JPH10152722A - Manufacture of thick steel plate - Google Patents

Manufacture of thick steel plate

Info

Publication number
JPH10152722A
JPH10152722A JP31462196A JP31462196A JPH10152722A JP H10152722 A JPH10152722 A JP H10152722A JP 31462196 A JP31462196 A JP 31462196A JP 31462196 A JP31462196 A JP 31462196A JP H10152722 A JPH10152722 A JP H10152722A
Authority
JP
Japan
Prior art keywords
rolling
cooling
toughness
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31462196A
Other languages
Japanese (ja)
Inventor
Takeshi Ichinose
威 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31462196A priority Critical patent/JPH10152722A/en
Publication of JPH10152722A publication Critical patent/JPH10152722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a thick steel plate excellent in strength and toughness with high productivity while obviating the necessity of controlled rolling. SOLUTION: A steel, having a composition containing, by weight, 0.03-0.2% C, <=0.6% Si, 0.3-3% Mn, 0.02-0.15% Nb, 0.001-0.1% sol.Al, 0-0.05% Ti, 0-1% Cr, 0-1% Mo, 0-2% Cu, 0-3% Ni, 0-0.2% V, and 0-0.003% B, is heated to 1100-1250'C and rolled at >=30% cumulative draft between 900 and 1050 deg.C, and rolling is finished at >=900 deg.C. After rolling, the resultant plate is subjected to concurrent heating up to 900-1000 deg.C for >=3min and then cooled down to <=300 deg.C at a rate of >=2 deg.C/sec or cooled down to 400-600 deg.C at a rate of (2 to 50) deg.C/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、橋梁、造船、圧力
容器、液化ガス貯蔵用低温タンク、ラインパイプ、海洋
構造物等に使用される強度靭性バランスの良好な厚鋼板
の製造方法に関する。より詳しくは、厚鋼板の熱間圧延
においてオーステナイト(以下「γ」と記す)の未再結
晶域での制御圧延によらずに良好な強度と靱性を有する
厚鋼板を経済的にかつ生産性よく製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick steel plate having a good balance of strength and toughness used in bridges, shipbuilding, pressure vessels, low temperature tanks for storing liquefied gas, line pipes, offshore structures and the like. More specifically, in hot rolling of a thick steel plate, a thick steel plate having good strength and toughness can be economically and efficiently produced without using controlled rolling in an unrecrystallized region of austenite (hereinafter referred to as “γ”). It relates to a method of manufacturing.

【0002】[0002]

【従来の技術】従来、厚鋼板に高い靭性が求められる場
合には、制御圧延と制御冷却を組み合わせて、微細な組
織を得る方法が用いられてきた(特開昭57−1313
20号公報、特開平2−80516号公報等)。
2. Description of the Related Art Conventionally, when high toughness is required for a thick steel plate, a method of obtaining a fine structure by combining controlled rolling and controlled cooling has been used (JP-A-57-1313).
No. 20, JP-A-2-80516, etc.).

【0003】しかしながら、制御圧延を必須とするこれ
らの方法にはつぎの問題があった。 制御圧延においては鋼板の温度が800℃付近まで低
下するのを待って圧延を終了させなければならず、通常
の圧延に比較して能率が著しく低下する。
[0003] However, these methods which require controlled rolling have the following problems. In the controlled rolling, the rolling must be finished after the temperature of the steel sheet has dropped to around 800 ° C., and the efficiency is significantly reduced as compared with the ordinary rolling.

【0004】低温で強加工するため圧延集合組織の生
成が避けられず、強度や靱性に異方性が強く現れる。さ
らに、この圧延集合組織は構造物に組み上げた後、溶接
部近傍を超音波探傷する際、厚鋼板の圧延方向かその直
角方向かによって、超音波の速度に差を生じさせるため
に探傷が行いにくいという問題を生ずる。
[0004] Because of the strong working at low temperature, the generation of rolled texture is inevitable, and the anisotropy appears in strength and toughness. Furthermore, after assembling this rolling texture into a structure, when performing ultrasonic flaw detection near the welded part, flaw detection is performed to produce a difference in ultrasonic speed depending on whether the rolling direction of the thick steel plate or the direction perpendicular thereto. A problem arises.

【0005】圧延待ち時間を減らすために水冷しつつ
低温で強加工するため、厚鋼板の平坦度が著しく劣化
し、これを是正するレベラ矯正に多くの時間が必要とな
る。この平坦度劣化は、制御圧延の後に冷却を行うこと
によりさらに大きくなる。制御圧延および加速冷却等に
より大きな歪みが発生した厚鋼板は、通常のレベラでは
矯正不能になりプレス加工により矯正されるため、1枚
の厚鋼板の平坦矯正に数時間かかる事態にいたる場合も
ある。
[0005] In order to reduce the waiting time for rolling, the steel plate is strongly worked at a low temperature while cooling with water, so that the flatness of the thick steel plate is remarkably deteriorated, and much time is required for leveler correction to correct the flatness. This flatness deterioration is further increased by performing cooling after controlled rolling. Thick steel plates that have undergone significant distortion due to controlled rolling, accelerated cooling, etc. cannot be straightened by a normal leveler and are straightened by press working, so it may take several hours to flatten a single thick steel plate. .

【0006】[0006]

【発明が解決しようとする課題】本発明は、γ相低温域
での制御圧延を行うことなく、強度と靱性の優れた厚鋼
板を高い生産性を保って製造する方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a thick steel plate having excellent strength and toughness while maintaining high productivity without performing controlled rolling in the low temperature range of the γ phase. And

【0007】[0007]

【課題を解決するための手段】本発明者は、Nbを含ん
だ化学組成の鋼に対して、圧延仕上げ温度900℃以上
の圧延の後水冷しまたは水冷停止し、焼戻し条件を変え
て種々の強度レベルの厚鋼板を製造し機械的性質の異方
性等を調査した結果、つぎの事項を確認した。
Means for Solving the Problems The present inventor has proposed that various steels having a chemical composition containing Nb be rolled at a rolling finishing temperature of 900 ° C. or higher, and then water-cooled or water-cooled, and tempering conditions changed to change various conditions. The following items were confirmed as a result of manufacturing a thick steel plate of a strength level and examining the anisotropy of mechanical properties and the like.

【0008】(a) 通常の圧延方法では、圧延仕上げ温度
が900℃以上になると靱性は仕上げ温度の上昇と共に
劣化する。これは組織の粗大化と、Nbのフェライト域
での析出による硬化が原因である。
(A) In a normal rolling method, when the rolling finishing temperature is 900 ° C. or higher, the toughness deteriorates as the finishing temperature increases. This is due to coarsening of the structure and hardening due to precipitation of Nb in the ferrite region.

【0009】(b) 圧延仕上げ温度が900℃以上であっ
ても、ミクロ組織の異方性が観察される。ただし、仕上
げ温度が1050℃を超えると、ミクロ組織の異方性は
ほぼ消える。しかし旧γ粒は粗大であり、最終組織であ
るフェライトとベイナイトの混合組織等もそれに応じて
粗大である。
(B) Even when the rolling finishing temperature is 900 ° C. or higher, anisotropy of the microstructure is observed. However, when the finishing temperature exceeds 1050 ° C., the anisotropy of the microstructure almost disappears. However, the old γ grains are coarse, and the final structure, such as the mixed structure of ferrite and bainite, is coarse accordingly.

