JPH10140262A - Production of metal-ceramics composite material - Google Patents

Production of metal-ceramics composite material

Info

Publication number
JPH10140262A
JPH10140262A JP8309960A JP30996096A JPH10140262A JP H10140262 A JPH10140262 A JP H10140262A JP 8309960 A JP8309960 A JP 8309960A JP 30996096 A JP30996096 A JP 30996096A JP H10140262 A JPH10140262 A JP H10140262A
Authority
JP
Japan
Prior art keywords
preform
powder
metal
composite material
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8309960A
Other languages
Japanese (ja)
Other versions
JP4217279B2 (en
Inventor
Hiromasa Shimojima
浩正 下嶋
Mitsuyoshi Kimura
光良 木村
Kazunari Naito
一成 内藤
Heishiro Takahashi
平四郎 高橋
Mutsuo Hayashi
睦夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SERANKUSU KK
Taiheiyo Cement Corp
Original Assignee
SERANKUSU KK
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SERANKUSU KK, Nihon Cement Co Ltd filed Critical SERANKUSU KK
Priority to JP30996096A priority Critical patent/JP4217279B2/en
Publication of JPH10140262A publication Critical patent/JPH10140262A/en
Application granted granted Critical
Publication of JP4217279B2 publication Critical patent/JP4217279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems, such as absence of water resistance, incapability of increase in powder filling ratio, and increase in costs, occurring at the time when an AlN powder is used for the preparation of a preform. SOLUTION: The metal-ceramics composite is produced by forming a preform by the use of ceramic fibers or grains as a reinforcement and impregnating a metal as a base material into the preform. At this time, the preform is composed of an AlN powder having 1-100μm average grain size and 30-60vol.% powder filling ratio, and this preform is obtained by filling a vessel, made of carbon, etc., with the AlN powder to form the preform or by adding a colloidal silica solution or/and a colloidal solution of alumina hydrate to the AlN powder after water-proofing treatment, molding the resultant mixture, and then burning the resultant molded body. Further, an alloy, composed essentially of aluminum, is impregnated into the resultant preform at 700-1000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属に強化材を複
合させた複合材料の製造方法に関し、特に強化材に窒化
アルミニウムの粉末を用いる金属−セラミックス複合材
料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite material in which a metal is combined with a reinforcing material, and more particularly to a method for producing a metal-ceramic composite material using aluminum nitride powder as the reinforcing material.

【0002】[0002]

【従来の技術】セラミックス繊維または粒子で強化され
た金属−セラミックスの複合材料は、金属とセラミック
スの両方の特性を兼ね備えており、例えばこの複合材料
は、剛性、低熱膨張性、耐摩耗性等のセラミックスの優
れた特性と、延性、高靱性、高熱伝導性等の金属の優れ
た特性を備えている。このように、従来から難しいとさ
れていたセラミックスと金属の両方の特性を備えている
ため、機械装置メーカ等の業界から次世代の材料として
注目されている。
2. Description of the Related Art A metal-ceramic composite material reinforced with ceramic fibers or particles has both characteristics of a metal and a ceramic. For example, this composite material has rigidity, low thermal expansion property, abrasion resistance and the like. It has excellent properties of ceramics and excellent properties of metals such as ductility, high toughness, and high thermal conductivity. As described above, since it has both the characteristics of ceramics and metal, which have been considered difficult, it has been drawing attention as a next-generation material from industries such as mechanical device manufacturers.

【0003】この複合材料、特に金属としてアルミニウ
ムをマトリックスとする複合材料の作製方法は、粉末冶
金法、圧力鋳造法、真空鋳造法等の作製法がある。これ
らの内、粉末冶金法では、粉末状の金属に粒状のあるい
はウィスカー状もしくはファイバー状等のセラミックス
を強化材として混合し、成形し、その成形体を非加圧、
あるいは加圧下で焼成し作製していた。しかしこの方法
で作製された複合材料中の強化材の粉末充填率は、強化
材を多くすると焼結し難くなるため、ウィスカーやファ
イバー状の繊維状のもので最大25%程度であり、粒子
状のもので最大40%程度であった。
[0003] Methods for producing this composite material, particularly a composite material using aluminum as a matrix as a metal, include powder metallurgy, pressure casting, and vacuum casting. Among them, in powder metallurgy, powdered metal is mixed with granulated or whisker-shaped or fiber-shaped ceramics as a reinforcing material, molded, and the molded body is subjected to non-pressurization.
Alternatively, it was produced by firing under pressure. However, the powder filling rate of the reinforcing material in the composite material produced by this method is at most about 25% for whisker or fibrous fibrous material because sintering becomes difficult when the reinforcing material is increased, and The maximum was about 40%.

【0004】前記粉末冶金法の他の圧力鋳造法、真空鋳
造法においても、溶解した金属のセラミックス粒子への
濡れ性が悪いため、セラミックス粉末を増やすと金属と
混合し難くなり、強化材の粉末充填率は最大でやはり高
々40%程度であった。そのため最近では強化材の粉末
充填率を高めるべく、強化材であるセラミックス繊維ま
たは粒子で構成されたプリフォームをあらかじめ形成
し、そのプリフォームに基材である金属を含浸させる含
浸法が採られている。
In the pressure casting method and vacuum casting method other than the powder metallurgy method described above, the wettability of the melted metal to the ceramic particles is poor. The filling factor was also at most about 40% at the maximum. Therefore, recently, in order to increase the powder filling rate of the reinforcing material, an impregnation method of forming a preform made of ceramic fibers or particles as the reinforcing material in advance and impregnating the preform with the metal as the base material has been adopted. I have.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記含
浸法においては、プリフォームを構成するセラミックス
が窒化アルミニウム(AlN)であると、プリフォーム
の形成に水を用いる場合にはAlNに耐水性がないこと
から使用することはできないという問題があった。一
方、水を用いない場合にはAlN粉末に熱硬化樹脂を混
合し、それを加熱しながらプレスしてプリフォームを形
成するので、高い粉末充填率を有する複合材料が得られ
ないこと、プレス機等の設備が必要となり、製造コスト
が高くなることなどの問題があった。特に大型品を作製
するには、高価なプレス機が必要となり一層コスト高と
なる。また、有機ケイ素系の熱硬化樹脂を使用している
ので、溶湯アルミニウムが含浸する過程で樹脂中のケイ
素成分がマトリックス中に生成するため、曲げ強度、破
壊靱性などの特性が低下するという問題もあった。
However, in the above-mentioned impregnation method, if the ceramic constituting the preform is aluminum nitride (AlN), the water is not used in forming the preform when AlN is used. There was a problem that it could not be used. On the other hand, when water is not used, the thermosetting resin is mixed with the AlN powder and pressed while heating to form a preform. Therefore, a composite material having a high powder filling rate cannot be obtained. There is a problem that equipment such as the above is required and the manufacturing cost is increased. In particular, in order to produce a large product, an expensive press machine is required, which further increases the cost. In addition, since the organosilicon-based thermosetting resin is used, the silicon component in the resin is generated in the matrix during the process of impregnating the molten aluminum, which causes a problem that properties such as bending strength and fracture toughness are reduced. there were.

