの測定対象物の未知パラメータ5個(δ、θ、q、r、β)を含む15元又は13元連立方程式になる。
<8-4. When birefringence phase difference δ is small and δ << 1 can be approximated>
When the birefringence phase difference δ of the measurement object 2 is small and can be approximated as δ << 1 (sin δ = δ, cos δ = 1), the equation (20) becomes the following equation.

The matrix elements m 11- m 44 in the equation (24-27) are 15-way or 13-way simultaneous equations each including five unknown parameters (δ, θ, q, r, β) of two measurement objects.

<9−1.測定対象物1が直線性、測定対象物2が円二色性の複屈折特性を持つ場合>
式(20)は次式になる。
<9-1. When the measurement object 1 has linearity and the measurement object 2 has birefringence characteristics of circular dichroism>
Equation (20) becomes the following equation.

<9−2. さらに複屈折位相差δが小さく、δ<<1と近似できる場合>
測定対象物1の複屈折位相差δが小さく、δ<<1として近似できる(sinδ=δ、cosδ=1)時、式(20)は次式になる。
<9-2. When birefringence phase difference δ is small and δ << 1 can be approximated>
When the birefringence phase difference δ of the measurement object 1 is small and can be approximated as δ << 1 (sin δ = δ, cos δ = 1), the equation (20) becomes the following equation.

<9−3.測定対象物1が円二色性、測定対象物2が直線性の複屈折特性を持つ場合>
式(20)は次式になる。
<9-3. When measurement object 1 has circular dichroism and measurement object 2 has linear birefringence characteristics>
Equation (20) becomes the following equation.

<9−4. さらに複屈折位相差δが小さく、δ<<1と近似できる場合>
測定対象物2の複屈折位相差δが小さく、δ<<1として近似できる(sinδ=δ、cosδ=1)時、式(20)は次式になる。

式(28-31)の行列要素m11-44はそれぞれ2つの測定対象物の未知パラメータ4個(δ、θ、s、t)を含む14元又は11元連立方程式になる。
<9-4. When birefringence phase difference δ is small and δ << 1 can be approximated>
When the birefringence phase difference δ of the measurement object 2 is small and can be approximated as δ << 1 (sin δ = δ, cos δ = 1), the equation (20) becomes the following equation.

The matrix elements m 11- m 44 in the equation (28-31) are 14-element or 11-element simultaneous equations each including four unknown parameters (δ, θ, s, t) of two measurement objects.

以下に、本発明の実施例1について詳細に説明する。   Hereinafter, Example 1 of the present invention will be described in detail.

図3は本実施例による測定セル内に置いた測定対象物の光学特性を測定する装置である。図中破線で囲われた部分10が測定セルである。測定セル10は透明な材質により設けられた入射窓1と出射窓3を備えている。真の測定対象物2は測定セル内に配置される。また図1と同様に、光を発光するための白色光源4と、この光源から光を受けて測定対象物へ入射するプローブ光の偏光状態を制御するための偏光発生系5と、この偏光発生系5から入射窓1、真の測定対象物2と出射窓3を透過して得られる出射光の偏光状態を検出する偏光検出系6、光の強度を測定する光検出器7を備えている。8は演算部であり、入射光の偏光状態と出射光の偏光状態からミューラー行列を算出する。ここで、演算部は、白色光源4、偏光発生系5、偏光検出系6、光検出器7の制御部を兼ねている。9はプローブ光の経路を示している。ここで入射窓1と出射窓3の光学特性も不明であるため、入射窓1、真の測定対象物2と出射窓3が上述した測定対象物1〜3となる。   FIG. 3 shows an apparatus for measuring the optical characteristics of the measurement object placed in the measurement cell according to this embodiment. A portion 10 surrounded by a broken line in the figure is a measurement cell. The measurement cell 10 includes an entrance window 1 and an exit window 3 made of a transparent material. The true measurement object 2 is arranged in the measurement cell. Similarly to FIG. 1, a white light source 4 for emitting light, a polarization generating system 5 for controlling the polarization state of probe light received from the light source and incident on the object to be measured, and this polarization generation A polarization detection system 6 for detecting the polarization state of the outgoing light obtained by passing through the entrance window 1, the true measurement object 2 and the outgoing window 3 from the system 5, and a photodetector 7 for measuring the light intensity are provided. . An arithmetic unit 8 calculates a Mueller matrix from the polarization state of incident light and the polarization state of outgoing light. Here, the calculation unit also serves as a control unit for the white light source 4, the polarization generation system 5, the polarization detection system 6, and the photodetector 7. Reference numeral 9 denotes a probe light path. Here, since the optical characteristics of the entrance window 1 and the exit window 3 are also unknown, the entrance window 1, the true measurement object 2 and the exit window 3 are the above-described measurement objects 1 to 3.