【0010】(c) 仕上げ温度が900〜1050℃の温
度域であっても、圧延後900〜1000℃の温度域に
3分以上加熱されると、加工γ粒の再結晶が進み異方性
が小さく、かつ微細な組織が得られる。
(C) Even if the finishing temperature is in the temperature range of 900 to 1050 ° C., if the material is heated to the temperature range of 900 to 1000 ° C. for 3 minutes or more after rolling, recrystallization of the processed γ grains progresses and And a fine structure can be obtained.

【0011】以後の説明において、“圧延後900〜1
000℃の温度域に3分以上加熱すること”を“補熱”
という。
[0011] In the following description, "900-1 after rolling"
Heating to 000 ° C temperature range for 3 minutes or more ”
That.

【0012】補熱の際、Nb炭窒化物の析出も同時に進
むが、この析出は変態前のγ域での析出なので、析出硬
化は抑制される。また、補熱の際に析出したNb炭窒化
物によってγ粒のピン留めが起こり、細粒の再結晶γ粒
が得られ、最終組織も微細になる。
At the time of supplementary heat, precipitation of Nb carbonitride proceeds at the same time, but since precipitation occurs in the γ region before transformation, precipitation hardening is suppressed. Further, pinning of γ grains occurs due to Nb carbonitride precipitated during the supplementary heat, and fine recrystallized γ grains are obtained, and the final structure becomes fine.

【0013】(d) 補熱による効果は、Nbを0.03%
以上を含む鋼を仕上げ温度900〜1000℃で圧延を
終了し、かつ補熱温度を920〜980℃とするとき最
も顕著に現れる。
(D) The effect of the supplementary heat is as follows.
This is most noticeable when the steel containing the above is rolled at a finishing temperature of 900 to 1000C and the auxiliary heat temperature is 920 to 980C.

【0014】(e) 補熱後、300℃以下に直接焼入れす
る場合、または水冷を400〜600℃の温度域で停止
させる場合(加速冷却途中停止)のいずれにおいても、
補熱の効果は顕著で、異方性の小さな厚鋼板を得ること
が出来る。また、従来の再加熱焼入れ焼戻し(再加熱Q
T)方法に比較して、より高強度が得られる。すなわ
ち、補熱後に直接焼入れするかまたは加速冷却途中停止
する方法は、再加熱QT方法よりも優れた強度および靱
性の確保を可能にする。
(E) In the case of directly quenching to 300 ° C. or less after the supplementary heat, or in the case of stopping the water cooling in the temperature range of 400 to 600 ° C. (in the middle of accelerated cooling),
The effect of the supplementary heat is remarkable, and a thick steel plate with small anisotropy can be obtained. In addition, conventional reheating quenching and tempering (reheating Q
Higher strength is obtained as compared to the T) method. That is, the method of directly quenching or stopping during accelerated cooling after the supplementary heat enables to secure the strength and toughness superior to the reheating QT method.

【0015】図1は本発明に係る圧延、補熱および冷却
の各条件をしめす図面である。図1(a)は、焼入性が
不足する鋼を強化するか、または少しでも強度上昇を図
ろうとする場合におこなう冷却方法であって、補熱後3
00℃以下まで冷却する。その後必要に応じて焼戻しを
行ってもよい。図1(b)は、補熱後400〜600℃
の温度域に加速冷却し冷却をその温度域で停止して放冷
する方法である。この方法もその後必要に応じて焼戻し
を行っても差し支えない。
FIG. 1 is a drawing showing the respective conditions of rolling, supplementary heat and cooling according to the present invention. FIG. 1 (a) shows a cooling method performed when strengthening a steel having insufficient hardenability or trying to increase the strength even at a slight rate.
Cool down to below 00 ° C. Thereafter, tempering may be performed if necessary. FIG. 1 (b) shows 400 to 600 ° C. after supplementary heat.
In this temperature range, cooling is stopped in that temperature range, and then allowed to cool. This method may be followed by tempering if necessary.

【0016】本発明方法は上記の事項を組み合わせて、
実際の製造においてその著しい効果を確認することによ
って完成されたもので、つぎの厚鋼板の製造方法を要旨
とする(図1参照)。
The method of the present invention combines the above items,
It was completed by confirming the remarkable effect in actual production, and the gist of the following method for producing a thick steel plate is shown (see FIG. 1).

【0017】(1)重量割合にて、 C :0.03〜0.2%、 Si:0.6%以下、 Mn:0.3〜3%、 Nb:0.02〜0.15%、 sol.Al:0.001〜0.1%、 Ti:0〜0.05%、 Cr:0〜1%、 Mo:0〜1%、 Cu:0〜2%、 Ni:0〜3%、 V :0〜0.2%、 および B :0〜0.003%を含有する
鋼を1100〜1250℃に加熱し、 900〜1050℃の温度域での
累積圧下率30%以上の圧延を行って900℃以上で圧延を終
了し、圧延後900〜1000℃の温度域に3分以上保持し、し
かる後に2℃/秒以上の冷却速度で 300℃以下まで冷却す
る工程を含む靭性の優れた厚鋼板の製造方法(〔発明
1〕とする)。
(1) C: 0.03 to 0.2%, Si: 0.6% or less, Mn: 0.3 to 3%, Nb: 0.02 to 0.15%, sol.Al: 0.001 to 0.1%, Ti: 0 -0.05%, Cr: 0-1%, Mo: 0-1%, Cu: 0-2%, Ni: 0-3%, V: 0-0.2%, and B: 0-0.003% Is heated to 1100 to 1250 ° C, rolled at a cumulative draft of 30% or more in a temperature range of 900 to 1050 ° C, finished rolling at 900 ° C or more, and rolled to a temperature range of 900 to 1000 ° C for 3 minutes. A method of manufacturing a thick steel plate having excellent toughness, including a step of holding the above and then cooling it to 300 ° C. or less at a cooling rate of 2 ° C./sec or more (referred to as [Invention 1]).

【0018】(2)重量割合にて、 C :0.03〜0.2%、 Si:0.6%以下、 Mn:0.3〜3%、 Nb:0.02〜0.15%、 sol.Al:0.001〜0.1%、 Ti:0〜0.05%、 Cr:0〜1%、 Mo:0〜1%、 Cu:0〜2%、 Ni:0〜3%、 V :0〜0.2% および B:0〜0.003%を含有する
鋼を1100〜1250℃に加熱し、 900〜1050℃の温度域での
累積圧下率30%以上の圧延を行って900℃以上で圧延を終
了し、圧延後900〜1000℃の温度域に3分以上保持し、し
かる後に2〜50℃/秒の冷却速度で400〜600℃まで加速冷
却する工程を含む靭性の優れた厚鋼板の製造法(〔発明
2〕とする)。
(2) By weight ratio, C: 0.03 to 0.2%, Si: 0.6% or less, Mn: 0.3 to 3%, Nb: 0.02 to 0.15%, sol.Al: 0.001 to 0.1%, Ti: 0 ~ 0.05%, Cr: 0 ~ 1%, Mo: 0 ~ 1%, Cu: 0 ~ 2%, Ni: 0 ~ 3%, V: 0 ~ 0.2% and B: 0 ~ 0.003% Heating to 1100-1250 ° C, rolling at a rolling reduction of 30% or more in the temperature range of 900-1050 ° C, finishing rolling at 900 ° C or more, and rolling to 900-1000 ° C for 3 minutes or more after rolling A method of manufacturing a thick steel plate having excellent toughness including a step of holding and then accelerated cooling to 400 to 600 ° C. at a cooling rate of 2 to 50 ° C./sec (referred to as [Invention 2]).

