JP2000212680A - Non-heat treated high tensile strength steel plate small in reduction of yield stress by bauschinger effect and its production - Google Patents

Non-heat treated high tensile strength steel plate small in reduction of yield stress by bauschinger effect and its production

Info

Publication number
JP2000212680A
JP2000212680A JP11010672A JP1067299A JP2000212680A JP 2000212680 A JP2000212680 A JP 2000212680A JP 11010672 A JP11010672 A JP 11010672A JP 1067299 A JP1067299 A JP 1067299A JP 2000212680 A JP2000212680 A JP 2000212680A
Authority
JP
Japan
Prior art keywords
yield
strength
bauschinger effect
rolling
heat treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11010672A
Other languages
Japanese (ja)
Inventor
Masahiro Aoki
雅弘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11010672A priority Critical patent/JP2000212680A/en
Publication of JP2000212680A publication Critical patent/JP2000212680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a non-heat treated high tensile strength steel plate small in the reduction of Bauschinger effect without requiring the addition of a large amt. of Cr, and to provide a method for producing the same. SOLUTION: A steel slab having a compsn. contg., by weight, 0.03 to 0.12% C, 0.05 to 0.30% Si, 0.30 to 2.00% Mn, 0.005 to 0.06% Nb, 0.01 to 0.10% Al and <=0.007% N, moreover contg. one or >= two kinds selected from 0.05 to 1.30% Cu, 0.10 to 10.0% Ni, 0.05 to 1.50% Cr, 0.03 to 0.50% Mo, 0.01 to 0.15% V, <=.070% Ti, 0.0005 to 0.0040% Ca and 0.001 to 0.020% rare earth metals, and the balance Fe with inevitable impurities is subjected to hot rolling so as to control the rolling finishing temp. to >=(Ar3-50 deg.C), and, after the completion of the rolling, it is subjected to forced cooling to the temp. range of 400 to 700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラインパイプ,圧
力容器,建設機械,造船,橋梁,タンク等に用いられる
引張強さ490MPa級以上の非調質高張力鋼板とその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-refined high-strength steel sheet having a tensile strength of 490 MPa or higher used for line pipes, pressure vessels, construction machinery, shipbuilding, bridges, tanks, and the like, and a method for producing the same. .

【0002】[0002]

【従来の技術】一般に、圧延ままの鋼板に、冷間にて引
張加工を付与し、さらに圧縮加工を加えると、鋼の引張
試験における荷重−伸び線図が変化し、降伏応力(荷重
−伸び線図で降伏点が明瞭に現れない場合は耐力で代
用。本発明では、0.5 %耐力の値を採用、以下同じ)が
圧延ままのそれに比べて低下する、いわゆる「バウシン
ガー効果」と呼ばれる現象が見られる。そこで、ライン
パイプ用鋼板の製造に際しては、その製管、成形の加工
過程においてもたらされる降伏応力の低下代を見込ん
で、製造条件を設計することが行われる。このように圧
延ままの鋼板の強度を高めにすることは、製管、成形後
の強度を確保する上では効果があるが、一方で、高強度
化を達成するために、合金元素の添加や過酷な制御圧延
が必要となるので、溶接性の低下や経済性の低下を招く
ことになる。そのうえ、鋼板の強度が高いと、加工時に
より大きな力が必要となり、加工能率や加工精度の低下
をも招くことになる。
2. Description of the Related Art In general, when a steel sheet as rolled is subjected to a cold tensile process and further subjected to a compression process, the load-elongation diagram in the tensile test of the steel changes, and the yield stress (load-elongation) is changed. When the yield point does not appear clearly in the diagram, the yield strength is used instead.In the present invention, the value of 0.5% proof stress is used, the same applies hereinafter), a phenomenon called the "Bausinger effect", which is lower than that of the as-rolled state. Can be seen. Therefore, in the production of a steel sheet for line pipes, the production conditions are designed in consideration of the reduction in yield stress caused in the process of pipe making and forming. Increasing the strength of the as-rolled steel sheet in this way is effective in ensuring the strength after pipe making and forming, but on the other hand, in order to achieve higher strength, adding alloy elements or Since severe control rolling is required, the weldability and the economic efficiency are reduced. In addition, when the strength of the steel sheet is high, a greater force is required at the time of processing, which also causes a reduction in processing efficiency and processing accuracy.