【0006】本発明は、上述した含浸法による金属−セ
ラミックス複合材料の製造方法が有する課題に鑑みなさ
れたものであって、その目的は、強化材として窒化アル
ミニウムを用いても問題なく製造することができる金属
−セラミックス複合材料の製造方法を提供することにあ
る。
The present invention has been made in view of the problems of the above-described method for producing a metal-ceramic composite material by the impregnation method, and an object of the present invention is to produce a metal-ceramic composite material without any problem even if aluminum nitride is used as a reinforcing material. It is an object of the present invention to provide a method for producing a metal-ceramic composite material that can be used.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、粉末充填率が30〜
60vol%のプリフォームについては、AlN粉末を
カーボン等の容器中に充填する方法で、粉末充填率が6
0〜80vol%のプリフォームについては、耐水処理
を施したAlN粉末にコロイダルシリカ液または/及び
アルミナ水和物のコロイド液を加え成形した後、その成
形体を焼成する方法でプリフォームを形成することと
し、その形成したプリフォームに金属を含浸すれば、A
lN粉末を用いても、含浸法で問題なく金属−セラミッ
クス複合材料を製造できるとの知見を得て本発明を完成
した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the powder filling rate was 30 to
For a preform of 60 vol%, a method of filling AlN powder into a container such as carbon has a powder filling rate of 6%.
For a preform of 0 to 80 vol%, a colloidal silica solution or / and a colloidal solution of alumina hydrate are added to a water-resistant AlN powder, molded, and then the molded body is fired to form a preform. If the formed preform is impregnated with metal, A
The present inventors have found that a metal-ceramic composite material can be produced by the impregnation method without any problem even if 1N powder is used, thereby completing the present invention.

【0008】即ち本発明は、(1)セラミックス繊維ま
たは粒子を強化材としてプリフォームを形成し、そのプ
リフォームに基材である金属を含浸させる金属−セラミ
ックス複合材料の製造方法において、該プリフォーム
が、1〜100μmの平均粒径を有し、30〜60vo
l%の粉末充填率を有するAlN粉末から成り、該プリ
フォームの形成方法が、AlN粉末をカーボン等の容器
中に充填して形成する方法であるとし、その形成された
プリフォームにアルミニウムを主成分とする合金を70
0〜1000℃の温度で含浸させることを特徴とする金
属−セラミックス複合材料の製造方法(請求項1)と
し、また、(2)セラミックス繊維または粒子を強化材
としてプリフォームを形成し、そのプリフォームに基材
である金属を含浸させる金属−セラミックス複合材料の
製造方法において、該プリフォームが、1〜100μm
の平均粒径を有し、60〜80vol%の粉末充填率を
有する耐水処理を施したAlN粉末から成り、該プリフ
ォームの形成方法が、AlN粉末にコロイダルシリカ液
または/及びアルミナ水和物のコロイド液を加え成形し
た後、その成形体を焼成する方法であるとし、その形成
されたプリフォームにアルミニウムを主成分とする合金
を700〜1000℃の温度で含浸させることを特徴と
する金属−セラミックス複合材料の製造方法(請求項
2)とすることを要旨とする。以下さらに詳細に説明す
る。
That is, the present invention relates to (1) a method for producing a metal-ceramic composite material in which a preform is formed using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material. Has an average particle size of 1 to 100 μm, and 30 to 60 vo
It is assumed that the preform is formed by filling AlN powder into a container such as carbon or the like, and aluminum is mainly used in the formed preform. 70 as the component alloy
A method for producing a metal-ceramic composite material characterized by being impregnated at a temperature of 0 to 1000 ° C. (Claim 1). (2) A preform is formed by using ceramic fibers or particles as a reinforcing material. In a method for producing a metal-ceramic composite material in which a metal as a base material is impregnated in a reform, the preform is 1 to 100 μm
And a water-resistant AlN powder having a powder filling rate of 60 to 80 vol%, and the method of forming the preform is performed by adding a colloidal silica liquid or / and alumina hydrate to the AlN powder. The method is characterized in that the method comprises a step of baking the formed body after adding and forming a colloid liquid, and impregnating the formed preform with an alloy containing aluminum as a main component at a temperature of 700 to 1000 ° C. The gist of the present invention is a method of manufacturing a ceramic composite material (claim 2). This will be described in more detail below.

【0009】上記(1)のプリフォームとしては、1〜
100μmの平均粒径を有し、30〜60vol%の粉
末充填率を有するAlN粉末から成るプリフォームと
し、そのプリフォームの形成方法としては、AlN粉末
をカーボン等の容器中に充填して形成する方法とした。
AlN粉末の平均粒径を1〜100μmとしたのは、こ
の範囲でないと堅固なプリフォームにし難いことによ
る。さらに、粉末充填率を30〜60vol%としたの
は、この範囲のプリフォームであれば容易に形成するこ
とができることによる。
As the preform of the above (1),
A preform made of AlN powder having an average particle diameter of 100 μm and a powder filling rate of 30 to 60 vol% is formed. The preform is formed by filling the AlN powder into a container such as carbon. Method.
The reason why the average particle diameter of the AlN powder is 1 to 100 μm is that it is difficult to form a solid preform outside this range. Further, the reason for setting the powder filling rate to 30 to 60 vol% is that a preform in this range can be easily formed.

【0010】上記AlN粉末の純度としては、98%以
上が好ましいが、AlNの特徴である耐プラズマ性、高
熱伝導性等が損なわれない範囲の純度であればよい。ま
た、AlNの特性を損なわなければ他の種類の粉末を1
0wt%以下であれば混合してもよく、例えば耐プラズ
マ性を重視すればAl23粉末を10wt%以下なら混
合してもよく、高熱伝導性を重視すればSiC、BN等
の熱伝導性の良好な粉末を10wt%以下なら混合して
もよい。
[0010] The purity of the AlN powder is preferably 98% or more, but may be any purity as long as the characteristics of AlN such as plasma resistance and high thermal conductivity are not impaired. If the characteristics of AlN are not impaired, another type of powder may be used.
If it is 0 wt% or less, it may be mixed. For example, if plasma resistance is emphasized, Al 2 O 3 powder may be mixed if it is 10 wt% or less. If high thermal conductivity is emphasized, thermal conductivity of SiC, BN, or the like may be used. If a powder having good properties is 10 wt% or less, it may be mixed.