【0019】〔発明1〕において「2℃/秒以上の冷却
速度で300℃以下まで冷却する」のは、強度の上昇を
主目的におこなう冷却であり、このような冷却を直接焼
入れという場合がある。直接焼入れののち焼戻しを行う
方法も当然〔発明1〕に含まれる。直接焼入れでは厚鋼
板の平坦度の温間矯正は、焼戻し後の余熱を利用してし
かできないので、建材用等の平坦度の要求が厳しい場合
には焼戻しをおこなう。しかし、平坦度の要求がそれほ
ど厳しくない場合には、靭性等を高める必要性の有無に
基づいて焼戻しするか否か判断すればよい。
In [Invention 1], “cooling to 300 ° C. or less at a cooling rate of 2 ° C./sec or more” is cooling mainly for increasing strength, and such cooling is sometimes referred to as direct quenching. is there. A method of performing tempering after direct quenching is naturally included in [Invention 1]. In the direct quenching, the flatness of a thick steel plate can be warm-corrected only by using the residual heat after tempering. Therefore, when the flatness requirement for building materials is severe, tempering is performed. However, when the demand for flatness is not so severe, it may be determined whether or not to perform tempering based on the necessity of increasing toughness or the like.

【0020】また、〔発明2〕において、「2〜50℃
/秒の冷却速度で400〜600℃まで加速冷却」する
のは、フェライト変態を避けてベイナイト等の強化組織
を得るためである。しかし、強化することを主目的とす
る〔発明1〕の冷却と異なり、〔発明2〕では400〜
600℃の温度域で加速冷却を停止して、その後は放冷
中に自動的に焼戻されることも目標としている。勿論、
加速冷却停止後放冷した後にあらためてAc1 点未満に
再加熱することにより焼戻しを付加してさらに靭性を向
上させてもよい。上記のように〔発明2〕においては冷
却停止後の自動焼戻しを前提としており、このような冷
却を“加速冷却”として〔発明1〕の“直接焼入れ”と
区別する。
In [Invention 2], "2 to 50 ° C."
The reason for performing "accelerated cooling to 400 to 600 [deg.] C. at a cooling rate of / sec" is to obtain a strengthened structure such as bainite while avoiding ferrite transformation. However, unlike the cooling of [Invention 1] whose main purpose is to strengthen, in [Invention 2] 400 to
It is also aimed at stopping accelerated cooling in a temperature range of 600 ° C. and thereafter automatically tempering during cooling. Of course,
After the accelerated cooling is stopped, the steel sheet is allowed to cool, and then reheated to a point less than Ac 1 point to add tempering to further improve the toughness. As described above, [Invention 2] is premised on automatic tempering after cooling is stopped, and such cooling is distinguished from "direct quenching" of [Invention 1] as "accelerated cooling".

【0021】〔発明1〕および〔発明2〕ともに、指定
した温度は厚鋼板の全ての板厚部分の温度とする。たと
えば、〔発明1〕および〔発明2〕において、「900
〜1000℃の温度域に3分以上補熱する」とは、図1
において、板厚表面から中心部にいたる部分の全てが、
900〜1000℃の温度域に入ったときから時間を起
算する。補熱直前に厚鋼板の板厚全部分が900℃未満
であれば、最後に900〜1000℃の温度域に入るの
は板厚中心部である。一方、板厚中心部が900〜10
00℃の温度域にあり、板厚表面付近のみが900〜1
000℃の温度域より低ければ、最後に900〜100
0℃の温度域に入るのは表面付近となる。また、板厚の
全部分が補熱直前に900〜1000℃の温度域にある
ときは、厚鋼板を補熱装置に搬入し終わったときが補熱
開始の起算時となる。
In both [Invention 1] and [Invention 2], the designated temperature is the temperature of all the thick portions of the thick steel plate. For example, in [Invention 1] and [Invention 2], "900
1 to 3 minutes or more in the temperature range of ~ 1000 ° C ”
In, all of the part from the plate thickness surface to the center,
The time is counted from the time when the temperature enters the temperature range of 900 to 1000 ° C. If the entire thickness of the thick steel plate is less than 900 ° C. immediately before the heating, it is the center of the thickness that finally enters the temperature range of 900 to 1000 ° C. On the other hand, the center of the sheet thickness is 900 to 10
It is in the temperature range of 00 ° C, and only 900-1
If it is lower than the temperature range of 000 ° C, finally 900-100
It is near the surface that enters the temperature range of 0 ° C. In addition, when the entire thickness is in the temperature range of 900 to 1000 ° C. immediately before the heat exchange, the time when the thick steel sheet is completely carried into the heat exchanger is the time when the heat exchange starts.

【0022】補熱時間の終了は、補熱処理を終了し加熱
炉から厚鋼板を取り出すとき等が該当し、その後、厚鋼
板の板厚の全部分が900〜1000℃の温度域にある
場合もあるが、その時間は補熱時間には含めない。
The end of the supplementary heat time corresponds to the time when the supplementary heat treatment is completed and the thick steel sheet is taken out of the heating furnace, and the like, and thereafter, the entire thickness of the thick steel sheet may be in the temperature range of 900 to 1000 ° C. However, this time is not included in the heating time.

【0023】また、補熱後300℃以下まで冷却、また
は400〜600℃まで加速冷却する場合は、通常、板
厚中心部がこれら温度域に最も遅れて入る。〔発明1〕
における冷却速度2℃/秒以上は、板厚中心部での80
0℃から400℃までにおける平均値をさす。また、
〔発明2〕における冷却速度2〜50℃/秒は、板厚中
心部での800℃から冷却停止温度までにおける平均値
である。
When cooling to 300 ° C. or lower after supplementary heat or accelerated cooling to 400 to 600 ° C., the center of the sheet thickness usually enters the temperature range most lately. [Invention 1]
At a cooling rate of 2 ° C./sec or more at 80 ° C.
It means the average value from 0 ° C to 400 ° C. Also,
The cooling rate of 2 to 50 ° C./sec in [Invention 2] is an average value from 800 ° C. at the center of the sheet thickness to the cooling stop temperature.

【0024】〔発明1〕および〔発明2〕ともに、低合
金鋼の範囲内であるかぎり、合金成分は上記のほかに任
意の合金成分を含んでもよい。
As long as both [Invention 1] and [Invention 2] are within the range of low-alloy steel, the alloy components may include any alloy components other than the above.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

1.圧延、補熱および冷却条件 本発明においては、素材となるスラブは、1100℃以
上に加熱されなければならない。これはNbを必須元素
として、スラブ加熱時に十分な固溶Nbを確保する必要
があるためである。
1. Rolling, supplementary heat and cooling conditions In the present invention, the slab serving as the raw material must be heated to 1100 ° C. or higher. This is because it is necessary to ensure sufficient solid solution Nb at the time of slab heating using Nb as an essential element.

【0026】通常、高靱性鋼の製造を目的とする場合
は、γ粒の粗大化を避けるために、加熱温度を必要以上
に高くしない。しかし、本発明においては、圧延後の補
熱時に、加工γ粒の再結晶を促進させ細粒化するため、
加熱温度を高めても靱性は悪化しない。むしろ、Nbを
十分に固溶させるために加熱温度は高い方が好ましく、
1200℃以上であってもよい。一方、1250℃を超
える加熱は加熱炉のコストを高め、素材のスケールロス
も増加するため、加熱温度は1250℃以下とする。
Normally, when the purpose is to produce a high toughness steel, the heating temperature should not be raised more than necessary to avoid coarsening of γ grains. However, in the present invention, at the time of supplementary heat after rolling, in order to promote the recrystallization of the processed γ grains and to refine the grains,
Even if the heating temperature is increased, the toughness does not deteriorate. Rather, it is preferable that the heating temperature be higher in order to sufficiently dissolve Nb.
It may be 1200 ° C. or higher. On the other hand, heating exceeding 1250 ° C. increases the cost of the heating furnace and increases the scale loss of the raw material, so the heating temperature is set to 1250 ° C. or less.