図4は本実施例の光学特性の測定方法のフローを示す図である。本発明による光学特性の測定方法を以下に説明する。まず、図3に示すように、測定セル10の内部に真の測定対象物2を入射窓1と出射窓3の間のプローブ光の経路9内に配置する。次に、入射窓1と出射窓3を含む測定対象物の系のミューラー行列を既知の方法により測定する。   FIG. 4 is a diagram showing the flow of the optical characteristic measuring method of this embodiment. A method for measuring optical characteristics according to the present invention will be described below. First, as shown in FIG. 3, the true measurement object 2 is placed inside the measurement cell 10 in the probe light path 9 between the entrance window 1 and the exit window 3. Next, the Mueller matrix of the system of the measurement object including the entrance window 1 and the exit window 3 is measured by a known method.

次に、偏光特性モデルの選択を行うが、入射窓1と出射窓3は既に偏光特性モデルが分かっているものとして扱う。本実施例では、直線複屈折特性を持つ窓材料を用いたため、直線複屈折特性モデルを用いた。真の測定対象物2の光学特性は未知であるが、材料から推定できる偏光特性を仮定し、適切と思われる偏光特性モデルを選択する。次に、得られた測定対象物の系のミューラー行列から、選択したモデルに応じた連立方程式を立て、解を求める。得られた真の測定対象物のパラメータから所望の光学特性を算出する。   Next, the polarization characteristic model is selected, and the entrance window 1 and the exit window 3 are treated as those for which the polarization characteristic model is already known. In this embodiment, since a window material having linear birefringence characteristics is used, a linear birefringence characteristic model is used. Although the optical property of the true measurement object 2 is unknown, a polarization property model that is considered appropriate is selected assuming a polarization property that can be estimated from the material. Next, a simultaneous equation corresponding to the selected model is established from the Mueller matrix of the system of the obtained measurement object, and a solution is obtained. Desired optical characteristics are calculated from the parameters of the true measurement object obtained.

図5は、測定セルの内部に応力印加装置11と温度制御装置12を設けた例を示している。応力印加装置11は測定対象物2を保持するとともに、制御部を兼ねた演算部8により、ステップモータやアクチュエータなどの駆動系により、引張応力や圧縮応力、あるいはねじりやせん断応力などを測定対象物2に加える事ができる。また温度制御装置12はやはり制御部を兼ねた演算部8により、ヒーターなどの発熱素子やペルチェ素子のような冷却素子などにより、測定セル内部の温度を制御することができる。   FIG. 5 shows an example in which the stress applying device 11 and the temperature control device 12 are provided inside the measurement cell. The stress applying device 11 holds the measurement object 2 and also measures the tensile stress, the compressive stress, the torsion, the shear stress, and the like by a calculation unit 8 that also serves as a control unit and a drive system such as a step motor and an actuator. Can be added to 2. Further, the temperature control device 12 can control the temperature inside the measurement cell by a heating element such as a heater or a cooling element such as a Peltier element by the calculation unit 8 that also serves as a control unit.

これらにより、偏光特性の応力依存性である光弾性効果や、偏光特性の温度依存性、また光弾性効果そのものの温度依存性などを測定する事ができる。   Thus, it is possible to measure the photoelastic effect, which is the stress dependence of the polarization characteristics, the temperature dependence of the polarization characteristics, the temperature dependence of the photoelastic effect itself, and the like.

図6、図7は具体的にヒーターを備えた測定セルの内部を示しており、図6では圧縮応力を加えて被検試料の光弾性定数の温度依存性を測定する例を、図7では被検試料であるフィルムに引張応力を加えた場合の偏光特性を測定する例を示している。   6 and 7 specifically show the inside of a measurement cell equipped with a heater. FIG. 6 shows an example of measuring the temperature dependence of the photoelastic constant of a test sample by applying a compressive stress. It shows an example of measuring polarization characteristics when tensile stress is applied to a film as a test sample.