【0003】ところで、バウシンガー効果による降伏応
力の低下量を少なくする方法として、圧延ままにおける
鋼板の荷重−伸び線図に着目して、これを降伏点の出な
いラウンドカーブとすることが効果があると言われてい
る。また、特公昭53-25801号公報には、低C−高Crの特
殊な成分系を採用することにより、バウシンガー効果を
抑制する手段が提案されている。
As a method of reducing the amount of reduction in yield stress due to the Bauschinger effect, it is effective to pay attention to the load-elongation diagram of a steel sheet as rolled and to make this a round curve without a yield point. It is said that there is. Japanese Patent Publication No. 53-25801 proposes a means for suppressing the Bauschinger effect by employing a special component system of low C and high Cr.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような形
状の荷重−伸び線図を得るには、加速冷却と化学成分を
調製して、ベイナイト、マルテンサイト主体の金属組織
にする必要があり、表面硬さの上昇や溶接性の低下等を
招くことがある。また、多量のCrは、溶接性等を低下さ
せるなどの難点があるので実用化しうる方法であるとは
言えない。そこで、本発明は、従来技術が抱えていた、
上記問題を改善し、多量のCr添加を必要とすることのな
い、バウシンガー効果による降伏応力低下が少ない、非
調質高張力鋼板とその製造方法を提案することを目的と
する。
However, in order to obtain a load-elongation diagram of such a shape, it is necessary to prepare a metal structure mainly composed of bainite and martensite by accelerating cooling and preparing chemical components. This may cause an increase in surface hardness and a decrease in weldability. Further, a large amount of Cr is not a method that can be put to practical use because it has disadvantages such as deterioration of weldability and the like. Therefore, the present invention has the conventional technology,
It is an object of the present invention to improve the above-mentioned problems and to propose a non-heat treated high-strength steel sheet which does not require a large amount of Cr addition, has little yield stress reduction due to the Bauschinger effect, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明の要旨構成は、以
下のとおりである。 (1)C:0.03〜0.12wt%、 Si:0.05〜0.30wt%、Mn:
0.30〜2.00wt%、 Nb:0.005 〜0.06wt%、Al:0.01〜
0.10wt%、 N:0.007 wt%以下を含み、かつCu:0.05
〜1.30wt%、 Ni:0.10〜10.0wt%、Cr:0.05〜1.50wt
%、 Mo:0.03〜0.50wt%、V:0.01〜0.15wt%、 T
i:0.070 wt%以下、Ca:0.0005〜0.0040wt%、REM :
0.001 〜0.020 wt%から選ばれるいずれか1種または2
種以上を含有し、残部はFeおよび不可避的不純物の組成
からなり、降伏比が90%以上、降伏伸びが2.7 %以上で
あることを特徴とする、バウシンガー効果による降伏応
力低下が少ない非調質高張力鋼板。
The gist of the present invention is as follows. (1) C: 0.03 to 0.12 wt%, Si: 0.05 to 0.30 wt%, Mn:
0.30 to 2.00 wt%, Nb: 0.005 to 0.06 wt%, Al: 0.01 to
0.10wt%, N: 0.007wt% or less, and Cu: 0.05
-1.30wt%, Ni: 0.1-100.0wt%, Cr: 0.05-1.50wt
%, Mo: 0.03 ~ 0.50wt%, V: 0.01 ~ 0.15wt%, T
i: 0.070 wt% or less, Ca: 0.0005 to 0.0040 wt%, REM:
Any one or two selected from 0.001 to 0.020 wt%
Containing at least one species, the balance being composed of Fe and unavoidable impurities, characterized by a yield ratio of at least 90% and a yield elongation of at least 2.7%. Quality high tensile steel plate.

【0006】(2)C:0.03〜0.12wt%、 Si:0.05〜0.3
0wt%、Mn:0.30〜2.00wt%、 Nb:0.005 〜0.06wt
%、Al:0.01〜0.10wt%、 N:0.007 wt%以下を含
み、かつCu:0.05〜1.30wt%、 Ni:0.10〜10.0wt%、
Cr:0.05〜1.50wt%、 Mo:0.03〜0.50wt%、V:0.01
〜0.15wt%、 Ti:0.070 wt%以下、Ca:0.0005〜0.00
40wt%、REM :0.001 〜0.020 wt%から選ばれるいずれ
か1種または2種以上を含有し、残部はFeおよび不可避
的不純物の組成からなる鋼スラブを、圧延終了温度が
(Ar3−50℃)以上になるように熱間圧延し、圧延終了
後、400 〜700 ℃までの温度範囲を強制冷却することを
特徴とする、バウシンガー効果による降伏応力低下が少
ない非調質高張力鋼板の製造方法。
(2) C: 0.03-0.12 wt%, Si: 0.05-0.3
0wt%, Mn: 0.30 ~ 2.00wt%, Nb: 0.005 ~ 0.06wt
%, Al: 0.01 to 0.10 wt%, N: 0.007 wt% or less, and Cu: 0.05 to 1.30 wt%, Ni: 0.1 to 10.0 wt%,
Cr: 0.05-1.50 wt%, Mo: 0.03-0.50 wt%, V: 0.01
~ 0.15wt%, Ti: 0.070wt% or less, Ca: 0.0005 ~ 0.00
A steel slab containing at least one selected from 40 wt% and REM: 0.001 to 0.020 wt%, the balance being Fe and unavoidable impurities, and a rolling end temperature of (Ar 3 -50 ° C.) Production of non-heat treated high-strength steel sheets with low yield stress reduction due to the Bauschinger effect, characterized by hot rolling as described above and forcibly cooling the temperature range from 400 to 700 ° C after rolling is completed. Method.