【0027】圧延においては、900〜1050℃での
累積圧下率を30%以上とする。900〜1050℃で
の累積圧下率が30%に満たない場合は、靱性の著しい
劣化が起こるので、この温度域での累積圧下率は30%
以上とする。ここで、900〜1050℃での累積圧下
率とは、(1050℃での板厚−900℃での板厚)/
(1050℃での板厚)をいう。900〜1050℃の
温度域での累積圧下率を上記のように限定するのは、9
00℃未満では圧延能率の低下と機械的性質の異方性が
増大するためであり、一方、1050℃を超えると圧延
後のγ粒の成長が著しく、圧延加工が組織の微細化に役
立たないからである。
In rolling, the cumulative draft at 900 to 1050 ° C. is set to 30% or more. If the cumulative rolling reduction at 900 to 1050 ° C. is less than 30%, remarkable deterioration of toughness occurs. Therefore, the cumulative rolling reduction in this temperature range is 30%.
Above. Here, the cumulative draft at 900 to 1050 ° C. is (the thickness at 1050 ° C.−the thickness at 900 ° C.) /
(Plate thickness at 1050 ° C.). The reason for limiting the cumulative rolling reduction in the temperature range of 900 to 1050 ° C. as described above is 9
If the temperature is lower than 00 ° C., the rolling efficiency decreases and the anisotropy of mechanical properties increases. On the other hand, if the temperature exceeds 1050 ° C., the growth of γ grains after rolling is remarkable, and the rolling process does not contribute to the refinement of the structure. Because.

【0028】圧延仕上げ温度は900℃以上とする。圧
延仕上げ温度が900℃未満となる場合は、靱性は確保
できるが、上記のように圧延能率の大幅な低下を招く。
また、鋼板の機械的性質の異方性も強くなる傾向を示
す。このため、本発明において圧延仕上げ温度は900
℃以上とする。仕上げ温度の上限は上記の累積圧下率の
限定を満足するかぎりとくに制限しないが、良好な靭性
を確保するために1000℃以下とすることが望まし
い。
The rolling finishing temperature is 900 ° C. or higher. When the rolling finishing temperature is lower than 900 ° C., the toughness can be ensured, but the rolling efficiency is greatly reduced as described above.
In addition, the anisotropy of the mechanical properties of the steel sheet tends to increase. Therefore, in the present invention, the rolling finish temperature is 900
C or higher. The upper limit of the finishing temperature is not particularly limited as long as the above-mentioned limitation of the cumulative rolling reduction is satisfied, but is preferably set to 1000 ° C. or lower in order to secure good toughness.

【0029】補熱による加熱温度は(以下「補熱温度」
という)、900〜1000℃とする。900℃未満で
は再結晶が短時間のうちに進行せず生産性が低下するか
らであり、1000℃を超えると再結晶後γ粒径の成長
が無視できず組織の粗大化を招くからである。
The heating temperature by the supplementary heat is (hereinafter referred to as "the supplementary heat temperature").
) And 900-1000 ° C. If the temperature is lower than 900 ° C., the recrystallization does not proceed in a short time and the productivity is reduced. If the temperature exceeds 1000 ° C., the growth of the γ particle size cannot be ignored after recrystallization and the structure becomes coarse. .

【0030】補熱時間は3分以上とする。補熱時間が3
分未満では再結晶が十分進行せず、機械的性質の異方性
の解消や組織の微細化が得られない。補熱時間は20分
を超えても性能に大きな悪影響は与えないが、生産性の
低下を招くため、20分以下が望ましい。
The heating time is 3 minutes or more. Heating time is 3
If it is less than minutes, recrystallization does not proceed sufficiently, and anisotropy of mechanical properties cannot be eliminated and the structure cannot be refined. Even if the supplementary heat time exceeds 20 minutes, the performance is not greatly adversely affected, but the productivity is lowered, so that it is preferable that the supplementary heat time be 20 minutes or less.

【0031】補熱は、通常、燃焼ガス加熱炉を圧延ライ
ンの脇やバイパス上に設けて加熱炉にて行う。しかし、
通電加熱や高周波加熱によって補熱してもよく加熱方法
は問わない。
The supplementary heat is usually carried out in a heating gas furnace provided with a combustion gas heating furnace beside the rolling line or on a bypass. But,
Heating may be performed by energizing heating or high-frequency heating, and the heating method does not matter.

【0032】なお、本発明法による一層大きな効果を得
るために、より好ましくは、900〜1050℃の温度
域で累積圧下率50%以上の圧下を行い、圧延終了後補
熱により920〜980℃に5分以上加熱されることが
望ましい。
In order to obtain a greater effect by the method of the present invention, more preferably, the rolling is performed at a cumulative reduction of 50% or more in a temperature range of 900 to 1050 ° C., and after the rolling is completed, 920 to 980 ° C. is obtained by supplementary heat. It is desirable that the heating be performed for 5 minutes or more.

【0033】補熱終了後は、冷却する。〔発明1〕およ
び〔発明2〕の冷却の際の冷却速度は、それぞれ上記し
たとおりの温度域での平均値である。両者の差は、平均
値をとるときの温度域について冷却下限温度の差異が反
映した結果である。両者の差は大きなものではなくほと
んど同一とみなせる場合もあるが、両者は区別されるべ
きものであり、〔発明1〕と〔発明2〕のそれぞれの冷
却速度は前記の定義による冷却速度を意味する。
After the completion of the supplementary heat, cooling is performed. The cooling rates at the time of cooling in [Invention 1] and [Invention 2] are each an average value in the temperature range as described above. The difference between the two is a result of reflecting the difference in the cooling lower limit temperature in the temperature range when the average value is obtained. Although the difference between the two is not large and can be regarded as almost the same, the two should be distinguished, and the cooling rates of [Invention 1] and [Invention 2] mean the cooling rates as defined above. I do.

【0034】冷却速度は、〔発明1〕と〔発明2〕の定
義する冷却速度で、2℃/秒以上でなければならない。
〔発明1〕および〔発明2〕ともに、2℃/秒未満では
組織の粗大化が起こり、靱性が劣化するからである。ま
た、とくに〔発明1〕においては強化が不十分となり直
接焼入れする意味がなくなる。
The cooling rate must be 2 ° C./sec or more at the cooling rate defined by [Invention 1] and [Invention 2].
This is because if both [Invention 1] and [Invention 2] are less than 2 ° C./sec, the structure becomes coarse and the toughness deteriorates. In particular, in [Invention 1], the reinforcement is insufficient, and there is no point in directly hardening.

【0035】冷却速度の上限は、〔発明2〕においては
50℃/秒以下とする。50℃/秒を超えると、 (a)4
00〜600℃で途中停止し、かつ (b)厚鋼板全体に大
きな歪みを発生させない、という2つの条件を両立させ
ることができないからである。〔発明1〕については、
可能なかぎり大きな冷却速度を採用してもよく、50℃
/秒を超える冷却速度で冷却しても悪影響はない。
The upper limit of the cooling rate is 50 ° C./sec or less in [Invention 2]. If it exceeds 50 ° C / sec, (a) 4
This is because the two conditions of stopping halfway at 00 to 600 ° C. and (b) not generating a large distortion in the entire steel plate cannot be satisfied. Regarding [Invention 1],
A cooling rate as high as possible may be employed,
There is no adverse effect if cooling is performed at a cooling rate exceeding 1 / sec.