図8の(a)と(b)に、入射窓1と出射窓3に位相フィルムを用い、二分の一波長板を測定対象物2に見立てて光学特性を測定した例を示す。プローブ光の波長を横軸にとり、直線複屈折特性モデルを用いて得たδとθをそれぞれ(a)と(b)に示す。「窓無」のラインは入射窓1と出射窓3がなく二分の一波長板のみを測定したものであり、「窓補正前」のラインは入射窓1と出射窓3を含む系の測定結果であり、「窓補正後」のラインは本発明による光学特性の測定方法により求めた二分の一波長板のみの光学特性である。図からは窓無の場合と、窓補正後の特性がすべての波長域に亘って良く一致をしており、本発明による測定方法が有効である事を示している。   FIGS. 8A and 8B show an example in which a phase film is used for the entrance window 1 and the exit window 3, and the optical characteristics are measured with a half-wave plate as the measurement object 2. (A) and (b) show δ and θ obtained using the linear birefringence characteristic model with the wavelength of the probe light on the horizontal axis. The “no window” line is a measurement of only a half-wave plate without the entrance window 1 and the exit window 3, and the “before window correction” line is a measurement result of the system including the entrance window 1 and the exit window 3. The “after window correction” line is the optical characteristic of only the half-wave plate obtained by the optical characteristic measuring method according to the present invention. From the figure, the case of no window and the characteristic after window correction are in good agreement over all wavelength ranges, indicating that the measurement method according to the present invention is effective.

以下に、本発明の実施例2について説明する。   The second embodiment of the present invention will be described below.

図9は測定対象物1と3を対物レンズとし、測定対象物2としてフィルムを配置した例である。微視的な領域の光学特性の測定を行うため、フィルムの両側に配置した対物レンズによりプローブ光の径を絞り、局所的な測定を行っている。プローブ光が入射用と出射用の対物レンズを通過するように、それぞれのレンズの光軸をそろえておく必要がある。   FIG. 9 shows an example in which the measurement objects 1 and 3 are objective lenses and a film is disposed as the measurement object 2. In order to measure the optical characteristics of the microscopic region, the diameter of the probe light is reduced by an objective lens arranged on both sides of the film, and local measurement is performed. It is necessary to align the optical axes of the respective lenses so that the probe light passes through the entrance and exit objective lenses.

本実施例によれば、対物レンズを含む測定光学系をスキャンすることにより、フィルムの測定位置を連続して変化させることが可能となり、フィルム面内の光学特性マップを得る事もできる。パターンを形成した透明電極の光学特性の測定や、フィルムの均一性の評価などに用いることが可能である。   According to the present embodiment, it is possible to continuously change the measurement position of the film by scanning the measurement optical system including the objective lens, and an optical property map in the film plane can be obtained. It can be used for measuring the optical characteristics of a transparent electrode on which a pattern is formed, and for evaluating the uniformity of a film.

以下に、本発明の実施例3について説明する。   Example 3 of the present invention will be described below.

図10は積層フィルムを測定対象物としたものである。図では3層の積層フィルムを示している。それぞれの層を測定対象物1〜3として測定を行う。図では3層の例を示しているが、2層であっても構わない。   FIG. 10 shows a laminated film as an object to be measured. The figure shows a three-layer laminated film. Each layer is measured as measurement objects 1 to 3. In the figure, an example of three layers is shown, but two layers may be used.

また、実施の形態には測定対象物が3つまでの計算例しか示していないが、想定した偏光特性モデルの種類に依っては、同様の計算を4つ以上の測定対象物に対して行い、4層以上のフィルムに適用できる場合もある。さらに、それぞれの層のパラメータが何らかの測定により既知の場合にも、未知のパラメータの数と立てられる連立方程式の元数により、4層以上のフィルムに適用できる場合がある。   Moreover, although the embodiment shows only a calculation example with up to three measurement objects, the same calculation is performed on four or more measurement objects depending on the type of polarization characteristic model assumed. In some cases, it can be applied to a film having four or more layers. In addition, even when the parameters of each layer are known by some measurement, it may be applicable to a film having four or more layers depending on the number of unknown parameters and the number of simultaneous equations.

以下に、本発明の実施例4について説明する。   The fourth embodiment of the present invention will be described below.