【0011】上記カーボン等の材料としては、通常のグ
ラファイト部材、またはグラファイトをシート状にした
もの等金属を含浸している途中でAlと反応もしくは容
器自体が溶解しない材料であればよく、例えばカーボン
の他ステンレス等の材料も使用することができる。シー
ト状のものは、形状を自由に変えられるので好ましく、
その厚さは、1mm以下が種々の形状の容器を作製する
のに好ましい。作製した容器に粉末を充填してプリフォ
ームを形成するが、充填する際に充填率が向上するよう
に振動を加えてもよい。このように、容器に粉末を充填
しただけでプリフォームとするので、プリフォームの粉
末充填率を60vol%以上と高くすることは難しい
が、水を使う必要もなく、また特別の設備を必要としな
いので、プリフォームを安価で容易に形成することがで
きる。
The material such as carbon may be any material which does not react with Al or dissolve the container itself during the impregnation of a metal such as a normal graphite member or a sheet of graphite. Other materials such as stainless steel can also be used. Sheet-shaped objects are preferred because the shape can be changed freely,
The thickness of 1 mm or less is preferable for producing containers of various shapes. The preform is formed by filling the prepared container with the powder, and vibration may be applied during filling so as to improve the filling rate. As described above, it is difficult to increase the preform powder filling rate to 60 vol% or more because the preform is formed only by filling the container with the powder, but there is no need to use water and special equipment is required. Therefore, the preform can be easily formed at low cost.

【0012】また、上記(2)のプリフォームとして
は、1〜100μmの平均粒径を有し、60〜80vo
l%の粉末充填率を有する耐水処理を施したAlN粉末
から成るプリフォームとし、そのプリフォームの形成方
法としては、耐水処理を施したAlN粉末にコロイダル
シリカ液または/及びアルミナ水和物のコロイド液を加
え成形した後、その成形体を焼成する方法とした。Al
N粉末の平均粒径を1〜100μmとしたのは、前記し
たと同じであり、さらに、粉末充填率を60〜80vo
l%としたのは、上記(1)では難しい高い範囲の粉末
充填率を有するプリフォームを容易に形成することがで
きることによる。
The preform of the above (2) has an average particle diameter of 1 to 100 μm, and has an average particle size of 60 to 80 vo.
A preform made of a water-resistant AlN powder having a powder filling rate of 1% is prepared. The preform is formed by adding a colloid of a colloidal silica liquid or / and alumina hydrate to the water-resistant AlN powder. After molding by adding a liquid, the molded body was fired. Al
The reason why the average particle diameter of the N powder is set to 1 to 100 μm is the same as described above, and further, the powder filling rate is set to 60 to 80 vol.
The reason why the amount is set to 1% is that a preform having a powder filling rate in a high range, which is difficult in the above (1), can be easily formed.

【0013】上記(2)のプリフォームの形成方法が水
を用いる方法であるので、用いるAlN粉末としては、
耐水処理を施したAlN粉末とした。耐水処理として
は、CVD、PVD処理して粉末表面にコーティングし
てもよく、ナイロン等の水溶性でない有機物を表面にコ
ーティング処理してもよい。耐水処理していないAlN
粉末を用いると、直ちに水と反応して水酸化アルミニウ
ム、アンモニアを生成しAlNとして残存しない。Al
N粉末の純度としては、前記したと同じく、また、Al
N粉末に他の種類の粉末を混合するのも前記したと同じ
である。
Since the method of forming a preform of the above (2) is a method using water, the AlN powder used is as follows:
The AlN powder was subjected to a water-resistant treatment. As the water-resistant treatment, the powder surface may be coated by CVD or PVD treatment, or a non-water-soluble organic substance such as nylon may be coated on the surface. AlN without water resistance treatment
When the powder is used, it reacts immediately with water to produce aluminum hydroxide and ammonia and does not remain as AlN. Al
As for the purity of the N powder, as described above,
Mixing another type of powder with N powder is the same as described above.

【0014】上記プリフォームの形成に用いるバインダ
ーとしては、コロイダルシリカ液または/及びアルミナ
水和物のコロイド液とした。これらをバインダーとした
のは、粉末充填率が高く、かつ金属を含浸するに十分な
強度を有するプリフォームとすることができることによ
る。以下に各バインダーをさらに詳細に説明する。
The binder used for forming the preform was a colloidal silica solution or a colloidal solution of alumina hydrate. The reason for using these as binders is that a preform having a high powder filling rate and sufficient strength to impregnate metal can be obtained. Hereinafter, each binder will be described in more detail.

【0015】コロイダルシリカ液は、アルカリ領域で安
定なシリカ液と酸性領域で安定なシリカ液とがあり、ア
ルカリ領域で安定なシリカ液では、Na等で安定化した
コロイドの大きさが5〜50nmのシリカ液を用いるこ
とができる。液中のシリカの濃度は10〜40wt%程
度の範囲にあり、安定化剤のアルカリ成分の濃度として
は、Na2O換算で0.4wt%以下が好ましい。これ
以上の濃度であるとNaイオンによりプリフォームに含
浸してきたAlがAl23化し易くなり、プリフォーム
は高強度になるが、複合体の特性、特に曲げ強度、破壊
靱性が低下するので好ましくない。また、AlNの粒界
がガラス化して閉気孔となり易く含浸の阻害となる。
The colloidal silica liquid includes a silica liquid which is stable in an alkaline region and a silica liquid which is stable in an acidic region. In a silica liquid which is stable in an alkaline region, the size of a colloid stabilized with Na or the like is 5 to 50 nm. Can be used. The concentration of silica in the liquid is in the range of about 10 to 40 wt%, and the concentration of the alkali component of the stabilizer is preferably 0.4 wt% or less in terms of Na 2 O. If the concentration is higher than this, Al impregnated into the preform by Na ions is easily converted to Al 2 O 3, and the preform becomes high in strength, but the properties of the composite, particularly, the bending strength and the fracture toughness are reduced. Not preferred. In addition, the grain boundaries of AlN are vitrified to form closed pores, which hinders impregnation.

【0016】一方、酸性領域で安定なシリカ液では、酸
性で安定したコロイドの大きさが5〜50nmのシリカ
液を用いることができる。液中のシリカの濃度は前記し
たと同じく10〜40wt%程度の範囲にあり、アルカ
リ成分の濃度は、Na2O換算で0.05以下が好まし
い。
On the other hand, in the case of a silica liquid which is stable in an acidic region, an acidic and stable colloid having a colloid size of 5 to 50 nm can be used. The concentration of silica in the liquid is in the range of about 10 to 40 wt% as described above, and the concentration of the alkali component is preferably 0.05 or less in terms of Na 2 O.