【0007】[0007]

【発明の実施の形態】以下、本発明において、成分組成
および製造条件を上記範囲に限定した理由について説明
する。 C:0.03〜0.12wt% Cは、焼入れ性と強度を確保するために必要な元素であ
る。目標とする強度を得るためには、0.03wt%以上を添
加することが必要である。一方、添加量が0.12wt%を超
えると、母材靱性および溶接熱影響部(以下、「HA
Z」と略記する)靱性が劣化するので、0.12wt%を上限
とする。なお、C量が増加すると、フェライト組織の比
率が低下して後述する降伏伸びが低下し、また、第2相
組織の引張強度が上昇して降伏比が低下する。これらの
特性は、バウシンガー効果による降伏応力低下量の増加
につながるので、C量は上記範囲内で極力低下させるこ
とが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the composition of the components and the production conditions in the present invention to the above ranges will be described below. C: 0.03 to 0.12 wt% C is an element necessary for securing hardenability and strength. To obtain the target strength, it is necessary to add 0.03 wt% or more. On the other hand, if the addition amount exceeds 0.12 wt%, the base metal toughness and the heat affected zone (hereinafter referred to as “HA”)
Z "), the toughness deteriorates, so the upper limit is 0.12 wt%. When the amount of C increases, the ratio of the ferrite structure decreases and the yield elongation described below decreases, and the tensile strength of the second phase structure increases and the yield ratio decreases. These characteristics lead to an increase in the yield stress reduction due to the Bauschinger effect. Therefore, it is desirable to reduce the C content as much as possible within the above range.

【0008】Si:0.05〜0.30wt% Siは、脱酸を促進し、かつ強度を高める上で有効な元素
である。これらの効果を発揮させるためには、0.05wt%
以上添加する必要があるが、過度に添加すると、母材靱
性およびHAZ靱性を劣化させるので、0.05〜0.30wt%
の範囲で添加する。なお、Si量を増加させると、第2相
組織の引張強さが上昇して、降伏比が低下し、バウシン
ガー効果の増加につながるので、上記の範囲内で極力低
下させることが望ましい。
Si: 0.05 to 0.30 wt% Si is an element effective in promoting deoxidation and increasing strength. To achieve these effects, 0.05wt%
It is necessary to add the above, but if added excessively, it deteriorates the base material toughness and the HAZ toughness.
Add within the range. Note that increasing the Si content increases the tensile strength of the second phase structure, lowers the yield ratio, and leads to an increase in the Bauschinger effect. Therefore, it is desirable to reduce the Si content within the above range as much as possible.

【0009】Mn:0.30〜2.00wt% Mnは、靱性を損なうことなく強度を上昇させる有用な元
素である。この効果を得るためには、少なくとも0.30wt
%以上の添加が必要である。しかし、過度に添加する
と、加工性が劣化するので、添加量の上限は2.00wt%と
する。なお、Mnの添加量が増加すると、第2相組織の強
度が上昇して降伏比が低下し、バウシンガー効果の増加
につながるので、上記範囲内で極力低下させることが望
ましい。
Mn: 0.30 to 2.00 wt% Mn is a useful element that increases strength without impairing toughness. To achieve this effect, at least 0.30wt
% Or more is required. However, if added excessively, the workability deteriorates, so the upper limit of the amount added is 2.00 wt%. When the amount of Mn added increases, the strength of the second phase structure increases and the yield ratio decreases, leading to an increase in the Bauschinger effect. Therefore, it is desirable to reduce the Mn within the above range as much as possible.

【0010】Nb:0.005 〜0.06wt% Nbは、鋳片加熱時のオーステナイト粒の粗大化を防止
し、また圧延時の細粒化、強化等に有効な元素である。
これらの効果を発揮させるためには、0.005 wt%以上の
添加が必要である。しかし、Nb量が0.06wt%を超えると
HAZ靱性が劣化するので、0.005 〜0.06wt%の範囲で
添加する。
Nb: 0.005 to 0.06 wt% Nb is an element that prevents the austenite grains from becoming coarse during slab heating, and is effective in reducing the grain size and strengthening during rolling.
In order to exert these effects, it is necessary to add 0.005 wt% or more. However, if the Nb content exceeds 0.06% by weight, the HAZ toughness deteriorates. Therefore, the Nb content is added in the range of 0.005 to 0.06% by weight.

【0011】Al:0.01〜0.10wt% Alは、鋼の脱酸と組織の微細化のため、少なくとも0.01
wt%は添加する必要があるが、過度に添加すると、鋼中
で酸化物系介在物が多量に生成し、靱性が大幅に劣化す
るので、その上限を0.10wt%とする。
Al: 0.01-0.10 wt% Al is at least 0.01% for deoxidation of steel and refining of the structure.
It is necessary to add wt%, but if it is added excessively, a large amount of oxide-based inclusions will be generated in the steel and the toughness will be significantly deteriorated. Therefore, the upper limit is set to 0.10 wt%.