図11に眼球の網膜の複屈折特性の測定例を示す。プローブ光は瞳から入射し、角膜、水晶体や硝子体を通過した後、網膜で反射し、再び入射経路と同様の経路を逆にたどって出射する。ここで測定対象物1と3を複屈折特性を持つ角膜とし、測定対象物2を網膜とする。網膜ではプローブ光は反射するので、網膜の偏光特性モデルとしては反射型等方特性を選択する。本実施例によれば角膜由来の複屈折を除去することができ、眼底網膜の光学特性を精度よく測定することが可能となり、精度の高い緑内障の早期診断が可能となる。   FIG. 11 shows an example of measuring the birefringence characteristics of the retina of the eyeball. The probe light is incident from the pupil, passes through the cornea, the crystalline lens, and the vitreous body, then is reflected by the retina, and is emitted again following the same path as the incident path. Here, the measurement objects 1 and 3 are corneas having birefringence characteristics, and the measurement object 2 is a retina. Since the probe light is reflected in the retina, the reflection type isotropic characteristic is selected as the polarization characteristic model of the retina. According to the present embodiment, birefringence derived from the cornea can be removed, the optical characteristics of the fundus retina can be measured with high accuracy, and early diagnosis of glaucoma with high accuracy becomes possible.

本発明による光学特性の測定方法及び光学特性の測定装置は、光学窓を備えた測定セル内に測定対象物を配置した状態で精度よく測定ができ、また、測定セル内で測定対象物に応力を印加したり、温度を制御する事ができるので、測定対象物の光弾性効果や光学特性の温度依存性、光弾性効果そのものの温度依存性を測定する事ができる。したがって成膜やエッチングなどの製造過程におけるその場観察が可能となり、半導体素子やディスプレイデバイスなどの電子機器や光学機器等の製造過程において、製造管理やリアルタイムでの測定データ収集に用いることができる。   The optical characteristic measuring method and the optical characteristic measuring apparatus according to the present invention can accurately measure the measurement object in a state where the measurement object is arranged in the measurement cell provided with the optical window, and the measurement object is stressed in the measurement cell. Can be applied and the temperature can be controlled, so that the temperature dependence of the photoelastic effect and optical characteristics of the measurement object and the temperature dependence of the photoelastic effect itself can be measured. Therefore, in-situ observation in the manufacturing process such as film formation and etching is possible, and it can be used for manufacturing management and real-time measurement data collection in the manufacturing process of electronic devices such as semiconductor elements and display devices, and optical devices.

また対物レンズを用いて微視的な領域での光学特性の測定が可能となるので、フィルム面内の光学特性マップを得る事や、パターンを形成した透明電極の光学特性の測定や、フィルムの均一性の評価などに用いることができる。また積層フィルムのそれぞれの層の光学特性の測定も可能となる。   In addition, since it is possible to measure the optical characteristics in the microscopic region using the objective lens, it is possible to obtain an optical characteristic map in the film plane, to measure the optical characteristics of the transparent electrode on which the pattern is formed, It can be used for evaluation of uniformity. In addition, the optical characteristics of each layer of the laminated film can be measured.

さらには医療分野において、網膜の繊維構造に起因する複屈折量を、角膜由来の複屈折を除去して計測することができ、緑内障の早期診断に役立てることが可能となる。   Furthermore, in the medical field, the amount of birefringence resulting from the fiber structure of the retina can be measured by removing the birefringence derived from the cornea, and can be used for early diagnosis of glaucoma.

1〜3 測定対象物
4 光源
5 偏光発生系
6 偏光検出系
7 光検出器
8 演算部
9 プローブ光経路
10 測定セル
11 応力印加装置
12 温度制御装置
1 to 3 Measurement object 4 Light source 5 Polarization generation system 6 Polarization detection system 7 Photodetector 8 Calculation unit 9 Probe light path 10 Measurement cell 11 Stress application device 12 Temperature control device

Claims (18)