【0017】次に、アルミナ水和物のコロイド液は、コ
ロイドの大きさが1〜1000nmで、Cl-、CH3
OO-もしくはNO3 -で安定化したコロイド液を用いる
ことができる。このアルミナ水和物のコロイド液と前記
したコロイダルシリカ液とを混合して用いることもでき
る。混合の目安としては、シリカ成分の割合がアルミナ
成分に対し、10〜80wt%程度とする。これらバイ
ンダーをAlN粉末に適量加え成形し、焼成することで
プリフォームを形成することができる。このように、耐
水性を有したAlN粉末を用い、その粉末を前記バイン
ダーで結合させたプリフォームとするので、水を使って
も問題なく粉末充填率が60vol%以上のプリフォー
ムを容易に形成することができる。
Next, colloidal solution of alumina hydrate, the size of the colloid in 1~1000nm, Cl -, CH 3 C
OO - or NO 3 - stabilized colloidal solution can be used. This colloidal solution of alumina hydrate and the above-mentioned colloidal silica solution can be used in combination. As a guide for mixing, the ratio of the silica component is about 10 to 80 wt% with respect to the alumina component. A preform can be formed by adding an appropriate amount of these binders to AlN powder, molding and firing. As described above, since the AlN powder having water resistance is used to form the preform in which the powder is bonded with the binder, a preform having a powder filling rate of 60 vol% or more can be easily formed without using water. can do.

【0018】プリフォームに金属を含浸する方法として
は、アルミニウムを主成分とする合金を700〜100
0℃の温度で含浸させることとした。金属をアルミニウ
ム合金としのは、AlN粉末に濡れ性がよく好ましいこ
とによる。この合金の含浸温度は、この範囲より低いと
合金が溶解せず、この範囲より高いとAlが酸化し好ま
しくない。このアルミニウムの種類としては、Al単味
を含め、Al−Si−Mg系、Al−Mg系のアルミニ
ウム合金等があり、いずれのものでも使用することがで
きる。
As a method of impregnating the preform with a metal, an alloy containing aluminum as a main component is 700 to 100%.
The impregnation was performed at a temperature of 0 ° C. The reason why the metal is aluminum alloy is that AlN powder has good wettability and is preferable. If the impregnation temperature of this alloy is lower than this range, the alloy does not melt, and if it is higher than this range, Al is oxidized, which is not preferable. Examples of the type of aluminum include Al-Si-Mg-based and Al-Mg-based aluminum alloys, including Al alone, and any of them can be used.

【0019】[0019]

【発明の実施の形態】本発明の製造方法をさらに詳しく
述べると、先ず強化材として1〜100μmの平均粒径
を有するAlN粉末、またはそれにAl23等のセラミ
ックス粉末を10%以下混合した粉末を用いる。AlN
粉末は単一の粒径のものでもよいが、2種類の粒径の粉
末を混合した方が充填率が高くなり成形体の強度が増加
するので望ましい。
More particularly the manufacturing method of the embodiment of the present invention, the first AlN powder having an average particle size of 1 to 100 [mu] m, or in the ceramic powder of Al 2 O 3 or the like by mixing 10% or less as reinforcement Use powder. AlN
The powder may be of a single particle size, but it is desirable to mix powders of two types of particle size because the filling rate increases and the strength of the molded body increases.

【0020】次いで、上記(1)の製造方法では、グラ
ファイトシート等を用いて所望の形状の容器を作製す
る。作製した容器にAlN粉末を振動を加え、あるいは
加えないで充填してプリフォームを形成する。そのプリ
フォームに窒素気流中で非加圧、あるいは加圧して70
0〜1000℃の温度でAl、またはAl−Si−Mg
系あるいはAl−Mg系のアルミニウム合金を含浸させ
る。
Next, in the manufacturing method (1), a container having a desired shape is manufactured using a graphite sheet or the like. The prepared container is filled with AlN powder with or without vibration to form a preform. Non-pressurizing or pre-pressing the preform in a nitrogen stream
Al or Al-Si-Mg at a temperature of 0 to 1000 ° C
System or an Al-Mg system aluminum alloy.

【0021】また、上記(2)の製造方法では、先ず上
述のAlN粉末に前記した耐水処理を施し、その耐水処
理したAlN粉末に対し、イオン交換水を10〜50w
t%程度、前記したバインダーを0.1〜30wt%程
度、そのほか必要があれば消泡剤を2wt%程度以下、
尿素を2wt%程度以下加える。バインダーの量は、少
ないと作製したプリフォームの強度が低く複合化する際
に支障を生じ、多すぎると閉気孔を生じて複合化できな
い。
In the method (2), the AlN powder is first subjected to the above-mentioned water-resistant treatment, and ion-exchanged water is added to the water-resistant AlN powder for 10 to 50 watts.
about t%, about 0.1 to 30 wt% of the binder, and about 2 wt% or less of an antifoaming agent if necessary.
Urea is added at about 2 wt% or less. If the amount of the binder is too small, the strength of the produced preform is low, which hinders the formation of a composite, and if the amount is too large, closed pores are formed and the composite cannot be formed.

【0022】得られた配合物をポットミルで1時間以上
混合するが、あまり長いと粒子表面に施した耐水処理層
が劣化してAlN表面が露出し水と反応することになる
ので、50時間以内が望ましい。また、ポットミルにボ
ールを入れるのは、前記した問題が顕著となり好ましく
ない。混合したスラリーは、振動を印加して沈降成形、
すなわちセディメントキャストする。スラリーの粘度
は、粘性が高いと粉末が沈降しないため、100ポイズ
以下が望ましい。通常はシリコーンゴム型を使用する
が、プラスチック、アルミニウム等の型であってもよ
く、特に限定はない。粒子が沈降する間はなるべく振動
を加え充填をよくする。得られた成形体は冷凍して脱型
する。冷凍は水が凍ればよく温度に限定はない。脱型し
た成形体を70〜130℃の温度で乾燥する。この乾燥
した状態でも成形体の強度をある程度発現できるので、
必要に応じプリフォームとして用いてもよいが、通常は
400〜1100℃の温度で焼成してプリフォームとす
る。
The obtained composition is mixed in a pot mill for 1 hour or more. If it is too long, the water-resistant treatment layer applied to the particle surface is deteriorated, and the AlN surface is exposed and reacts with water. Is desirable. In addition, putting a ball in a pot mill is not preferable because the above-mentioned problem is remarkable. The mixed slurry is settled by applying vibration,
That is, sediment cast is performed. The viscosity of the slurry is preferably 100 poise or less because the powder does not settle if the viscosity is high. Normally, a silicone rubber mold is used, but a mold of plastic, aluminum or the like may be used, and there is no particular limitation. During the sedimentation of the particles, vibration is applied as much as possible to improve the filling. The obtained compact is frozen and demolded. Freezing is not limited as long as the water is frozen. The demolded compact is dried at a temperature of 70 to 130C. Since the strength of the molded body can be expressed to some extent even in this dry state,
Although it may be used as a preform if necessary, it is usually fired at a temperature of 400 to 1100 ° C. to obtain a preform.

【0023】得られたプリフォームに窒素気流中で非加
圧、あるいは加圧して700〜1000℃の温度でA
l、Al−Si−Mg系またはAl−Mg系のアルミニ
ウム合金を含浸させる。含浸させた後、そのまま炉内で
10〜300℃/hの降温速度で冷却する。冷却の際、
熱歪の発生を抑えるためにマトリックスが固化する途中
の温度で1〜10時間程度保持してもよい。
The obtained preform is not pressurized in a nitrogen stream or pressurized at a temperature of 700 to 1000 ° C.
1, impregnated with an Al-Si-Mg-based or Al-Mg-based aluminum alloy. After impregnation, it is cooled in a furnace at a temperature lowering rate of 10 to 300 ° C / h. Upon cooling,
In order to suppress the occurrence of thermal strain, the matrix may be maintained at a temperature during solidification of the matrix for about 1 to 10 hours.