【0012】N:0.007 wt%以下 Nは,Alと結合してAlNとなり、鋳片加熱時の結晶粒の
粗大化防止に寄与する元素である。しかし、Nを多量に
含有すると、HAZ靱性を劣化させるので、上限を0.00
7wt %以下とする。
N: 0.007 wt% or less N is an element that combines with Al to form AlN and contributes to preventing the crystal grains from becoming coarse when the slab is heated. However, when N is contained in a large amount, the HAZ toughness is deteriorated.
It shall be 7wt% or less.

【0013】以上述べた基本成分に加えて、強度および
/または靱性の向上のために、以下に述べる元素の少な
くとも1種を添加する。 Cu:0.05〜1.30wt% Cuは、固溶強化および析出強化に有効な元素である。こ
れらの効果を得るためには、0.05wt%以上、(とくに、
析出強化を利用するためには0.5 wt%以上)の添加が必
要である。しかし、1.30wt%を超えて添加しても、さら
なる効果が得られなくなるので、0.05〜1.30wt%の範囲
で添加する。ただし、Cu添加量が増加すると、第2相組
織の強度が上昇して降伏比が低下し、バウシンガー効果
の増加につながるため、Cu量は上記範囲内で極力低下さ
せることが望ましい。
In addition to the basic components described above, at least one of the following elements is added for improving the strength and / or toughness. Cu: 0.05-1.30 wt% Cu is an element effective for solid solution strengthening and precipitation strengthening. In order to obtain these effects, 0.05 wt% or more (especially,
In order to utilize precipitation strengthening, it is necessary to add 0.5 wt% or more). However, even if added in excess of 1.30 wt%, no further effect can be obtained, so it is added in the range of 0.05 to 1.30 wt%. However, when the added amount of Cu increases, the strength of the second phase structure increases and the yield ratio decreases, leading to an increase in the Bauschinger effect. Therefore, it is desirable to reduce the Cu amount as much as possible within the above range.

【0014】Ni:0.10〜10.0wt% Niは、靱性を大幅に改善する効果を有し、低温用途には
添加することが望ましい元素である。このような効果
は、0.10wt%以上の添加で得られるが、10.0wt%を超え
て添加しても、さらなる効果が得られなくなるので、Ni
量は0.10〜10.0wt%の範囲とする。なお、Niの添加量が
増加すると、第2相組織の強度が上昇して降伏比が低下
し、バウシンガー効果の増加につながるので、Ni量は上
記範囲内で極力低下させることが望ましい。
Ni: 0.10 to 10.0 wt% Ni has an effect of greatly improving toughness, and is an element that is desirably added for low-temperature applications. Such an effect can be obtained by adding 0.10 wt% or more. However, if the content exceeds 10.0 wt%, further effects cannot be obtained.
The amount is in the range of 0.1 to 10.0 wt%. When the amount of Ni added increases, the strength of the second phase structure increases and the yield ratio decreases, leading to an increase in the Bauschinger effect. Therefore, it is desirable to reduce the Ni content as much as possible within the above range.

【0015】Cr:0.05〜1.50wt% Crは、鋼の強度を確保するのに有効な元素であり、その
効果は0.05wt%以上の添加で得られる。しかし、Crを過
度に添加すると溶接性が劣化するので、Cr量は1.50wt%
を上限とする。
Cr: 0.05-1.50 wt% Cr is an element effective for securing the strength of steel, and its effect can be obtained by adding 0.05 wt% or more. However, excessive addition of Cr deteriorates the weldability, so the Cr content is 1.50wt%
Is the upper limit.

【0016】Mo:0.03〜0.50wt% Moは、少量でも鋼の強度と靱性を向上させる有用な元素
である。これらの効果は、0.03wt%以上の添加で発揮さ
れるが、過度に添加すると、溶接性が劣化する。このた
め、Mo量は、0.03〜0.50wt%とする。なお、Moの添加量
が増加すると、第2相組織の強度が上昇して降伏比が低
下し、バウシンガー効果の増加につながるため、Mo量は
上記の範囲内で極力低下させることが望ましい。
Mo: 0.03 to 0.50 wt% Mo is a useful element that improves the strength and toughness of steel even in a small amount. These effects are exhibited when added in an amount of 0.03 wt% or more, but if added excessively, the weldability is deteriorated. Therefore, the amount of Mo is set to 0.03 to 0.50 wt%. When the amount of Mo added increases, the strength of the second phase structure increases and the yield ratio decreases, leading to an increase in the Bauschinger effect. Therefore, it is desirable to reduce the amount of Mo as much as possible within the above range.