プローブ光を用いて光学特性を測定する方法であって、
偏光特性を持つ複数の測定対象物をプローブ光の経路に配置するステップと、
偏光した入射光と、前記入射光を前記複数の測定対象物を通して得られる出射光とから、前記複数の測定対象物のミューラー行列を測定するステップと、
前記複数の測定対象物のそれぞれの偏光特性モデルを選択するステップと、
選択したそれぞれの偏光特性モデルに応じて連立方程式を立てて解くことにより、前記複数の測定対象物のそれぞれの偏光特性を求めるステップと、
を備えたことを特徴とする光学特性の測定方法。
A method of measuring optical characteristics using probe light,
Arranging a plurality of measurement objects having polarization characteristics in the probe light path;
Measuring the Mueller matrix of the plurality of measurement objects from the polarized incident light and the outgoing light obtained by passing the incident light through the plurality of measurement objects;
Selecting a polarization property model for each of the plurality of measurement objects;
Obtaining a polarization characteristic of each of the plurality of measurement objects by solving a simultaneous equation according to each selected polarization characteristic model; and
A method for measuring optical characteristics, comprising:
前記偏光特性モデルは、直線複屈折特性モデル、旋光複屈折特性モデル、二色性複屈折特性モデル、円二色性複屈折特性モデル、反射型等方性複屈折特性モデルの内から選択されることを特徴とする請求項1に記載の光学特性の測定方法。   The polarization characteristic model is selected from a linear birefringence characteristic model, an optical rotatory birefringence characteristic model, a dichroic birefringence characteristic model, a circular dichroic birefringence characteristic model, and a reflective isotropic birefringence characteristic model. 2. The method for measuring optical characteristics according to claim 1, wherein the optical characteristics are measured. 前記偏光特性モデルが、直線複屈折特性モデルであって、モデルパラメータの内、複屈折位相差δがδ<<1と近似できる場合のモデルであることを特徴とする請求項2に記載の光学特性の測定方法。   3. The optical system according to claim 2, wherein the polarization characteristic model is a linear birefringence characteristic model, and is a model when a birefringence phase difference δ can be approximated to δ << 1 among model parameters. How to measure characteristics. 前記測定対象物が3つであり、光源に最も近い側と最も遠い側の測定対象物の偏光特性モデルが直線複屈折特性モデルであることを特徴とする請求項2又は3のいずれかに記載の光学特性の測定方法。   4. The measurement object according to claim 2, wherein there are three measurement objects, and the polarization characteristic model of the measurement object closest to the light source and the farthest side is a linear birefringence characteristic model. Measuring method of optical properties. 前記測定対象物の内、光源から2番目に近い測定対象物の偏光特性モデルが直線複屈折特性モデル、旋光複屈折特性モデル、二色性複屈折特性モデル、円二色性複屈折特性モデル、反射型等方性複屈折特性モデルの内の1つであることを特徴とする請求項4に記載の光学特性の測定方法。   Among the measurement objects, the polarization characteristic model of the measurement object closest to the light source is a linear birefringence characteristic model, an optical rotation birefringence characteristic model, a dichroic birefringence characteristic model, a circular dichroic birefringence characteristic model, 5. The optical characteristic measuring method according to claim 4, wherein the optical characteristic measuring model is one of a reflection type isotropic birefringence characteristic model. 前記測定対象物が2つであり、少なくとも一方の測定対象物の偏光特性モデルが直線複屈折特性モデルであることを特徴とする請求項2又は3のいずれかに記載の光学特性の測定方法。   4. The method for measuring optical characteristics according to claim 2, wherein the number of the measurement objects is two, and the polarization characteristic model of at least one measurement object is a linear birefringence characteristic model. 前記測定対象物の内、他方の測定対象物の偏光特性モデルが、直線複屈折特性モデル、旋光複屈折特性モデル、二色性複屈折特性モデル、円二色性複屈折特性モデル、反射型等方性複屈折特性モデルの内の1つであることを特徴とする請求項6に記載の光学特性の測定方法。   Among the measurement objects, the polarization characteristic model of the other measurement object is a linear birefringence characteristic model, an optical rotation birefringence characteristic model, a dichroic birefringence characteristic model, a circular dichroic birefringence characteristic model, a reflection type, etc. 7. The method for measuring optical characteristics according to claim 6, wherein the optical characteristics measurement model is one of anisotropic birefringence characteristic models. 前記測定対象物が3つであり、それぞれの測定対象物が光源に近い方から順に、測定セルに設けられた入射窓、測定対象物、前記測定セルに設けられた出射窓であることを特徴とする請求項1から5のいずれかに記載の光学特性の測定方法。   The number of the measurement objects is three, and each measurement object is an incident window provided in the measurement cell, a measurement object, and an emission window provided in the measurement cell in order from the side closer to the light source. The method for measuring optical characteristics according to claim 1. 