【0024】以上の方法で金属−セラミックス複合材料
を作製すれば、AlN粉末を用いても、安価でまた粉末
充填率の高いものを含んだ金属−セラミックス複合材料
が得られる。
If a metal-ceramic composite material is produced by the above-described method, a metal-ceramic composite material which is inexpensive and contains a high powder filling rate can be obtained even if AlN powder is used.

【0025】[0025]

【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0026】(実施例1) (1)金属−セラミックス複合材料の作製 0.8mmの厚さのグラファイトシートを用いて500
×500×30mmの箱を作製し、その中に平均粒径が
16μmのAlN粉末を振動を加えながら高さが10m
mとなるよう充填しプリフォームを作製した。得られた
プリフォームの上面に200μm程度の大きさのMg粉
末を200gふりかけ、その上にAl−5Mgの合金を
4kg載置し、810℃窒素気流中(20リットル/m
in:炉内容積0.40m3)でプリフォームに合金を
含浸させた後、炉内で100℃/hの降温速度で700
℃まで冷却し、その温度で1時間保持してから再度10
0℃/hで室温まで冷却して金属−セラミックスの複合
材料を作製した。
(Example 1) (1) Production of metal-ceramic composite material 500 parts were prepared using a 0.8 mm thick graphite sheet.
A box of × 500 × 30 mm is prepared, and an AlN powder having an average particle size of 16 μm is placed in the box with a height of 10 m while applying vibration.
m to prepare a preform. 200 g of Mg powder having a size of about 200 μm is sprinkled on the upper surface of the obtained preform, and 4 kg of an Al-5Mg alloy is placed on the Mg powder and placed in a nitrogen stream at 810 ° C. (20 l / m 2).
in: After the preform was impregnated with the alloy at a furnace volume of 0.40 m 3 ), the temperature was lowered at a rate of 100 ° C./h in the furnace at 700 ° C.
° C, hold at that temperature for 1 hour, and
It was cooled to room temperature at 0 ° C./h to produce a metal-ceramic composite material.

【0027】(2)評価 得られたプリフォームの粉末充填率をプリフォームの重
量と外形寸法より求めた。また、得られた複合材料の曲
げ強度をJIS R1601により求め、さらに別にシ
ェブロンノッチを導入した試験片を作製し、その試験片
で同じくJISR1601により曲げ強度を求め、その
値から破壊靱性値を求めた。それらの結果を表1に示
す。
(2) Evaluation The powder filling rate of the obtained preform was determined from the weight and external dimensions of the preform. Further, the bending strength of the obtained composite material was determined by JIS R1601, a test piece into which a chevron notch was introduced was further prepared, and the bending strength of the test piece was also determined by JIS R1601, and the fracture toughness was determined from the value. . Table 1 shows the results.

【0028】(実施例2) (1)金属−セラミックス複合材料の作製 グラファイトブロックから700×800×50mmの
箱を作製し、その内側に0.3mmの厚さのグラファイ
トシートを貼り付け、その底に200μm程度の大きさ
のMg粉末をふりかけた。その箱の中に平均粒径が16
μmと25μmのAlN粉末を1:1で乾式混合した混
合粉末を充填にムラが生じないように板で上から押しな
がら高さが15mmとなるように充填しプリフォームを
作製した。得られたプリフォームの上面にAl−2Mg
の合金を12kg載置し、830℃窒素気流中(20リ
ットル/min:炉内容積0.40m3)でプリフォー
ムに合金を含浸させた後、実施例1と同様に冷却して金
属−セラミックスの複合材料を作製した。
Example 2 (1) Preparation of Metal-Ceramic Composite Material A 700 × 800 × 50 mm box was prepared from a graphite block, and a 0.3 mm thick graphite sheet was adhered to the inside of the box. Was sprinkled with Mg powder having a size of about 200 μm. The average particle size in the box is 16
A preform was prepared by filling a mixed powder obtained by dry mixing 1 μm and 25 μm AlN powder at a ratio of 1: 1 while pressing from above with a plate so as to prevent unevenness. Al-2Mg on the upper surface of the obtained preform
Is placed in a nitrogen stream at 830 ° C. (20 l / min: furnace volume 0.40 m 3 ), and then impregnated with the alloy. Was prepared.

【0029】(2)評価 得られたプリフォームの粉末充填率、複合材料の曲げ強
度、破壊靱性値を実施例1と同様に求めた。それらの結
果も表1に示す。
(2) Evaluation The powder filling rate of the obtained preform, the bending strength of the composite material, and the fracture toughness were determined in the same manner as in Example 1. The results are also shown in Table 1.

【0030】(実施例3) (1)金属−セラミックス複合材料の作製 ステンレスを用いて600×500×100mmの箱を
作製し、その中に平均粒径が25μmのAlN粉末を振
動を加えながら高さが80mmとなるように充填しプリ
フォームを作製した。得られたプリフォームの上面に2
00μm程度の大きさのMg粉末を100gふりかけ、
その上に純度が98%以上のAlを10kg載置し、8
80℃窒素気流中(20リットル/min:炉内容積
0.40m3)でプリフォームに合金を含浸させた後、
実施例1と同様に冷却して金属−セラミックスの複合材
料を作製した。
Example 3 (1) Preparation of Metal-Ceramic Composite Material A 600 × 500 × 100 mm box was prepared using stainless steel, and an AlN powder having an average particle diameter of 25 μm was placed in the box while applying vibration to the box. To obtain a preform. 2 on the upper surface of the obtained preform
Sprinkle 100g of Mg powder of about 00μm size,
10 kg of Al having a purity of 98% or more is placed on the
After the alloy was impregnated into the preform at 80 ° C. in a nitrogen stream (20 l / min: furnace volume 0.40 m 3 ),
Cooling was performed in the same manner as in Example 1 to produce a metal-ceramic composite material.

【0031】(2)評価 得られたプリフォームの粉末充填率、複合材料の曲げ強
度、破壊靱性値を実施例1と同様に求めた。それらの結
果も表1に示す。
(2) Evaluation The powder filling ratio of the obtained preform, the bending strength of the composite material, and the fracture toughness were determined in the same manner as in Example 1. The results are also shown in Table 1.