【0036】冷却下限温度は、〔発明1〕の場合は、途
中冷却停止後の自動的な焼戻しを期待せずに300℃以
下まで水冷する。300℃を超える温度で冷却を停止す
ると、温度むらを発生し強度の不均一が大きく現れるの
で300℃以下まで冷却する。その後、高度の靭性が要
求されるかまたは平坦度の要求が厳しい場合には、前記
したようにAc1 点未満で焼戻しを行ってもよい。
In the case of [Invention 1], water is cooled to 300 ° C. or less without expecting automatic tempering after cooling is stopped halfway. When the cooling is stopped at a temperature exceeding 300 ° C., temperature unevenness is generated, and the unevenness of the strength is greatly increased. Thereafter, when a high degree of toughness is required or the requirement for flatness is severe, tempering may be performed at less than the Ac 1 point as described above.

【0037】〔発明2〕の場合は補熱後、400〜60
0℃の温度域にまで加速冷却し停止する。加速冷却停止
温度を400〜600℃とするのは、600℃を超える
温度までしか加速冷却しないと、フェライト変態が生じ
十分強化されない。一方、400℃未満まで加速冷却す
ると、その後の放冷中に自動焼戻しが十分行われない。
また、厚鋼板の表面部と板厚中心部の温度差が大きくな
り、良好な平坦度を保ったまま全板厚部分を加速冷却停
止することが困難になり300℃以下まで冷却しないか
ぎり強度のばらつきを生じる。加速冷却停止後放冷した
後に、硬さと残留歪みを減じ靱性を調整する目的で、必
要に応じてAc1 点未満の温度で焼戻しをおこなっても
よい。
In the case of [Invention 2], after supplementary heat, 400 to 60
Accelerate cooling to a temperature range of 0 ° C. and stop. The reason why the accelerated cooling stop temperature is set to 400 to 600 ° C. is that if accelerated cooling is performed only to a temperature exceeding 600 ° C., ferrite transformation occurs and is not sufficiently strengthened. On the other hand, when accelerated cooling to less than 400 ° C., automatic tempering is not sufficiently performed during the subsequent cooling.
In addition, the temperature difference between the surface portion of the thick steel plate and the center of the thickness becomes large, and it becomes difficult to stop accelerated cooling of the entire thickness portion while maintaining good flatness. Variations occur. After allowing to cool after stopping the accelerated cooling, tempering may be performed at a temperature lower than the Ac 1 point, if necessary, for the purpose of reducing hardness and residual strain and adjusting toughness.

【0038】2.化学組成 つぎに各合金成分の限定理由を述べる。合金成分の
「%」は、「重量%」を表示するものとする。
2. Chemical composition Next, reasons for limiting each alloy component will be described. “%” Of the alloy component indicates “% by weight”.

【0039】:0.03〜0.2% Cは強度確保に必要な元素であり、0.03%は含有さ
せなければ実用的な強度を有する鋼を生産することは出
来ない。また、CはNbと結びついて析出物を形成し、
組織の微細化に寄与するが、そのためにも、0.03%
は必要である。
C : 0.03 to 0.2% C is an element necessary for securing the strength, and unless 0.03% is contained, a steel having practical strength cannot be produced. Also, C combines with Nb to form a precipitate,
Contributes to the refinement of the structure, but for that reason, 0.03%
Is necessary.

【0040】しかし、0.2%を超えて含有させると特
に溶接熱影響部(以下、「HAZ」と記す)の靱性劣化
が著しくなるため、0.2%を上限とする。
However, if the content exceeds 0.2%, the toughness of the weld heat affected zone (hereinafter referred to as “HAZ”) is particularly deteriorated, so the upper limit is 0.2%.

【0041】Si:0.6%以下 Siは、比較的安価に強度を増すことの出来る元素であ
るが、0.6%を超えるとHAZの靱性を損なうため、
この値を上限とする。他方、Siは脱酸元素として知ら
れているが、MnやAlなどで十分に脱酸可能であるた
め、0.01%以下であっても脱酸不足による鋼質の劣
化は生じない。しかし、実際の生産において、0.01
%未満とするとAlの歩留まり低下等の経済性が劣化す
るので、0.01%以上とすることが好ましい。
Si : 0.6% or less Si is an element that can increase strength relatively inexpensively, but if it exceeds 0.6%, the toughness of HAZ is impaired.
This value is the upper limit. On the other hand, Si is known as a deoxidizing element, but since it can be sufficiently deoxidized with Mn, Al, or the like, even if it is 0.01% or less, deterioration of steel quality due to insufficient deoxidation does not occur. However, in actual production, 0.01
%, The economical efficiency such as a decrease in the yield of Al deteriorates. Therefore, the content is preferably 0.01% or more.

【0042】Mn:0.3〜3% Mnは強度確保に必要な元素であり、且つ、予備脱酸に
も重要な元素であるため、0.3%以上は含有しなけれ
ばならない。しかし、3%を超えて含有させた場合、特
にHAZ靭性の大幅な劣化をもたらす。このため、上限
を3%とする。
Mn : 0.3 to 3% Since Mn is an element necessary for securing strength and is also an important element for preliminary deoxidation, it must be contained in an amount of 0.3% or more. However, when the content exceeds 3%, the HAZ toughness is greatly deteriorated. For this reason, the upper limit is set to 3%.

【0043】Nb:0.02〜0.15% Nbは固溶状態で、焼入性を増して強度を高める。ま
た、圧延中に微細析出してγ粒の再結晶を抑制し、制御
圧延効果を発揮させるために強度靭性バランスを向上さ
せるのに有効な元素である。本発明においては、圧延仕
上げ温度を900℃以上の高温とするため、Nb炭窒化
物の析出駆動力が高くなければ、圧延後補熱中に、Nb
炭窒化物の析出が起きなくなる。このため、Nbは0.
02%以上含有しなくてはならない。
Nb : 0.02 to 0.15% Nb is in a solid solution state and increases hardenability to increase strength. Further, it is an element effective for improving the balance between strength and toughness in order to suppress the recrystallization of γ grains by fine precipitation during rolling and to exert a controlled rolling effect. In the present invention, since the rolling finish temperature is set to a high temperature of 900 ° C. or more, if the driving force for precipitation of Nb carbonitride is not high, Nb
No carbonitride precipitation occurs. For this reason, Nb is set to 0.1.
Must contain at least 02%.

【0044】一方、0.15%を超えて含有させると、
加熱時に未固溶の粗大なNb析出物が増えるだけでな
く、HAZの靱性の著しい劣化を引き起こすので0.1
5%以下とする。
On the other hand, if the content exceeds 0.15%,
In addition to increasing the amount of undissolved coarse Nb precipitates during heating, the HAZ causes a significant deterioration in toughness.
5% or less.

【0045】sol.Al:0.001〜0.1% Alは重要な脱酸元素であるため、sol.Alの形態で
0.001%は含有させなければ良好な鋼質を確保する
ことは難しい。一方、Nを窒化物として固定するために
Tiを添加していない場合は、AlはAlNを形成して
結晶粒の微細化にも寄与するので、脱酸以外の目的で積
極的に含ませてもよい。しかしその場合でも、0.1%
を超えて含ませると鋼の靱性への悪影響が大きくなるた
め、この値を上限とする。
Sol.Al : 0.001 to 0.1% Since Al is an important deoxidizing element, good steel quality can be ensured unless 0.001% is contained in the form of sol.Al. difficult. On the other hand, when Ti is not added to fix N as a nitride, Al forms AlN and also contributes to the refinement of crystal grains, so that it should be positively included for purposes other than deoxidation. Is also good. But even in that case, 0.1%
If the content exceeds 0.1%, the adverse effect on the toughness of the steel increases, so this value is made the upper limit.