前記測定対象物が3つであり、それぞれの測定対象物が光源に近い方から順に、プローブ光を集光するための入射光用レンズ、測定対象物、出射光用レンズであることを特徴とする請求項1から5のいずれかに記載の光学特性の測定方法。   There are three measurement objects, and each measurement object is an incident light lens, a measurement object, and an output light lens for condensing probe light in order from the side closer to the light source. The method for measuring optical characteristics according to claim 1. 前記測定対象物が多層構造のフィルムの各層であることを特徴とする請求項1から5のいずれかに記載の光学特性の測定方法。   6. The method for measuring optical characteristics according to claim 1, wherein the object to be measured is each layer of a film having a multilayer structure. 前記測定対象物が3つであり、それぞれの測定対象物が入射光源に近い方から順に、入射光が透過する際の角膜、網膜、出射光が透過する際の前記角膜であることを特徴とする請求項1から5のいずれかに記載の光学特性の測定方法。   There are three measurement objects, and each measurement object is, in order from the side closer to the incident light source, the cornea when the incident light is transmitted, the retina, and the cornea when the emitted light is transmitted. The method for measuring optical characteristics according to claim 1. プローブ光の光源と、
偏光発生系と、
偏光検出系と、
光検出器と、
を備えた複数の測定対象物の光学特性の測定装置であって、
前記偏光発生系から照射される入射光と、前記偏光検出系に入る出射光の偏光特性から、ミューラー行列を算出する演算部を備え、
前記演算部は、さらに前記ミューラー行列から、前記複数の測定対象物の偏光特性モデルのモデルパラメータを算出することを特徴とする光学特性の測定装置。
A probe light source;
A polarization generating system;
A polarization detection system;
A photodetector;
A device for measuring the optical properties of a plurality of measurement objects comprising:
From the incident light irradiated from the polarization generation system and the polarization characteristics of the outgoing light entering the polarization detection system, comprising a calculation unit for calculating a Mueller matrix,
The optical characteristic measurement apparatus, wherein the calculation unit further calculates a model parameter of a polarization characteristic model of the plurality of measurement objects from the Mueller matrix.
測定対象物を内部に収めるための、入射窓と出射窓を有する測定セルをさらに備え、
前記複数の測定対象物に、前記入射窓と前記出射窓を含むことを特徴とする請求項12に記載の光学特性の測定装置。
A measuring cell having an entrance window and an exit window for containing the measurement object inside is further provided.
The optical characteristic measuring apparatus according to claim 12, wherein the plurality of measurement objects include the entrance window and the exit window.
前記測定対象物の温度を制御するための温度制御装置を備えたことを特徴とする請求項13に記載の光学特性の測定装置。   The optical characteristic measuring device according to claim 13, further comprising a temperature control device for controlling a temperature of the measurement object. 前記測定対象物に加わる応力を制御するための応力印加装置を備えたことを特徴とする請求項13又は14に記載の光学特性の測定装置。   The optical characteristic measuring device according to claim 13 or 14, further comprising a stress applying device for controlling stress applied to the measurement object. 前記プローブ光を集光して測定対象物に照射するための入射光用レンズと、測定対象物から前記プローブ光を受けるため出射光用レンズを備えたことを特徴とする請求項12に記載の光学特性の測定装置。   13. The apparatus according to claim 12, further comprising an incident light lens for condensing the probe light and irradiating the measurement object, and an outgoing light lens for receiving the probe light from the measurement object. Optical characteristic measuring device. 多層構造のフィルムに前記プローブ光を入射し、前記多層フィルムを透過した前記プローブ光から、それぞれの層の光学特性を測定することを特徴とする請求項12に記載の光学特性の測定装置。   13. The optical property measuring apparatus according to claim 12, wherein the optical property of each layer is measured from the probe light that is incident on a multilayer film and transmitted through the multilayer film. ヒトを含む動物の眼に前記プローブ光を入射し、角膜を透過して網膜底面で反射し、前記角膜を透過した前記プローブ光から、網膜の光学特性を測定することを特徴とする請求項12に記載の光学特性の測定装置。   13. The optical characteristics of the retina are measured from the probe light that is incident on the eyes of an animal including a human, is transmitted through the cornea, is reflected at the bottom of the retina, and is transmitted through the cornea. The optical characteristic measuring device described in 1.
JP2015122819A 2015-06-18 2015-06-18 Measurement method of optical characteristic and measurement instrument of optical characteristic Pending JP2017009338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122819A JP2017009338A (en) 2015-06-18 2015-06-18 Measurement method of optical characteristic and measurement instrument of optical characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122819A JP2017009338A (en) 2015-06-18 2015-06-18 Measurement method of optical characteristic and measurement instrument of optical characteristic