【0032】(比較例1) (1)金属−セラミックス複合材料の作製 50×50×10mmの金型に、平均粒径が16μmの
AlN粉末にポリカルボシラン等の熱硬化性樹脂を5w
t%加えて混合した粉末を充填し、その粉末に200℃
で2トンの荷重を1時間加えて成形し、その成形体を空
気中で450℃で焼成しプリフォームを作製した。得ら
れたプリフォームの上面に200μm程度の大きさのM
g粉末を1gふりかけ、その上にAl−5Mgの合金を
150g載置し、820℃窒素気流中(20リットル/
min:炉内容積0.40m3)でプリフォームに合金
を含浸させた後、実施例1と同様に冷却して金属−セラ
ミックスの複合材料を作製した。
Comparative Example 1 (1) Preparation of Metal-Ceramic Composite Material In a mold of 50 × 50 × 10 mm, a thermosetting resin such as polycarbosilane was added to AlN powder having an average particle diameter of 16 μm for 5 watts.
t% and the mixed powder is filled, and the powder
Then, a load of 2 tons was applied for 1 hour, and the formed body was fired at 450 ° C. in air to produce a preform. On the upper surface of the obtained preform, a size of about 200 μm M
1 g of powder, sprinkle 1 g of the powder, and place 150 g of the Al-5Mg alloy on top of it, in a nitrogen stream at 820 ° C. (20 liters /
min: a furnace volume of 0.40 m 3 ) was impregnated with the alloy in the preform, and then cooled as in Example 1 to produce a metal-ceramic composite material.

【0033】(2)評価 得られたプリフォームの粉末充填率、複合材料の曲げ強
度、破壊靱性値を実施例1と同様に求めた。それらの結
果も表1に示す。
(2) Evaluation The powder filling ratio of the obtained preform, the bending strength of the composite material, and the fracture toughness were determined in the same manner as in Example 1. The results are also shown in Table 1.

【0034】(実施例4) (1)金属−セラミックス複合材料の作製 平均粒径が15μmの表面にシリカをコーティングした
AlN粉末に対し、イオン交換水を24wt%、固形分
濃度が20%のアルミナ水和物のコロイド液(コロイド
の大きさは10×20nm)を10wt%加え、ボール
を入れてないポットミルで2時間混合した。得られたス
ラリーを180×25×25mmの大きさのシリコーン
ゴム型に流し込み、1時間振動を印加して強化材を沈降
させ成形した。成形後、ゴム型ごと−25℃に冷却し冷
凍して脱型した。脱型後、80℃で24時間乾燥した
後、50℃/hの昇温速度で大気雰囲気中で450℃で
5時間焼成した後、50℃/hの降温速度で室温まで冷
却してプリフォームを作製した。得られたプリフォーム
の上にプリフォームと同重量のAl−5Mgの合金を載
置し、825℃窒素気流中(20リットル/min:炉
内容積0.40m3)でプリフォームに合金を含浸させ
た後、実施例1と同様に冷却して金属−セラミックスの
複合材料を作製した。
Example 4 (1) Preparation of Metal-Ceramic Composite Material Alumina having 24% by weight of ion-exchanged water and 20% of solid content was added to AlN powder having an average particle size of 15 μm coated with silica. A hydrate colloid solution (colloid size: 10 × 20 nm) was added at 10 wt%, and mixed for 2 hours in a pot mill without a ball. The obtained slurry was poured into a silicone rubber mold having a size of 180 × 25 × 25 mm, and vibration was applied for 1 hour to set the reinforcing material and settle. After molding, the entire rubber mold was cooled to -25 ° C, frozen, and demolded. After demolding, drying at 80 ° C. for 24 hours, firing at 450 ° C. for 5 hours in an air atmosphere at a heating rate of 50 ° C./h, and cooling to room temperature at a cooling rate of 50 ° C./h to perform a preform Was prepared. An Al-5Mg alloy having the same weight as the preform was placed on the obtained preform, and the alloy was impregnated with the alloy in a nitrogen gas stream at 825 ° C. (20 l / min: furnace volume 0.40 m 3 ). After that, cooling was performed in the same manner as in Example 1 to produce a metal-ceramic composite material.

【0035】(2)評価 得られたプリフォームの粉末充填率、複合材料の曲げ強
度、破壊靱性値を実施例1と同様に求めた。それらの結
果を表2に示す。
(2) Evaluation The powder filling rate of the obtained preform, the bending strength of the composite material, and the fracture toughness were determined in the same manner as in Example 1. Table 2 shows the results.

【0036】(実施例5) (1)金属−セラミックス複合材料の作製 平均粒径が20μmの表面にシリカをコーティングした
AlN粉末に対し、イオン交換水を24wt%、固形分
濃度が20%のコロイダルシリカ液(コロイドの大きさ
は10×20nm)を9.6wt%加え、ボールを入れ
てないポットミルで2時間混合した。得られたスラリー
を180×25×25mmの大きさのシリコーンゴム型
に流し込み、1時間振動を印加して強化材を沈降させ成
形した。成形後、ゴム型ごと−25℃に冷却し冷凍して
脱型した。脱型後、80℃で24時間乾燥した後、50
℃/hの昇温速度で大気雰囲気中で700℃で3時間焼
成した後、50℃/hの降温速度で室温まで冷却してプ
リフォームを作製した。得られたプリフォームの上にプ
リフォームと同重量のAl−2Mgの合金を載置し、8
50℃窒素気流中(20リットル/min:炉内容積
0.40m3)でプリフォームに合金を含浸させた後、
実施例1と同様に冷却して金属−セラミックスの複合材
料を作製した。
Example 5 (1) Preparation of Metal-Ceramic Composite Material Colloidal having ion exchanged water of 24 wt% and solid content of 20% with respect to AlN powder having an average particle diameter of 20 μm coated with silica. 9.6 wt% of a silica liquid (colloid size: 10 × 20 nm) was added and mixed for 2 hours in a pot mill without balls. The obtained slurry was poured into a silicone rubber mold having a size of 180 × 25 × 25 mm, and vibration was applied for 1 hour to set the reinforcing material and settle. After molding, the entire rubber mold was cooled to -25 ° C, frozen, and demolded. After demolding and drying at 80 ° C. for 24 hours, 50
After sintering at 700 ° C. for 3 hours in an air atmosphere at a temperature rising rate of 50 ° C./h, it was cooled to room temperature at a temperature decreasing rate of 50 ° C./h to prepare a preform. An Al-2Mg alloy having the same weight as the preform was placed on the obtained preform, and 8
After the preform was impregnated with the alloy in a nitrogen stream at 50 ° C. (20 l / min: furnace volume 0.40 m 3 ),
Cooling was performed in the same manner as in Example 1 to produce a metal-ceramic composite material.

【0037】(2)評価 得られたプリフォームの粉末充填率、複合材料の曲げ強
度、破壊靱性値を実施例1と同様に求めた。それらの結
果も表2に示す。
(2) Evaluation The powder filling rate of the obtained preform, the bending strength of the composite material, and the fracture toughness were determined in the same manner as in Example 1. The results are also shown in Table 2.