【0017】V:0.01〜0.15wt% Vは、析出強化による強度上昇に有効な元素である。こ
の効果を発揮させるためには、0.01wt%の以上の添加が
必要である。しかし、0.15wt%を超えて添加すると、溶
接性およびHAZ靱性が劣化するので、上記範囲内で添
加する。
V: 0.01 to 0.15 wt% V is an element effective for increasing the strength by precipitation strengthening. In order to exert this effect, it is necessary to add 0.01 wt% or more. However, if it is added in excess of 0.15 wt%, the weldability and the HAZ toughness deteriorate, so it is added within the above range.

【0018】Ti:0.070 wt%以下 Tiは、溶接部の粗粒化防止に、また、析出強化による強
度の向上に寄与する元素である。しかし、その量が0.07
0 wt%を超えると靱性が劣化するので、0.070wt%以下
の範囲で添加する
Ti: 0.070 wt% or less Ti is an element that contributes to preventing coarsening of the welded portion and improving the strength by precipitation strengthening. But the amount is 0.07
If it exceeds 0 wt%, the toughness will deteriorate.

【0019】Ca:0.0005〜0.0040wt% Caは、MnSを球状化させることを通じて、靱性を向上さ
せる元素である。この効果は、0.0005wt%以上の添加で
発揮されるが、0.0040wt%を超えて添加すると、酸化物
系介在物が増大して、靱性が劣化するので、その添加量
は0.0040wt%を上限とする。
Ca: 0.0005 to 0.0040 wt% Ca is an element that improves the toughness by making MnS spherical. This effect is exerted when 0.0005 wt% or more is added, but when it exceeds 0.0040 wt%, oxide-based inclusions increase and toughness is deteriorated. Therefore, the upper limit is 0.0040 wt%. And

【0020】REM :0.001 〜0.020 wt% REM (稀土類)は、Caと同様の機構により靱性を向上さ
せる。この効果を発揮させるためには、少なくとも0.00
1wt %の添加が必要であるが、0.020 wt%を超えると酸
化物系介在物の増大を招き、靱性が劣化するので、0.00
1 〜0.020 wt%の範囲で添加する。
REM: 0.001 to 0.020 wt% REM (rare earth) improves toughness by the same mechanism as Ca. To achieve this effect, at least 0.00
Addition of 1 wt% is necessary, but if it exceeds 0.020 wt%, oxide inclusions increase and the toughness deteriorates.
It is added in the range of 1 to 0.020 wt%.

【0021】次に本発明における、製造条件について述
べる。一般に、非調質鋼の強度、靱性の確保のために、
制御圧延による熱間圧延を行うことが有効である。本発
明においては、この制御圧延の圧延終了温度を、(Ar3
点−50℃)以上にすることが必要である。なぜなら、
(Ar3点−50℃)に満たない温度で圧延を終了すると、
フェライト組織の転位密度が上昇し、その変形態が低下
して降伏伸び値が低下するからである。このことはバウ
シンガー効果を低位に抑える上で極めて不利となる。従
って、圧延終了温度は(Ar3点−50℃)を下限とする。
Next, the manufacturing conditions in the present invention will be described. Generally, to ensure the strength and toughness of non-heat treated steel,
It is effective to perform hot rolling by controlled rolling. In the present invention, the rolling end temperature of the controlled rolling is set to (Ar 3
(Point -50 ° C) or higher. Because
When rolling is completed at a temperature less than (Ar 3 points-50 ° C),
This is because the dislocation density of the ferrite structure increases, the deformation thereof decreases, and the yield elongation value decreases. This is extremely disadvantageous in keeping the Bauschinger effect low. Therefore, the lower limit of the rolling end temperature is (Ar 3 points−50 ° C.).

【0022】さらに、上記制御圧延のあと、400 〜700
℃までを強制冷却する。強制冷却の方法は、水冷はもち
ろん、気体による加速冷却であってもよい。このような
冷却を行うことにより、フェライト組織の転位密度を上
昇させることなく、強度を確保することが可能になる。
上記冷却の制御範囲が700 ℃を超えると、その効果が十
分ではなく、また、400 ℃未満では表面硬さの上昇や冷
却後の形状不良等を招くため、強制冷却の温度範囲は、
圧延後、400 〜700 ℃までとした。
Further, after the above-mentioned controlled rolling, 400 to 700
Cool down to ℃. The method of forced cooling may be not only water cooling but also gas accelerated cooling. By performing such cooling, the strength can be secured without increasing the dislocation density of the ferrite structure.
If the cooling control range exceeds 700 ° C., the effect is not sufficient, and if it is less than 400 ° C., the surface hardness increases and the shape becomes poor after cooling.
After rolling, the temperature was raised to 400 to 700 ° C.