Publications (1)

Publication Number Publication Date
JP2017009338A true JP2017009338A (en) 2017-01-12

Family

ID=57761373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122819A Pending JP2017009338A (en) 2015-06-18 2015-06-18 Measurement method of optical characteristic and measurement instrument of optical characteristic

Country Status (1)

Country Link
JP (1) JP2017009338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255868A1 (en) * 2019-06-20 2020-12-24 学校法人慶應義塾 Polarimetry device and polarimetry chip
US11573078B2 (en) 2019-11-27 2023-02-07 Corning Incorporated Apparatus and method for determining refractive index, central tension, or stress profile

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153500A (en) * 1996-11-26 1998-06-09 Nikon Corp Method and device for measuring photoelastic constant
JPH10213483A (en) * 1996-08-30 1998-08-11 Heidelberg Eng Opt Messsyst Gmbh System for measuring inside living body of optical property of double refraction material
US6034777A (en) * 1998-09-29 2000-03-07 J.A. Woollam Co. Inc. Methods for uncorrelated evaluation of parameters in parameterized mathematical model equations for window retardence, in ellipsometer and polarimeter systems
WO2003056307A1 (en) * 2001-12-26 2003-07-10 Hamamatsu Photonics K.K. Optical analysis method for heterogeneous medium
JP2007040805A (en) * 2005-08-02 2007-02-15 Hokkaido Univ Imaging polarizing measuring method
JP2007139722A (en) * 2005-11-22 2007-06-07 Tokyo Univ Of Agriculture & Technology Instrument and method for measuring optical characteristic
WO2007111159A1 (en) * 2006-03-20 2007-10-04 National University Corporation Tokyo University Of Agriculture And Technology Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit
JP2009008423A (en) * 2007-06-26 2009-01-15 Omron Corp Spectropolarimeter
JP2009103677A (en) * 2007-10-03 2009-05-14 Nikon Corp Method, device and program for calculating polarization characteristics of optical system, computer readable recording medium with the program thereon, and method and device for exposure
JP2010145332A (en) * 2008-12-22 2010-07-01 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument, optical characteristic measurement method, and calibration method of optical characteristic measuring instrument
JP2012024146A (en) * 2010-07-20 2012-02-09 Fujifilm Corp Polarization image measurement display system
JP2012024140A (en) * 2010-07-20 2012-02-09 Fujifilm Corp Polarization image measurement display system
JP2012052972A (en) * 2010-09-03 2012-03-15 Univ Of Yamanashi Measuring method of thin film having pore and system thereof
JP2012103259A (en) * 2004-03-06 2012-05-31 Michael Trainer Methods and apparatus for determining size and shape of particles
JP2015075330A (en) * 2013-10-04 2015-04-20 浜松ホトニクス株式会社 Method and apparatus for measuring circular dichroism

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213483A (en) * 1996-08-30 1998-08-11 Heidelberg Eng Opt Messsyst Gmbh System for measuring inside living body of optical property of double refraction material
JPH10153500A (en) * 1996-11-26 1998-06-09 Nikon Corp Method and device for measuring photoelastic constant
US6034777A (en) * 1998-09-29 2000-03-07 J.A. Woollam Co. Inc. Methods for uncorrelated evaluation of parameters in parameterized mathematical model equations for window retardence, in ellipsometer and polarimeter systems
WO2003056307A1 (en) * 2001-12-26 2003-07-10 Hamamatsu Photonics K.K. Optical analysis method for heterogeneous medium
JP2012103259A (en) * 2004-03-06 2012-05-31 Michael Trainer Methods and apparatus for determining size and shape of particles
JP2007040805A (en) * 2005-08-02 2007-02-15 Hokkaido Univ Imaging polarizing measuring method
JP2007139722A (en) * 2005-11-22 2007-06-07 Tokyo Univ Of Agriculture & Technology Instrument and method for measuring optical characteristic
WO2007111159A1 (en) * 2006-03-20 2007-10-04 National University Corporation Tokyo University Of Agriculture And Technology Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit
JP2009008423A (en) * 2007-06-26 2009-01-15 Omron Corp Spectropolarimeter
JP2009103677A (en) * 2007-10-03 2009-05-14 Nikon Corp Method, device and program for calculating polarization characteristics of optical system, computer readable recording medium with the program thereon, and method and device for exposure
JP2010145332A (en) * 2008-12-22 2010-07-01 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument, optical characteristic measurement method, and calibration method of optical characteristic measuring instrument
JP2012024146A (en) * 2010-07-20 2012-02-09 Fujifilm Corp Polarization image measurement display system
JP2012024140A (en) * 2010-07-20 2012-02-09 Fujifilm Corp Polarization image measurement display system
JP2012052972A (en) * 2010-09-03 2012-03-15 Univ Of Yamanashi Measuring method of thin film having pore and system thereof
JP2015075330A (en) * 2013-10-04 2015-04-20 浜松ホトニクス株式会社 Method and apparatus for measuring circular dichroism

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"ABR", 製品カタログ, JPN7019001168, 16 July 2014 (2014-07-16), JP, ISSN: 0004152938 *
"Correction of large birefringent effect of windows for in situ ellipsometry", OPTICS LETTERS, vol. 39, no. 6, JPN6019013995, 12 March 2014 (2014-03-12), US, pages 1549 - 1552, ISSN: 0004152935 *
"General window correction method for ellipsometry measurements", OPTICS EXPRESS, vol. 22, no. 23, JPN6019013989, 3 November 2014 (2014-11-03), US, pages 27811 - 27820, ISSN: 0004152934 *
"RC2 specifications", RC2 SPECIFICATION SHEET, JPN7019001167, 2015, ISSN: 0004152937 *
"エリプソメトリーにおける観測窓補正の一般化", 第75回応用物理学会秋季学術講演会講演予稿集, vol. 第75回, JPN7019001166, 1 September 2014 (2014-09-01), JP, pages 6 - 2, ISSN: 0004152936 *
"光弾性定数測定", 製品カタログ, JPN7019001169, 17 July 2014 (2014-07-17), JP, ISSN: 0004152939 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255868A1 (en) * 2019-06-20 2020-12-24 学校法人慶應義塾 Polarimetry device and polarimetry chip
JPWO2020255868A1 (en) * 2019-06-20 2020-12-24
JP7517648B2 (en) 2019-06-20 2024-07-17 慶應義塾 Polarization analysis device and polarization analysis chip
US11573078B2 (en) 2019-11-27 2023-02-07 Corning Incorporated Apparatus and method for determining refractive index, central tension, or stress profile

Similar Documents

Publication Publication Date Title
JP4863979B2 (en) Ellipsometry measurement method and apparatus
CN107429990B (en) No color differnece optical element-rotary-type ellipsometer and the Muller matrix detection method of the test piece using it
TWI331672B (en) Focused-beam ellipsometer
CN102954765A (en) Optical characteristic measuring apparatus and optical characteristic measuring method
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP5198980B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JPH10332533A (en) Birefringence evaluation system
JP2014035257A (en) Mueller matrix microscopic ellipsometer
JPWO2009139133A1 (en) Optical strain measurement device
JP2017009338A (en) Measurement method of optical characteristic and measurement instrument of optical characteristic
US8976360B2 (en) Surface plasmon sensor and method of measuring refractive index
JP3365474B2 (en) Polarizing imaging device
CN109341554A (en) A kind of device and method measuring film thickness
JP6273504B2 (en) Optical characteristic measuring method and optical characteristic measuring apparatus
KR20170055661A (en) Apparatus of real time imaging spectroscopic ellipsometry for large-area thin film measurements
CN110530821B (en) Measuring device and measuring method for refractive index of optical material
TWI288823B (en) Method and apparatus for detecting a parameter of a detected object
JP2003240526A (en) Apparatus and method for measurement of surface
KR101692869B1 (en) thermal image microscope based on the optical indicator
KR20130065186A (en) The measurement device and the method of the principle axis and retardation of the 3-dimensional film
WO2020000319A1 (en) Scattering angle measuring device and scattering angle measuring method
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP2002267573A (en) Measuring method and measuring device for orientation parameter of liquid crystal cell
CN114112929B (en) Mueller matrix image acquisition system and acquisition method
CN109856114A (en) The determination method of the multi-layer graphene number of plies of chemical vapour deposition technique preparation

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203