【0038】(実施例6) (1)金属−セラミックス複合材料の作製 平均粒径が20μmの表面にシリカをコーティングした
AlN粉末に対し、イオン交換水を24wt%、固形分
濃度が20%のアルミナ水和物のコロイド液(コロイド
の大きさは10×20nm)を10wt%加え、ボール
を入れてないポットミルで2時間混合した。得られたス
ラリーをφ250×t15mmの大きさのシリコーンゴ
ム型に流し込み、1時間振動を印加して強化材を沈降さ
せ成形した。成形後、ゴム型ごと−25℃に冷却し冷凍
して脱型した。脱型後、80℃で24時間乾燥した後、
50℃/hの昇温速度で大気雰囲気中で450℃で5時
間焼成した後、50℃/hの降温速度で室温まで冷却し
てプリフォームを作製した。得られたプリフォームの上
にプリフォームと同重量のAl−5Mgの合金を載置
し、825℃窒素気流中(20リットル/min:炉内
容積0.40m3)でプリフォームに合金を含浸させた
後、実施例1と同様に冷却して金属−セラミックスの複
合材料を作製した。
Example 6 (1) Preparation of Metal-Ceramic Composite Material An AlN powder having an average particle diameter of 20 μm coated with silica was mixed with 24 wt% of ion-exchanged water and alumina having a solid concentration of 20%. A hydrate colloid solution (colloid size: 10 × 20 nm) was added at 10 wt%, and mixed for 2 hours in a pot mill without a ball. The obtained slurry was poured into a silicone rubber mold having a size of φ250 × t15 mm, and vibration was applied for one hour to set the reinforcing material and settle. After molding, the entire rubber mold was cooled to -25 ° C, frozen, and demolded. After demolding, after drying at 80 ° C for 24 hours,
After calcining at 450 ° C. for 5 hours in an air atmosphere at a temperature rising rate of 50 ° C./h, it was cooled to room temperature at a temperature decreasing rate of 50 ° C./h to prepare a preform. An Al-5Mg alloy having the same weight as the preform was placed on the obtained preform, and the alloy was impregnated with the alloy in a nitrogen gas stream at 825 ° C. (20 l / min: furnace volume 0.40 m 3 ). After that, cooling was performed in the same manner as in Example 1 to produce a metal-ceramic composite material.

【0039】(2)評価 得られたプリフォームの粉末充填率、複合材料の曲げ強
度、破壊靱性値を実施例1と同様に求めた。それらの結
果も表2に示す。
(2) Evaluation The powder filling rate of the obtained preform, the bending strength of the composite material, and the fracture toughness were determined in the same manner as in Example 1. The results are also shown in Table 2.

【0040】(比較例2) (1)金属−セラミックス複合材料の作製 50×50×10mmの金型に、平均粒径が16μmの
シリカをコーティングしたAlN粉末にポリカルボシラ
ン等の熱硬化性樹脂を5wt%加えて混合した粉末を充
填し、その粉末に200℃で2トンの荷重を1時間加え
て成形し、その成形体を50℃の昇温速度で空気中で7
00℃で5時間焼成しプリフォームを作製した。得られ
たプリフォームの上にプリフォームと同等量のAl−5
Mgの合金を載置し、825℃窒素気流中(20リット
ル/min:炉内容積0.40m3)でプリフォームに
合金を含浸させた後、実施例1と同様に冷却して金属−
セラミックスの複合材料を作製した。
Comparative Example 2 (1) Preparation of Metal-Ceramic Composite Material Thermosetting resin such as polycarbosilane was applied to AlN powder obtained by coating a 50 × 50 × 10 mm mold with silica having an average particle size of 16 μm. Was added at 5 wt% and mixed, and the powder was molded by applying a load of 2 tons at 200 ° C. for 1 hour.
It was baked at 00 ° C. for 5 hours to prepare a preform. The same amount of Al-5 as the preform is placed on the obtained preform.
A Mg alloy was placed, and the preform was impregnated with the alloy in a nitrogen stream at 825 ° C. (20 l / min: furnace volume 0.40 m 3 ).
A composite material of ceramics was prepared.

【0041】(2)評価 得られたプリフォームの粉末充填率、複合材料の曲げ強
度、破壊靱性値を実施例1と同様に求めた。それらの結
果も表2に示す。
(2) Evaluation The powder filling rate of the obtained preform, the bending strength of the composite material, and the fracture toughness were determined in the same manner as in Example 1. The results are also shown in Table 2.

【0042】(比較例3)シリカをコーティングしてな
いAlN粉末を用いた他は、実施例1と同様に金属−セ
ラミックス複合材料を作製し、同様に評価した。それら
の結果も表2に示す。
Comparative Example 3 A metal-ceramic composite material was prepared and evaluated in the same manner as in Example 1, except that AlN powder not coated with silica was used. The results are also shown in Table 2.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】表1から明らかなように、水を用いないで
プリフォームを形成した実施例1〜3においては、プリ
フォームの形成がAlN粉末を容器に充填するだけであ
るので、いずれも粉末充填率が60vol%より低く、
従来の粉末充填率を有する比較例1と同レベルのものし
か得られなかったが、その曲げ強度、破壊靱性値は、比
較例1よりいずれも高く、特性については従来よりかな
り向上していた。
As is clear from Table 1, in Examples 1 to 3 in which preforms were formed without using water, the preforms were formed only by filling AlN powder into a container. The rate is lower than 60 vol%,
Although only the same level as that of Comparative Example 1 having the conventional powder filling rate was obtained, the flexural strength and fracture toughness were higher than those of Comparative Example 1, and the properties were considerably improved as compared with the conventional example.

【0046】また、表2から明らかなように、実施例4
〜6においては、水を用い粉末をバインダーで結合させ
てプリフォームを形成しているので、従来の方法で作製
した比較例2の粉末充填率よりいずれも高く、しかもい
ずれも60vol%を超えていた。これは、従来なし得
なかった粉末充填率が60vol%を超えるAlN粉末
を強化材とした複合材料を容易に作製できることを示し
ている。そして、その曲げ強度、破壊靱性値とも比較例
2より低いものの、本発明と同じ方法でかつ同じ条件で
作製した他の強化材、例えば同レベルの粉末充填率を有
するSiC粉末で強化した複合材料と同等の強度を示し
ており、これは、耐水処理したAlN粉末でも耐水性の
ある他の粉末と同様に問題なく複合材料を作製できるこ
とを示している。なお、比較例3は、AlN粉末に耐水
処理していないため、混合中水と反応して成形できなか
った。
As is clear from Table 2, Example 4
In Nos. 6 to 6, since the preform was formed by bonding the powder with water using a binder, the powder filling ratio was higher than that of Comparative Example 2 produced by the conventional method, and all exceeded 60 vol%. Was. This indicates that a composite material using an AlN powder having a powder filling rate exceeding 60 vol%, which could not be obtained before, as a reinforcing material can be easily produced. And although its bending strength and fracture toughness value are both lower than Comparative Example 2, a composite material reinforced with another reinforcing material produced by the same method and under the same conditions as the present invention, for example, SiC powder having the same level of powder filling factor This indicates that the composite material can be produced without any problem, similarly to other water-resistant powders, even with the water-resistant AlN powder. In Comparative Example 3, since the AlN powder was not subjected to the water-resistant treatment, it could not be molded by reacting with water during mixing.