【0046】Ti:0〜0.05% Tiは含まれなくてもよい。しかし、TiはTiNを形
成して特にHAZのγ粒成長を抑制する。また、強度確
保にも有効であるので、これらの効果を得るためには含
有させてもよい。含有させる場合、0.002%未満で
はこれらの効果が明確に発揮されないので、0.002
%以上とすることが望ましい。一方、Tiは靱性には有
害な元素であり、0.05%を超えると靱性の著しい劣
化が起こるので、含ませる場合でも0.05%以下とす
る。
Ti : 0 to 0.05% Ti may not be contained. However, Ti forms TiN and particularly suppresses the γ grain growth of HAZ. Further, since it is effective for ensuring the strength, it may be contained in order to obtain these effects. When the content is less than 0.002%, these effects are not clearly exhibited.
% Is desirable. On the other hand, Ti is an element harmful to toughness, and if it exceeds 0.05%, remarkable deterioration of toughness occurs.

【0047】Cr:0〜1% Crは含まれなくてもよい。しかし、Crは焼入性を高
め強度向上に有効なので、強度を高める場合には含ませ
てもよい。含有させる場合、0.01%未満では十分な
効果が得られないので0.01%以上とすることが望ま
しい。一方、1%を超えると母材およびHAZの靭性を
劣化させるので1%以下とする。
Cr : 0 to 1% Cr may not be contained. However, Cr is effective in enhancing hardenability and improving strength, and therefore may be included when increasing strength. When it is contained, if it is less than 0.01%, a sufficient effect cannot be obtained, so it is desirable to make it 0.01% or more. On the other hand, if it exceeds 1%, the toughness of the base material and the HAZ is deteriorated.

【0048】Mo:0〜1% Moは含まれなくてもよい。しかし、Moは焼入性を高
めかつ焼戻し軟化抵抗も高いので、これら効果を得て高
強度を確保する場合には含ませる。含有率が0.01%
未満ではこれら効果が得られないので含ませる場合には
0.01%以上とすることが望ましい。一方、1%を超
えると、母材靱性が劣化するだけでなく、HAZの靱性
が著しく劣化するので1%以下とする。
Mo : 0 to 1% Mo may not be contained. However, Mo enhances hardenability and has high tempering softening resistance, so Mo is included when these effects are obtained and high strength is secured. 0.01% content
If the amount is less than 0.01%, these effects cannot be obtained. On the other hand, if it exceeds 1%, not only the base material toughness is deteriorated, but also the toughness of the HAZ is significantly deteriorated.

【0049】Cu:0〜2% Cuは含まれなくてもよい。しかし、Cuは含有させる
ことによって強度を増すことが出来るので、高強度とす
る場合には含ませる。0.01%未満では効果が明確に
あらわれないので0.01%以上とすることが望まし
い。一方、2%を超えると溶接部の低温割れを起こしや
すくなるため、含ませる場合でも2%以下とする。
Cu : 0 to 2% Cu may not be contained. However, since the strength can be increased by containing Cu, it is included when high strength is required. If the content is less than 0.01%, the effect will not be apparent, so it is desirable to set the content to 0.01% or more. On the other hand, if the content exceeds 2%, low-temperature cracking of the welded portion is liable to occur.

【0050】Ni:0〜3% Niは含まれなくてもよい。しかし、Niは含有される
ことによって強度靱性の両方を改善させることが出来る
が、0.01%未満ではその効果が明確に得られないの
で、含ませる場合は0.01%以上とすることが望まし
い。一方、3%を超えて含有させても効果が飽和して、
むしろ溶接低温割れ性等の溶接性が劣化するので3%以
下とする。
Ni : 0 to 3% Ni may not be contained. However, both strength and toughness can be improved by containing Ni. However, if the content is less than 0.01%, the effect is not clearly obtained. desirable. On the other hand, even if the content exceeds 3%, the effect is saturated,
Rather, the weldability such as low-temperature cracking is deteriorated.

【0051】:0〜0.2% Vは含まれなくてもよい。しかし、Vは焼戻し時に析出
硬化によって強度上昇に寄与するので、高強度化をはか
る場合には含ませる。0.005%未満の含有率では高
強度化の効果が十分得られないので、含ませる場合には
0.005%以上とすることが望ましい。一方、0.2
%を超えると大幅な靱性劣化を招くので0.2%以下と
する。
V : 0 to 0.2% V may not be contained. However, since V contributes to an increase in strength due to precipitation hardening during tempering, it is included when high strength is intended. If the content is less than 0.005%, the effect of increasing the strength cannot be sufficiently obtained. Therefore, when the content is included, the content is preferably set to 0.005% or more. On the other hand, 0.2
%, The toughness is significantly degraded.

【0052】:0〜0.003% Bは含まれなくてもよい。しかし、Bは微量でもγ粒界
を安定化して焼入性を増し、母材強度を高めるのに有効
なので、高強度鋼を対象とする場合には含ませる。0.
0002%未満では焼入性を十分高めることができない
ので、含ませる場合には0.0002%以上とすること
が望ましい。一方、0.003%を超えると、HAZの
靭性劣化が避けられないため、0.003%以下とす
る。
B : 0 to 0.003% B may not be contained. However, B is effective for stabilizing the γ grain boundary to increase the hardenability and to increase the base material strength even in a trace amount. 0.
If the content is less than 0002%, the hardenability cannot be sufficiently increased. On the other hand, if the content exceeds 0.003%, the toughness of the HAZ is unavoidably deteriorated, so the content is set to 0.003% or less.

【0053】上記の合金元素以外の合金を低合金鋼の範
囲内で含む厚鋼板も本発明の対象となる。たとえばC
a、Zr等またはLa、Ce等の稀土類元素等を微量含
む鋼であってもよい。
Steel plates containing alloys other than the above-mentioned alloying elements in the range of low alloy steels are also an object of the present invention. For example, C
Steel containing a small amount of a, Zr, or the like, or a rare earth element such as La, Ce, or the like may be used.

【0054】不純物元素はできるだけ低いことが望まし
い。たとえばPは靭性を劣化させない範囲である0.0
3%以下、また、Sは溶接時にラメラティアを生じにく
い0.02%以下とすることが望ましい。
It is desirable that the impurity element is as low as possible. For example, P is in a range that does not deteriorate the toughness.
It is desirable that S is not more than 3%, and S is not more than 0.02%, which hardly causes lamella tear during welding.

【0055】[0055]

【実施例】つぎに実施例を用いて本発明の効果を説明す
る。
EXAMPLES Next, the effects of the present invention will be described using examples.

【0056】表1に、実施例に用いた鋼の化学成分を示
す。
Table 1 shows the chemical components of the steel used in the examples.

【0057】[0057]

【表1】 [Table 1]

【0058】同表には、本発明例として9例、および比
較例としてNbを含まない本発明の範囲外の3例の鋼の
化学組成が示されている。
The table shows the chemical compositions of nine examples of the present invention and three examples of steels not containing Nb which are not included in the present invention as comparative examples.

【0059】表2はこれらの鋼について行った圧延、補
熱、冷却および焼戻しの各条件を示す。
Table 2 shows the conditions of rolling, supplementary heat, cooling and tempering performed on these steels.

【0060】[0060]

【表2】 [Table 2]

【0061】表2においてDQとは、圧延後300℃以
下まで焼入れを行ったことを示す。比較例においては、
水冷も含めた水冷以後の方法は本発明例と同じにして、
熱間圧延から補熱までの条件を、本発明の範囲外の条件
とした。これは、〔発明1〕および〔発明2〕ともに、
水冷も含めた水冷以後の方法が従来の一般的な鋼板の製
造方法と大差ないからである。冷却速度は板厚中心部で
の冷却速度である。また、補熱温度は補熱処理用の加熱
炉の設定温度であり、補熱時間は、前記したように95
0℃仕上げ圧延の場合は加熱炉に搬入し終わってからの
時間とし、また圧延仕上げ温度が1000℃を超える場
合、たとえば1040℃仕上げ圧延の場合も同様に加熱
炉に搬入し終わった時からの時間とした。
In Table 2, DQ means that quenching was performed to 300 ° C. or less after rolling. In the comparative example,
The method after water cooling including water cooling is the same as the example of the present invention,
The conditions from hot rolling to supplemental heat were taken out of the scope of the present invention. This is because [Invention 1] and [Invention 2]
This is because the method after the water cooling including the water cooling is not much different from the conventional method of manufacturing a general steel sheet. The cooling rate is the cooling rate at the center of the sheet thickness. The supplementary heat temperature is a set temperature of the heating furnace for supplementary heat treatment, and the supplementary heat time is 95% as described above.
In the case of 0 ° C. finish rolling, it is the time after the transfer to the heating furnace, and when the rolling finish temperature exceeds 1000 ° C., for example, in the case of 1040 ° C. finish rolling, the time from the completion of the transfer to the heating furnace is similarly set. Time.

【0062】これらの処理を行った鋼板の板厚1/4の
位置から、圧延方向(L方向)と圧延直角方向(T方
向)の2方向のJIS4号引張試験片(平行部直径8.
5mm)およびJIS4号衝撃試験片(10mm角)を
採取して、引張試験およびシャルピー衝撃試験に供し
た。靭性はシャルピー衝撃試験における延性脆性破面遷
移温度vTrs により評価した。これら試験の結果を表2
に併せて示す。
A JIS No. 4 tensile test piece (parallel diameter of 8.) in two directions of a rolling direction (L direction) and a direction perpendicular to the rolling direction (T direction) from a position of 1/4 of the thickness of the steel sheet subjected to these treatments.
5 mm) and a JIS No. 4 impact test piece (10 mm square) were sampled and subjected to a tensile test and a Charpy impact test. The toughness was evaluated by the ductile brittle fracture transition temperature vTrs in the Charpy impact test. Table 2 shows the results of these tests.
Are shown together.

【0063】本発明例である試験番号1〜12は、圧延
仕上げ温度が900℃以上であるにもかかわらず、比較
的強度靱性バランスに優れた鋼板が得られている。さら
に、仕上げ圧延後の補熱の効果により、強度および靱性
とも、L方向とT方向の間の差が非常に小さく、均質な
性能が得られた。
In Test Nos. 1 to 12, which are examples of the present invention, even though the rolling finish temperature is 900 ° C. or higher, a steel sheet having a relatively excellent balance of strength and toughness is obtained. Furthermore, due to the effect of the supplementary heat after the finish rolling, the difference in strength and toughness between the L direction and the T direction was very small, and uniform performance was obtained.

【0064】比較例である試験番号13〜17は、圧延
後補熱を全く行わないか、ごく短時間しか行わなかった
例である。この場合は、Nbのフェライト域での析出に
よる強化が効いて強度は高くなっているものの、靱性は
著しく劣化しており、低温靱性を要求される用途には使
用できない。
Test Nos. 13 to 17, which are comparative examples, are examples in which no supplementary heat was applied after rolling or only for a very short time. In this case, although the strength is increased due to strengthening by precipitation of Nb in the ferrite region, the toughness is remarkably deteriorated and cannot be used for applications requiring low-temperature toughness.

【0065】また、試験番号18、20、22、23
は、1050℃以下での圧下率が小さいため、γ粒の加
工とγ域でのNb炭窒化物の析出が不足してその分変態
中または変態後のNb炭窒化物が増大し、強度のみが高
く靱性が劣悪な鋼となっている。
Also, the test numbers 18, 20, 22, 23
Since the rolling reduction at 1050 ° C. or less is small, the processing of γ grains and the precipitation of Nb carbonitride in the γ region are insufficient, and the amount of Nb carbonitride during or after transformation increases, and only the strength is increased. This is a steel with high toughness and poor toughness.

【0066】試験番号19は、圧延仕上げ温度を790
℃とした結果、L方向は強度靱性とも良好だが、T方向
の靱性は良くない。スラブ加熱温度を十分に下げれば、
この傾向は緩和されるが、その場合は、加熱炉の使用効
率の低下や、圧延時の変形抵抗の増加による圧延能率の
低下を招き、経済性でマイナスが大きい。さらに何より
も異方性、すなわちL方向とT方向の強度と靭性の差を
無くすことは出来ない。試験番号19において機械的性
質の異方性がこれだけ大きいということは、圧延集合組
織の形成が著しいことを意味する。このため、構造物に
組み上げた後の溶接線近傍の超音波探傷に支障を生じる
ことになるが、それについては周知のことなのでとくに
調査は行わなかった。
Test No. 19 shows that the rolling finishing temperature was 790
As a result, the toughness in the L direction was good, but the toughness in the T direction was not good. If you lower the slab heating temperature enough,
Although this tendency is alleviated, in this case, the use efficiency of the heating furnace is reduced, and the rolling efficiency is reduced due to an increase in deformation resistance during rolling, and the economic efficiency is greatly negative. Furthermore, the anisotropy, that is, the difference in strength and toughness in the L and T directions cannot be eliminated. The large anisotropy of the mechanical properties in Test No. 19 means that the formation of the rolling texture is remarkable. For this reason, ultrasonic inspection near the weld line after assembling into a structure will be hindered, but since it is well known, no particular investigation was conducted.

【0067】スラブ加熱温度を下げた例が、比較例の試
験番号21、24であるが、圧延能率の過度の低下と異
方性を避けるために910℃仕上げとした結果、同じ鋼
に本発明方法を適用した試験番号9、12と比較して、
同等以下の性能しか得られなかった。操業上、非常に困
難でコストアップ要因を伴うスラブ低温加熱を行ったに
もかかわらず、本発明例に比較して性能上のメリットは
全く得られず、逆に本発明方法の有効性を示すこととな
った。
The examples in which the slab heating temperature was lowered are Test Nos. 21 and 24 of the comparative examples. As a result of finishing at 910 ° C. in order to avoid excessive reduction in rolling efficiency and anisotropy, the present invention was applied to the same steel. Compared to Test Nos. 9 and 12 to which the method was applied,
Only the same or lower performance was obtained. In operation, despite the fact that slab low-temperature heating with very difficult and cost-increasing factors was performed, no performance advantage was obtained compared to the present invention example, and conversely, the effectiveness of the present invention method was shown. It became a thing.

【0068】表3は、高温圧延仕上げを行った場合に避
けられないフェライト域でのNb析出による強化を回避
するために、Nbなしとした鋼番号10〜12につい
て、圧延後補熱した場合の機械的性質を示したものであ
る。
Table 3 shows that, in order to avoid strengthening due to Nb precipitation in the ferrite region which cannot be avoided when high-temperature rolling is performed, steel Nos. 10 to 12 without Nb were subjected to supplementary heat after rolling. It shows mechanical properties.

【0069】[0069]

【表3】 [Table 3]

【0070】試験番号25、26、27は、上記のNb
なしの鋼であるため、過度の靱性低下は起きていない
が、Nb以外はほぼ同一組成の鋼についての本発明例
1、3、10に比較して、特に靱性で劣る結果となっ
た。
The test numbers 25, 26 and 27 correspond to the above Nb
Since the steel had no steel, an excessive decrease in toughness did not occur, but the results were particularly poor in toughness as compared with Examples 1, 3, and 10 of the present invention for steels having almost the same composition except for Nb.

【0071】[0071]

【発明の効果】本発明により、生産性低下の犠牲をとも
なうスラブ加熱温度の低下や低温仕上げ圧延を行うこと
なく、強度と靱性に優れ、しかも異方性の小さい鋼板を
高能率で大量生産することが可能となる。これは従来の
高靭性厚鋼板の製造方法の考え方を覆す厚鋼板生産の基
本にかかわるものであり、業界の発展に資するところが
大きい。
Industrial Applicability According to the present invention, a steel sheet having excellent strength and toughness and small anisotropy can be mass-produced with high efficiency without lowering the slab heating temperature or performing low-temperature finish rolling at the expense of lowering productivity. It becomes possible. This is related to the basics of thick steel plate production that overturns the conventional idea of the method of manufacturing a high toughness thick steel plate, and greatly contributes to the development of the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は〔発明1〕の、また(b)は〔発明
2〕の圧延、補熱および冷却の各条件を示す図面であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a drawing showing [invention 1] and FIG. 1 (b) is a drawing showing [rolling, heating and cooling] conditions of [invention 2].

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量割合にて、 C :0.03〜0.2%、 Si:0.6%以下、 Mn:0.3〜3%、 Nb:0.02〜0.15%、 sol.Al:0.001〜0.1%、 Ti:0〜0.05%、 Cr:0〜1%、 Mo:0〜1%、 Cu:0〜2%、 Ni:0〜3%、 V :0〜0.2%、 および B :0〜0.003%を含有する
鋼を1100〜1250℃に加熱し、 900〜1050℃の温度域での
累積圧下率30%以上の圧延を行って900℃以上で圧延を終
了し、圧延後900〜1000℃の温度域に3分以上保持し、し
かる後に2℃/秒以上の冷却速度で 300℃以下まで冷却す
る工程を含むことを特徴とする靭性の優れた厚鋼板の製
造方法。
(Claim 1) C: 0.03-0.2%, Si: 0.6% or less, Mn: 0.3-3%, Nb: 0.02-0.15%, sol.Al: 0.001-0.1%, Ti: 0: Steel containing 0.05%, Cr: 0-1%, Mo: 0-1%, Cu: 0-2%, Ni: 0-3%, V: 0-0.2%, and B: 0-0.003% Heating to 1100-1250 ° C, rolling at a rolling reduction of 30% or more in the temperature range of 900-1050 ° C, finishing rolling at 900 ° C or more, and rolling to 900-1000 ° C for 3 minutes or more after rolling A method for manufacturing a thick steel plate having excellent toughness, comprising a step of holding and then cooling to 300 ° C. or less at a cooling rate of 2 ° C./sec or more.
【請求項2】重量割合にて、 C :0.03〜0.2%、 Si:0.6%以下、 Mn:0.3〜3%、 Nb:0.02〜0.15%、 sol.Al:0.001〜0.1%、 Ti:0〜0.05%、 Cr:0〜1%、 Mo:0〜1%、 Cu:0〜2%、 Ni:0〜3%、 V :0〜0.2% および B:0〜0.003%を含有する
鋼を1100〜1250℃に加熱し、 900〜1050℃の温度域での
累積圧下率30%以上の圧延を行って900℃以上で圧延を終
了し、圧延後900〜1000℃の温度域に3分以上保持し、し
かる後に2〜50℃/秒の冷却速度で400〜600℃まで加速冷
却する工程を含むことを特徴とする靭性の優れた厚鋼板
の製造法。
(Claim 2) C: 0.03-0.2%, Si: 0.6% or less, Mn: 0.3-3%, Nb: 0.02-0.15%, sol.Al: 0.001-0.1%, Ti: 0- 1100 steel containing 0.05%, Cr: 0-1%, Mo: 0-1%, Cu: 0-2%, Ni: 0-3%, V: 0-0.2% and B: 0-0.003% Heated to ~ 1250 ° C, rolled at a cumulative draft of 30% or more in the temperature range of 900 to 1,050 ° C, finished rolling at 900 ° C or more, and kept in the temperature range of 900 to 1,000 ° C for at least 3 minutes after rolling And a method for producing a thick steel plate having excellent toughness, which comprises a step of thereafter cooling at a cooling rate of 2 to 50 ° C./sec to 400 to 600 ° C.
JP31462196A 1996-11-26 1996-11-26 Manufacture of thick steel plate Pending JPH10152722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31462196A JPH10152722A (en) 1996-11-26 1996-11-26 Manufacture of thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31462196A JPH10152722A (en) 1996-11-26 1996-11-26 Manufacture of thick steel plate

Publications (1)

Publication Number Publication Date
JPH10152722A true JPH10152722A (en) 1998-06-09

Family

ID=18055517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31462196A Pending JPH10152722A (en) 1996-11-26 1996-11-26 Manufacture of thick steel plate

Country Status (1)

Country Link
JP (1) JPH10152722A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046416A1 (en) * 1999-02-05 2000-08-10 Bethlehem Steel Corporation Method of making a weathering grade plate and product therefrom
KR101149155B1 (en) 2009-08-27 2012-05-25 현대제철 주식회사 Manufacturing method of plate
WO2014157036A1 (en) * 2013-03-28 2014-10-02 新日鐵住金株式会社 Steel sheet-pile and process for manufacturing same
CN111172477A (en) * 2019-12-30 2020-05-19 宝鼎科技股份有限公司 High-yield, low-temperature and high-toughness seat frame steel casting for deep-sea ship and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046416A1 (en) * 1999-02-05 2000-08-10 Bethlehem Steel Corporation Method of making a weathering grade plate and product therefrom
KR101149155B1 (en) 2009-08-27 2012-05-25 현대제철 주식회사 Manufacturing method of plate
WO2014157036A1 (en) * 2013-03-28 2014-10-02 新日鐵住金株式会社 Steel sheet-pile and process for manufacturing same
JP5858196B2 (en) * 2013-03-28 2016-02-10 新日鐵住金株式会社 Steel sheet pile and manufacturing method thereof
US10071406B2 (en) 2013-03-28 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Steel sheet pile and method for manufacturing the same
CN111172477A (en) * 2019-12-30 2020-05-19 宝鼎科技股份有限公司 High-yield, low-temperature and high-toughness seat frame steel casting for deep-sea ship and manufacturing method

Similar Documents

Publication Publication Date Title
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
JP2007231312A (en) High-tensile-strength steel and manufacturing method therefor
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP3747724B2 (en) 60 kg class high strength steel excellent in weldability and toughness and method for producing the same
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JPH07331328A (en) Production of high tensile strength steel excellent in toughness at low temperature
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JPH10152722A (en) Manufacture of thick steel plate
JP3374688B2 (en) Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness
JPH05261567A (en) Manufacture of clad steel plate having excellent low temperature toughness
JP2000212680A (en) Non-heat treated high tensile strength steel plate small in reduction of yield stress by bauschinger effect and its production
JPH05154672A (en) Manufacture of high-strength and high-toughness clad steel plate
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPH0230712A (en) Production of clad steel sheet
JP2004263248A (en) Method for manufacturing high-tensile steel excellent in ctod characteristic of weld zone
JPH08283899A (en) Steel plate reduced in anisotropy and having high toughness and high tensile strength and its production
JPH05245658A (en) Production of austenitic stainless clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP2002088413A (en) Method for producing high tension steel excellent in weldability and ductility
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JPH09227937A (en) Manufacture of thick steel plate with high tensile strength