【0023】上述した鋼組成と製造条件により、バウシ
ンガー効果による降伏応力(降伏点が生じない場合に
は、0.5 %耐力) 低下が少ない非調質高張力鋼板が製造
可能になる。そして、バウシンガー効果を低位に抑える
手段として、降伏比を90%以上、降伏伸びを2.7 %以上
とすることが肝要である。以下、この点について述べ
る。図1は、本発明方法に従わない条件で製造した比較
鋼板、図2は、本発明方法にかなう条件で製造した鋼板
について測定した、荷重−伸び線図を模式的に示したも
のである。図1および図2において、それぞれ(a) は圧
延ままの状態の、(b) は曲げ及び曲げ戻し加工後の荷重
−伸び線図である。図1および図2において、バウシン
ガー効果による降伏応力低下量(図中で、圧延ままの降
伏強さと、曲げ及び曲げ戻し加工後の降伏強さとの差Δ
YSで表される低下量)が小さい発明例と、バウシンガ
ー効果が従来なみに大きい比較例とを比較すると、圧延
ままの状態で、次の点で両者に差がみられる。 a) 降伏点から荷重が増加し始めるまでの降伏棚の伸
び、すなわち「降伏伸び」は、発明例の方が大きい。 b) 降伏棚の終点から最高荷重に至るまでの荷重増加率
は、発明例の方が小さくく、従って降伏比が大きい。
With the above-described steel composition and manufacturing conditions, it is possible to manufacture a non-heat treated high-strength steel sheet with a small decrease in yield stress (0.5% proof stress when no yield point occurs) due to the Bauschinger effect. As means for suppressing the Bauschinger effect to a low level, it is important to set the yield ratio to 90% or more and the yield elongation to 2.7% or more. Hereinafter, this point will be described. FIG. 1 schematically shows a load-elongation diagram measured for a comparative steel plate manufactured under conditions not following the method of the present invention and FIG. 2 shows a steel plate manufactured under conditions meeting the method of the present invention. 1 and 2, (a) is a load-elongation diagram of the as-rolled state, and (b) is a load-elongation diagram after bending and unbending. 1 and 2, the difference in yield stress due to the Bauschinger effect (the difference Δ between the as-rolled yield strength and the yield strength after bending and unbending) is shown.
When the invention example having a small amount of decrease represented by YS) is compared with the comparative example in which the Bauschinger effect is as large as the conventional example, there is a difference between the two in the as-rolled state in the following points. a) The elongation of the yield shelf from the yield point until the load starts to increase, that is, the "yield elongation" is larger in the invention examples. b) The rate of increase in load from the end point of the yield shelf to the maximum load is smaller in the invention example, and therefore, the yield ratio is large.

【0024】これらの現象をもとに、バウシンガー効果
による降伏応力低下量ΔYSと、降伏伸びまたは降伏比
との関係を調査した。その結果が図3〜図5である。図
3〜図5から、降伏比が90%以上、かつ降伏伸びが2.7
%以上であれば、バウシンガー効果が低位に抑えられる
ことがわかる。以上のことから、本発明では、化学成分
の適正化、圧延終了温度および圧延後の冷却のいずれを
も適正に制御することにより、降伏比が90%以上、降伏
伸びが2.7 %以上を達成でき、この特性を通じて、バウ
シンガー効果による降伏応力低下が少ない非調質高張力
鋼板を製造することが可能になるといえる。また、本発
明の製造方法によれば、ベイナイトやマルテンサイト主
体の金属組織にする必要がないため、加速冷却や化学成
分の変更に伴う表面硬さの上昇や、溶接性の低下等を避
けることが可能である。
Based on these phenomena, the relationship between the yield stress reduction ΔYS due to the Bauschinger effect and the yield elongation or yield ratio was investigated. The results are shown in FIGS. 3 to 5 show that the yield ratio is 90% or more and the yield elongation is 2.7%.
%, The Bauschinger effect can be suppressed to a low level. From the above, according to the present invention, it is possible to achieve a yield ratio of 90% or more and a yield elongation of 2.7% or more by appropriately controlling the chemical components, the rolling end temperature, and the cooling after rolling. It can be said that through this characteristic, it is possible to manufacture a non-heat treated high-strength steel sheet with a small decrease in yield stress due to the Bauschinger effect. Further, according to the production method of the present invention, it is not necessary to use a metal structure mainly composed of bainite or martensite. Is possible.

【0025】[0025]

【実施例】表1に示す成分組成の鋼を、表2に示す製造
条件に従って、制御圧延および水冷による強制冷却を行
った。かくして得られた鋼板の圧延方向と垂直方向か
ら、矩形試験片を採取して引張試験に供した。また、こ
の鋼板を使用して30インチ (762mm)φのパイプを成形
し、パイプから同様の試験片を採取して試験に供した。
その結果を表2に併記する。表2より、発明例は、同レ
ベルの強度を有する比較例と比較して、YSの低下量が
少ないことがわかる。発明者等は、さらに実験を行い、
このような効果は、490 〜700MPa級鋼に広く適用できる
ことを確認した。
EXAMPLE Steel having the composition shown in Table 1 was subjected to controlled rolling and forced cooling by water cooling according to the production conditions shown in Table 2. A rectangular specimen was sampled from the direction perpendicular to the rolling direction of the steel sheet thus obtained and subjected to a tensile test. A 30-inch (762 mm) φ pipe was formed using this steel sheet, and a similar test piece was collected from the pipe and subjected to a test.
The results are also shown in Table 2. From Table 2, it can be seen that the invention example has a smaller decrease in YS as compared with the comparative example having the same level of strength. The inventors conducted further experiments,
It has been confirmed that such effects can be widely applied to 490 to 700 MPa grade steel.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
化学成分と制御圧延の終了温度、またさらに冷却方法
を、ともに適正化することによって、降伏比を90%以
上、降伏伸びを2.7 %以上として、バウシンガー効果の
少ない非調質高張力鋼を提供することができる。
As described above, according to the present invention,
By optimizing both the chemical composition, the controlled rolling end temperature, and the cooling method, the non-heat treated high-strength steel with reduced Bauschinger effect is provided with a yield ratio of 90% or more and a yield elongation of 2.7% or more. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較鋼における、圧延まま、および、曲げ−曲
げ戻し加工後の荷重−伸び線図である。
FIG. 1 is a load-elongation diagram of a comparative steel as-rolled and after a bending-bending process.

【図2】発明鋼における、圧延まま、および、曲げ−曲
げ戻し加工後の荷重−伸び線図である。
FIG. 2 is a load-elongation diagram of the invention steel as-rolled and after bending-unbending.

【図3】降伏伸び、降伏比およびΔYSの関係を示す図
である。
FIG. 3 is a diagram showing the relationship between yield elongation, yield ratio, and ΔYS.

【図4】降伏比とΔYSの関係を示す図である。FIG. 4 is a diagram showing a relationship between a yield ratio and ΔYS.

【図5】降伏伸びとΔYSの関係を示す図である。FIG. 5 is a diagram showing a relationship between yield elongation and ΔYS.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.03〜0.12wt%、 Si:0.05〜0.30wt%、 Mn:0.30〜2.00wt%、 Nb:0.005 〜0.06wt%、 Al:0.01〜0.10wt%、 N:0.007 wt%以下 を含み、かつ Cu:0.05〜1.30wt%、 Ni:0.10〜10.0wt%、 Cr:0.05〜1.50wt%、 Mo:0.03〜0.50wt%、 V:0.01〜0.15wt%、 Ti:0.070 wt%以下、 Ca:0.0005〜0.0040wt%、 REM :0.001 〜0.020 wt% から選ばれるいずれか1種または2種以上を含有し、残
部はFeおよび不可避的不純物の組成からなり、降伏比が
90%以上、降伏伸びが2.7 %以上であることを特徴とす
る、バウシンガー効果による降伏応力低下が少ない非調
質高張力鋼板。
1. C: 0.03 to 0.12 wt%, Si: 0.05 to 0.30 wt%, Mn: 0.30 to 2.00 wt%, Nb: 0.005 to 0.06 wt%, Al: 0.01 to 0.10 wt%, N: 0.007 wt% Including the following, Cu: 0.05 to 1.30 wt%, Ni: 0.1 to 10.0 wt%, Cr: 0.05 to 1.50 wt%, Mo: 0.03 to 0.50 wt%, V: 0.01 to 0.15 wt%, Ti: 0.070 wt% Hereinafter, one or more selected from Ca: 0.0005 to 0.0040 wt% and REM: 0.001 to 0.020 wt% are contained, and the balance is composed of Fe and unavoidable impurities.
A non-heat treated, high-strength steel sheet having a yield stress of at least 90% and a yield elongation of at least 2.7% with little decrease in yield stress due to the Bauschinger effect.
【請求項2】C:0.03〜0.12wt%、 Si:0.05〜0.30wt%、 Mn:0.30〜2.00wt%、 Nb:0.005 〜0.06wt%、 Al:0.01〜0.10wt%、 N:0.007 wt%以下 を含み、かつ Cu:0.05〜1.30wt%、 Ni:0.10〜10.0wt%、 Cr:0.05〜1.50wt%、 Mo:0.03〜0.50wt%、 V:0.01〜0.15wt%、 Ti:0.070 wt%以下、 Ca:0.0005〜0.0040wt%、 REM :0.001 〜0.020 wt% から選ばれるいずれか1種または2種以上を含有し、残
部はFeおよび不可避的不純物の組成からなる鋼スラブ
を、圧延終了温度が(Ar3−50℃)以上になるように熱
間圧延し、圧延終了後、400 〜700 ℃までの温度範囲を
強制冷却することを特徴とする、バウシンガー効果によ
る降伏応力低下が少ない非調質高張力鋼板の製造方法。
2. C: 0.03 to 0.12 wt%, Si: 0.05 to 0.30 wt%, Mn: 0.30 to 2.00 wt%, Nb: 0.005 to 0.06 wt%, Al: 0.01 to 0.10 wt%, N: 0.007 wt% Including: Cu: 0.05-1.30 wt%, Ni: 0.110-0.0 wt%, Cr: 0.05-1.50 wt%, Mo: 0.03-0.50 wt%, V: 0.01-0.15 wt%, Ti: 0.070 wt% A steel slab containing one or more selected from the group consisting of Ca: 0.0005 to 0.0040 wt% and REM: 0.001 to 0.020 wt%, with the balance being Fe and unavoidable impurities, is subjected to a rolling end temperature. Is hot rolled so as to be equal to or more than (Ar 3 -50 ° C.), and after the rolling is completed, the temperature range from 400 to 700 ° C. is forcibly cooled. Manufacturing method of tempered high strength steel sheet.
JP11010672A 1999-01-19 1999-01-19 Non-heat treated high tensile strength steel plate small in reduction of yield stress by bauschinger effect and its production Pending JP2000212680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11010672A JP2000212680A (en) 1999-01-19 1999-01-19 Non-heat treated high tensile strength steel plate small in reduction of yield stress by bauschinger effect and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11010672A JP2000212680A (en) 1999-01-19 1999-01-19 Non-heat treated high tensile strength steel plate small in reduction of yield stress by bauschinger effect and its production

Publications (1)

Publication Number Publication Date
JP2000212680A true JP2000212680A (en) 2000-08-02

Family

ID=11756756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11010672A Pending JP2000212680A (en) 1999-01-19 1999-01-19 Non-heat treated high tensile strength steel plate small in reduction of yield stress by bauschinger effect and its production

Country Status (1)

Country Link
JP (1) JP2000212680A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392111C (en) * 2003-10-27 2008-06-04 宝山钢铁股份有限公司 Method for manufacturing tool die steel plate produced by converter
WO2014077294A1 (en) * 2012-11-14 2014-05-22 Jfeスチール株式会社 Automobile collision energy absorbing member and manufacturing method therefor
US8815024B2 (en) * 2004-02-19 2014-08-26 Nippon Steel & Sumitomo Metal Corporation Steel plate or steel pipe with small occurrence of Bauschinger effect and methods of production of same
KR20150105194A (en) * 2014-03-07 2015-09-16 가부시키가이샤 다카라키자이 Method for manufacturing the high strength steel gratings
JP2015169071A (en) * 2014-10-15 2015-09-28 株式会社宝機材 Manufacturing method of high-tension steel grating
CN105624575A (en) * 2014-12-01 2016-06-01 鞍钢股份有限公司 Steel for equipment in hydrogen service

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392111C (en) * 2003-10-27 2008-06-04 宝山钢铁股份有限公司 Method for manufacturing tool die steel plate produced by converter
US8815024B2 (en) * 2004-02-19 2014-08-26 Nippon Steel & Sumitomo Metal Corporation Steel plate or steel pipe with small occurrence of Bauschinger effect and methods of production of same
WO2014077294A1 (en) * 2012-11-14 2014-05-22 Jfeスチール株式会社 Automobile collision energy absorbing member and manufacturing method therefor
JP5906324B2 (en) * 2012-11-14 2016-04-20 Jfeスチール株式会社 Collision energy absorbing member for automobile and manufacturing method thereof
KR20150105194A (en) * 2014-03-07 2015-09-16 가부시키가이샤 다카라키자이 Method for manufacturing the high strength steel gratings
KR102120242B1 (en) 2014-03-07 2020-06-08 가부시키가이샤 다카라키자이 Method for manufacturing the high strength steel gratings
JP2015169071A (en) * 2014-10-15 2015-09-28 株式会社宝機材 Manufacturing method of high-tension steel grating
CN105624575A (en) * 2014-12-01 2016-06-01 鞍钢股份有限公司 Steel for equipment in hydrogen service

Similar Documents

Publication Publication Date Title
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
US9394579B2 (en) High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
JP4946092B2 (en) High-strength steel and manufacturing method thereof
EP2272994A1 (en) High-tensile strength steel and manufacturing method thereof
WO2019181130A1 (en) Wear-resistant steel and method for producing same
WO2014038200A1 (en) Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
JP6682988B2 (en) High-tensile steel plate with excellent ductility and method of manufacturing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2008297570A (en) Low yield ratio steel sheet
JP2005213566A (en) High strength thin sheet steel excellent in workability, surface property and plate flatness and its manufacturing method
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JP2000212680A (en) Non-heat treated high tensile strength steel plate small in reduction of yield stress by bauschinger effect and its production
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP2004269924A (en) High efficient producing method of steel sheet excellent in strength and toughness
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPH05195057A (en) Production of high cr steel type uoe steel sheet and high cr type atmosphere corrosion resisting steel sheet both excellent in ys characteristic in l direction
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP4742597B2 (en) Production method of non-tempered high strength steel