【0047】さらに、上記実施例1、2、3、4、6の
プリフォームの大きさ、もしくは形状がいずれも異なっ
ていることから、またプレスでプリフォームを形成した
比較例1、2よりいずれも大きいものを作製してことか
ら、本発明では種々の形状品を、しかも大型品であって
も安価で容易に作製できることを示している。
Further, since the sizes or shapes of the preforms of Examples 1, 2, 3, 4, and 6 were all different from each other, the comparative examples 1 and 2 in which the preforms were formed by pressing were all different. The present invention shows that various shaped articles can be easily manufactured at low cost even if the article is large in size.

【0048】[0048]

【発明の効果】以上の通り、本発明の方法で金属−セラ
ミックス複合材料を作製すれば、AlN粉末を用いて
も、含浸法で安価でしかも高い粉末充填率を有した金属
−セラミックス複合材料を容易に製造できるようになっ
た。このことにより、AlNは耐プラズマ性、高熱伝導
性に優れているので、これらの特性を生かした曲げ強
度、破壊靱性に優れた大型品を含むアルミニウム−Al
N複合材料を低コストで作製できるようになった。
As described above, if a metal-ceramic composite material is produced by the method of the present invention, even if an AlN powder is used, a metal-ceramic composite material which is inexpensive and has a high powder filling rate by an impregnation method. It can be easily manufactured. As a result, AlN is excellent in plasma resistance and high thermal conductivity. Therefore, aluminum-Al including large-sized products excellent in bending strength and fracture toughness utilizing these characteristics is used.
N-composite materials can be produced at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 平四郎 千葉県松戸市松戸新田314−1 (72)発明者 林 睦夫 埼玉県浦和市大牧560 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Heishiro Takahashi 314-1 Matsudo Nitta, Matsudo City, Chiba Prefecture (72) Mutsui Hayashi 560 Omaki, Urawa City, Saitama Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス繊維または粒子を強化材と
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームが、1〜100μmの
平均粒径を有し、30〜60vol%の粉末充填率を有
するAlN粉末から成り、該プリフォームの形成方法
が、AlN粉末をカーボン等の容器中に充填して形成す
る方法であるとし、その形成されたプリフォームにアル
ミニウムを主成分とする合金を700〜1000℃の温
度で含浸させることを特徴とする金属−セラミックス複
合材料の製造方法。
1. A method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material, wherein the preform has a size of 1 to 100 μm. The preform is formed of AlN powder having an average particle size and a powder filling rate of 30 to 60 vol%, and the method of forming the preform is a method of filling AlN powder into a container such as carbon to form the preform. A method for producing a metal-ceramic composite material, comprising: impregnating a formed preform with an alloy containing aluminum as a main component at a temperature of 700 to 1000 ° C.
【請求項2】 セラミックス繊維または粒子を強化材と
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームが、1〜100μmの
平均粒径を有し、60〜80vol%の粉末充填率を有
する耐水処理を施したAlN粉末から成り、該プリフォ
ームの形成方法が、AlN粉末にコロイダルシリカ液ま
たは/及びアルミナ水和物のコロイド液を加え成形した
後、その成形体を焼成する方法であるとし、その形成さ
れたプリフォームにアルミニウムを主成分とする合金を
700〜1000℃の温度で含浸させることを特徴とす
る金属−セラミックス複合材料の製造方法。
2. A method for producing a metal-ceramic composite material in which a preform is formed using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material, wherein the preform has a size of 1 to 100 μm. The preform is formed of a water-resistant AlN powder having an average particle size and a powder filling rate of 60 to 80 vol%, and the method of forming the preform is performed by adding a colloidal silica liquid or a colloid of alumina hydrate to the AlN powder. A metal-ceramics method, wherein the formed body is fired after adding a liquid, and the formed preform is impregnated with an alloy mainly composed of aluminum at a temperature of 700 to 1000 ° C. Manufacturing method of composite material.
JP30996096A 1996-11-07 1996-11-07 Method for producing metal-ceramic composite material Expired - Fee Related JP4217279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30996096A JP4217279B2 (en) 1996-11-07 1996-11-07 Method for producing metal-ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30996096A JP4217279B2 (en) 1996-11-07 1996-11-07 Method for producing metal-ceramic composite material

Publications (2)

Publication Number Publication Date
JPH10140262A true JPH10140262A (en) 1998-05-26
JP4217279B2 JP4217279B2 (en) 2009-01-28

Family

ID=17999441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30996096A Expired - Fee Related JP4217279B2 (en) 1996-11-07 1996-11-07 Method for producing metal-ceramic composite material

Country Status (1)

Country Link
JP (1) JP4217279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038171A (en) * 2006-08-03 2008-02-21 Aia Engineering Ltd Improved wear-resistant metallic part and its manufacturing method
JP2010007149A (en) * 2008-06-30 2010-01-14 Taiheiyo Cement Corp Metal matrix composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038171A (en) * 2006-08-03 2008-02-21 Aia Engineering Ltd Improved wear-resistant metallic part and its manufacturing method
JP2010007149A (en) * 2008-06-30 2010-01-14 Taiheiyo Cement Corp Metal matrix composite material

Also Published As

Publication number Publication date
JP4217279B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US4640903A (en) Silicon nitride sintered bodies and a method for producing the same
JPH0768066B2 (en) Heat resistant composite and method for producing the same
JP2735404B2 (en) Ceramic preform, its production method and its use
JP5601833B2 (en) Method for producing metal-ceramic composite material
JP2002226285A (en) Lightweight ceramic member and method for manufacturing the same
JPS6410469B2 (en)
JPH10140262A (en) Production of metal-ceramics composite material
JPH11172348A (en) Metal-ceramics composite and its production
JP4217278B2 (en) Method for producing metal-ceramic composite material
JP2002249832A (en) Ceramics/metal composite material and its manufacturing method
JP3828622B2 (en) Method for producing metal-ceramic composite material
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPH1088255A (en) Production of metal-ceramics composite material
JP4167318B2 (en) Method for producing metal-ceramic composite material
JPH11157965A (en) Metal-ceramic composite material and its production
JPH10140263A (en) Production of metal-ceramics composite
JP7382105B1 (en) High-strength metal matrix composite and method for producing high-strength metal matrix composite
JP2000288714A (en) Production of metal-ceramics composite material
JPH1180860A (en) Production of metal-ceramics composite material
JPH11228261A (en) Material for heat sink and its production
JPH10219369A (en) Composite material of ceramics and metal, and its production
JPH10251773A (en) Metal-ceramics composite material and its production
JPH1143728A (en) Production of metal-ceramics composite
JPH11152530A (en) Production of metal-ceramics composite
JPH10195558A (en) Production of metal-ceramics composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees