JPH10135069A - Formation of external electrode of laminated ceramic capacitor - Google Patents

Formation of external electrode of laminated ceramic capacitor

Info

Publication number
JPH10135069A
JPH10135069A JP28705996A JP28705996A JPH10135069A JP H10135069 A JPH10135069 A JP H10135069A JP 28705996 A JP28705996 A JP 28705996A JP 28705996 A JP28705996 A JP 28705996A JP H10135069 A JPH10135069 A JP H10135069A
Authority
JP
Japan
Prior art keywords
electrode
internal electrode
body piece
external electrode
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28705996A
Other languages
Japanese (ja)
Other versions
JP3433029B2 (en
Inventor
Masatoshi Mizobata
正俊 溝端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP28705996A priority Critical patent/JP3433029B2/en
Publication of JPH10135069A publication Critical patent/JPH10135069A/en
Application granted granted Critical
Publication of JP3433029B2 publication Critical patent/JP3433029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a formation method of an external electrode of a laminated ceramic capacitor by a thin film which ensures connection with an inner electrode. SOLUTION: After a plurality of inner electrodes 2 are arranged inside a body piece 1 formed of ceramic and the inner electrode 2 is exposed from the body piece 1, a metallic film 4 having a diffusion coefficient which is different from that of a material of the inner electrode 2 is formed in an exposed surface of the inner electrode 2 and is subjected to heat treatment. Thereafter, an external electrode 3, consisting of three electrode layers which make a continuity with the inner electrode 2 is provided, and thereby an external electrode of a laminated ceramic capacitor is formed. According to the method, the inner electrode 2 is exposed sufficiently from a side edge face of the body piece 1, connection to the external electrode 3 is ensured, and problems such as loss of electrostatic capacity and increase of dielectric loss tangent (tan δ) can be resolved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は積層セラミックコン
デンサの外部電極の形成方法に関し、特に内部電極と外
部電極の接続性を良好にできる薄膜による外部電極の形
成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming external electrodes of a multilayer ceramic capacitor, and more particularly, to a method for forming external electrodes using a thin film capable of improving the connectivity between an internal electrode and an external electrode.

【0002】[0002]

【従来の技術】一般に薄膜の外部電極を有する積層セラ
ミックコンデンサは、図3の断面図に示すように、セラ
ミックからなる六面体に形成された本体片1の内部に、
複数枚からなる内部電極2が交互に積層状に配設され、
この本体片1における六つの側面のうち内部電極2が露
出する一対の側端面に、内部電極2と導通する薄膜によ
る外部電極3が形成されている。
2. Description of the Related Art In general, a multilayer ceramic capacitor having thin-film external electrodes has a hexahedral body piece 1 formed of ceramic as shown in a sectional view of FIG.
A plurality of internal electrodes 2 are alternately arranged in a stacked manner,
Outer electrodes 3 made of a thin film that is electrically connected to the inner electrodes 2 are formed on a pair of side end surfaces of the six side surfaces of the body piece 1 where the inner electrodes 2 are exposed.

【0003】この薄膜による外部電極3の形成は、スパ
ッタリング法,真空蒸着法又はプラズマ溶射法により、
セラミックの本体片1に対して密着強度の高いCrから
なる第一電極層3aを形成した後、この表面にハンダ食
われ防止用のバリア金属となるNiからなる第二電極層
3bを形成し、さらにAgからなる第三電極層3cを形
成する。
The external electrode 3 is formed from this thin film by a sputtering method, a vacuum evaporation method or a plasma spraying method.
After forming the first electrode layer 3a made of Cr having a high adhesion strength to the ceramic body piece 1, a second electrode layer 3b made of Ni serving as a barrier metal for preventing solder erosion is formed on this surface, Further, a third electrode layer 3c made of Ag is formed.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述の積層
セラミックコンデンサでは、内部電極2と外部電極3と
の接続を確実に行うことが重要であるため、内部電極2
を設けた本体片1を焼成した後、内部電極2を本体片1
の側端面から十分露出させるためにバレル研磨を施し
て、次いで本体片1の側端面にスパッタリング法等によ
り、第一電極層3a,第二電極層3b及び第三電極層3
cかなる外部電極3を形成している。
In the above-described multilayer ceramic capacitor, it is important to securely connect the internal electrode 2 and the external electrode 3.
After firing the body piece 1 provided with the
Is barrel-polished in order to sufficiently expose the first electrode layer 3a, the second electrode layer 3b, and the third electrode layer 3 on the side end surface of the main body piece 1 by sputtering or the like.
An external electrode 3 having a thickness of c is formed.

【0005】しかしながら、バレル研磨の不十分、内部
電極2の過薄、内部電極2の露出部分での欠落、内部電
極2へのセラミック被覆等に起因し、内部電極2と外部
電極3との接続が不十分となる場合があり、静電容量の
損失、誘電正接(tanδ)の増大等の不具合を発生さ
せる原因となっていた。本発明の目的は、上述した問題
点に鑑み、内部電極との接続が確実に行われる薄膜によ
る積層セラミックコンデンサの外部電極の形成方法を提
供することにある。
However, connection between the internal electrode 2 and the external electrode 3 is caused by insufficient barrel polishing, excessive thinning of the internal electrode 2, chipping at an exposed portion of the internal electrode 2, ceramic coating on the internal electrode 2, and the like. May be insufficient, causing problems such as a loss of capacitance and an increase in dielectric loss tangent (tan δ). SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming an external electrode of a multilayer ceramic capacitor using a thin film, which is reliably connected to an internal electrode in view of the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために次のような構成をとる。すなわち、本発明
の積層セラミックコンデンサの外部電極の形成方法は、
セラミックよりなる本体片の内部に複数枚の内部電極を
配設し、前記本体片から内部電極を露出させた後、前記
内部電極の露出面に内部電極材料と異なる拡散係数を持
つ金属膜を形成して熱処理を施した後、前記内部電極と
導通する外部電極を設けることを特徴とする。
The present invention has the following configuration to achieve the above object. That is, the method for forming the external electrodes of the multilayer ceramic capacitor of the present invention includes:
After arranging a plurality of internal electrodes inside a main body piece made of ceramic and exposing the internal electrodes from the main body piece, a metal film having a diffusion coefficient different from that of the internal electrode material is formed on an exposed surface of the internal electrode. After the heat treatment, an external electrode that is electrically connected to the internal electrode is provided.

【0007】また、本発明の積層セラミックコンデンサ
の外部電極の形成方法は、前記金属膜の拡散係数が前記
内部電極材料より大きいことを特徴とするものである。
本発明よれば、内部電極材料と異なる拡散係数を持つ金
属膜を形成して熱処理を施すことで、側端面に形成され
た金属膜とセラミックの本体片の内部に配設された内部
電極材料との間で拡散が起こり、この拡散によって内部
電極が実質的に長くなって、本体片の側端面から十分露
出するようになり、内部電極と外部電極との接続がより
確実になる特に、金属膜の拡散係数が内部電極材料より
大きいので、内部電極に金属膜が入り込み、その結果、
内部電極材料と金属膜との合金が形成されて内部電極の
体積が大きくなり、本体片の側端面から確実に露出する
ようになる。
In the method of forming an external electrode of a multilayer ceramic capacitor according to the present invention, the diffusion coefficient of the metal film is larger than that of the internal electrode material.
According to the present invention, by forming a metal film having a diffusion coefficient different from that of the internal electrode material and performing a heat treatment, the metal film formed on the side end surface and the internal electrode material disposed inside the ceramic main body piece are formed. In particular, the internal electrode is substantially elongated by this diffusion, and is sufficiently exposed from the side end surface of the main body piece. In particular, the metal film that makes the connection between the internal electrode and the external electrode more secure is provided. Is larger than the internal electrode material, the metal film enters the internal electrode, and as a result,
An alloy of the internal electrode material and the metal film is formed, and the volume of the internal electrode is increased, so that the internal electrode is reliably exposed from the side end surface.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を、図面を
参照しつつ具体的に説明する。まず、図1(a)に示す
ように、酸化チタンやチタン酸バリウム及びPb系の複
合ペロブスカイト型化合物の誘電体材料を有機バインダ
ーに分散させたグリーンシート11上に、完成時には内
部電極となるAg−Pd系又はPd等の金属を含む導電
ペースト12をスクリーン印刷し、このグリーンシート
11を所定枚数(20〜100枚程度)積み重ねて熱圧
着する。その後、熱圧着したグリーンシート11を切断
線13に沿って切断し、所定寸法の積層セラミックコン
デンサの本体片1を得る。
Embodiments of the present invention will be specifically described below with reference to the drawings. First, as shown in FIG. 1 (a), on a green sheet 11 in which a dielectric material of titanium oxide, barium titanate, and a Pb-based composite perovskite compound is dispersed in an organic binder, an Ag that becomes an internal electrode when completed is formed. -Conductive paste 12 containing a metal such as Pd or Pd is screen printed, and a predetermined number (about 20 to 100) of the green sheets 11 are stacked and thermocompression bonded. Thereafter, the green sheet 11 that has been thermocompression-bonded is cut along the cutting line 13 to obtain the main body piece 1 of the multilayer ceramic capacitor having a predetermined size.

【0009】そして、同図(b)に示すように、本体片
1を仮焼成して脱バインダーした後焼成し、本体片1の
一対の側端面から内部電極2が露出するようにバレル研
磨を施す。しかし、本体片1内においては丸印で囲んだ
ように複数枚(ここでは2枚)の内部電極2が側端面か
ら十分に露出していないことがあり、この状態で従来の
方法で薄膜の外部電極を本体片1の側端面に形成する
と、内部電極2と外部電極との接続が不十分となり、静
電容量の損失、誘電正接(tanδ)の増大等の不具合
を発生するおそれがある。
Then, as shown in FIG. 1B, the main body piece 1 is preliminarily baked and debindered and then fired, and barrel polishing is performed so that the internal electrodes 2 are exposed from a pair of side end surfaces of the main body piece 1. Apply. However, a plurality of (two in this case) internal electrodes 2 may not be sufficiently exposed from the side end surface as surrounded by a circle in the main body piece 1, and in this state, a thin film is formed by a conventional method. If the external electrode is formed on the side end surface of the main body piece 1, the connection between the internal electrode 2 and the external electrode becomes insufficient, which may cause problems such as loss of capacitance and increase in dielectric loss tangent (tan δ).

【0010】そこで、同図(c)に示すように、本体片
1を収納するための多数の貫通孔14を有する枠部15
を底板16の上に固定した治具を準備し、貫通孔14内
に側端面が上を向くように本体片1を挿入する。そし
て、この治具を側端面に金属膜を形成できる装置、例え
ばスパッタリング装置、にセットする。そして、本発明
では外部電極を形成する前に、図2(d)に示すよう
に、Ag−Pd系,Pd等の金属からなる内部電極2よ
り拡散係数の大きい金属、例えばAg、を膜厚0.1〜
1μm程度となるようにスパッタリングし、本体片1の
両側端面に金属膜4を形成する。
Therefore, as shown in FIG. 1C, a frame portion 15 having a large number of through holes 14 for accommodating the main body piece 1 is provided.
A jig in which is fixed on the bottom plate 16 is prepared, and the main body piece 1 is inserted into the through hole 14 so that the side end face faces upward. Then, this jig is set in a device capable of forming a metal film on the side end surface, for example, a sputtering device. In the present invention, before forming the external electrode, as shown in FIG. 2D, a metal having a larger diffusion coefficient than the internal electrode 2 made of a metal such as Ag-Pd or Pd, for example, Ag, is formed into a film thickness. 0.1 ~
Sputtering is performed so as to have a thickness of about 1 μm, and metal films 4 are formed on both side end surfaces of the main body piece 1.

【0011】次に、金属膜4が形成された本体片1を治
具を取り出して、トンネル炉内にセットし、昇温温度3
0℃/分で,最高温度850℃を10分保持し、側端面
に金属膜4が形成された本体片1に熱処理を施す。この
ように熱処理を施すと、図2(e)に示すように、拡散
係数の違いにより金属膜4と微少距離離間された本来露
出されるべき内部電極2との間で拡散が起こり、本体片
1の側端面付近で金属膜4と内部電極2による合金5が
橋絡状に形成され、内部電極2が実質的に延長され、本
体片1の側端面から露出するようになる。
Next, the jig is taken out of the main body piece 1 on which the metal film 4 is formed, and is set in a tunnel furnace.
A maximum temperature of 850 ° C. is maintained at 0 ° C./min for 10 minutes, and a heat treatment is performed on the main body piece 1 having the metal film 4 formed on the side end surface. When the heat treatment is performed in this manner, as shown in FIG. 2E, diffusion occurs between the metal film 4 and the internal electrode 2 that is originally exposed and is separated by a small distance due to a difference in diffusion coefficient. The alloy 5 composed of the metal film 4 and the internal electrode 2 is formed in a bridging shape near the side end surface of the main body 1, and the internal electrode 2 is substantially extended and is exposed from the side end surface of the main body piece 1.

【0012】他方内部電極2の非接続端側では内部電極
2と金属膜4との間には一定の間隔で離間されているの
で、上述の拡散作用による合金形成がほとんど生じな
い。特に本発明では、Agの金属膜4の拡散係数がAg
−Pd系又はPd系の内部電極2より大きいので、金属
膜4が内部電極2側に入り込み、本体片1の側端面付近
に合金5が形成されることになる。
On the other hand, on the non-connection end side of the internal electrode 2, the internal electrode 2 and the metal film 4 are spaced at a fixed interval, so that the alloy formation by the above-mentioned diffusion action hardly occurs. In particular, in the present invention, the diffusion coefficient of the Ag metal film 4 is Ag.
Since it is larger than the Pd-based or Pd-based internal electrode 2, the metal film 4 enters the internal electrode 2 side, and the alloy 5 is formed near the side end surface of the main body piece 1.

【0013】かかる場合、内部電極2の拡散係数が金属
膜4より大きいとすれば、内部電極2が近接側端面側に
拡散して合金5が形成されて拡散された分その膜厚が薄
くり、内部電極2の一部が断線するおそれが生じるが、
本願発明では金属膜4の拡散係数が大きいのでこのよう
な問題は生じない。なお、本実施例では、熱処理を85
0℃の温度で行ったが、金属膜4と内部電極2との間で
拡散が生じればよく、500℃〜900℃の間で適宜選
択することができる。
In this case, assuming that the diffusion coefficient of the internal electrode 2 is larger than the metal film 4, the internal electrode 2 diffuses toward the near end face and the alloy 5 is formed and diffused. However, there is a possibility that a part of the internal electrode 2 is disconnected,
In the present invention, such a problem does not occur because the diffusion coefficient of the metal film 4 is large. In this embodiment, the heat treatment is performed for 85 times.
Although it was performed at a temperature of 0 ° C., it is sufficient that diffusion occurs between the metal film 4 and the internal electrode 2, and the temperature can be appropriately selected from 500 ° C. to 900 ° C.

【0014】次いで、側端面付近に合金5が形成された
本体片1を、図1(c)と同様の治具に側端面が上を向
くように本体片1を挿入し、外部電極を形成するための
装置、例えばスパッタリング装置、に治具ごとセットす
る。そして、この本体片1にスパッタリングを施して、
図2(f)に示すよう外部電極3を形成する。外部電極
3の形成方法は、まず本体片1の一方の側端面にセラミ
ックに対して密着強度の高いCr等の金属材料からなる
第一電極層3aを形成し、次に第一電極層3aの表面に
ハンダ食われ防止用のバリア金属となるNiからなる第
二電極層3bを形成し、最後にハンダ付け性の良いAg
等の金属材料からなる第三電極層3cを形成する。さら
に、一方の外部電極3を形成した後、治具を裏返して本
体片1の他方の側端面が上を向くようにし、上述と同様
に3種類の電極材料をスパッタリングし、第一電極層3
a,第二電極層3b及び第三電極層3cからなる外部電
極3を形成する。
Next, the main body piece 1 having the alloy 5 formed near the side end face is inserted into a jig similar to that shown in FIG. 1C so that the side end face faces upward to form external electrodes. And a jig, for example, in a sputtering apparatus. And this main body piece 1 is subjected to sputtering,
The external electrodes 3 are formed as shown in FIG. The external electrode 3 is formed by first forming a first electrode layer 3a made of a metal material such as Cr having high adhesion strength to ceramic on one side end surface of the main body piece 1, and then forming the first electrode layer 3a. A second electrode layer 3b made of Ni serving as a barrier metal for preventing solder erosion is formed on the surface, and finally Ag having good solderability is formed.
The third electrode layer 3c made of such a metal material as above is formed. Further, after one external electrode 3 is formed, the jig is turned over so that the other side end face of the main body piece 1 faces upward, and three kinds of electrode materials are sputtered in the same manner as described above, and the first electrode layer 3 is formed.
a, the external electrode 3 including the second electrode layer 3b and the third electrode layer 3c is formed.

【0015】この図からも明らかなように、内部電極2
は金属膜4との合金5の形成により側端面から十分露出
しており、内部電極2と外部電極3とは確実に電気的に
接続することになる。本発明では、第三電極層3cをス
パッタリングによるAgで形成したが、ハンダメッキを
利用して形成しても良い。
As is apparent from FIG.
Is sufficiently exposed from the side end surface by the formation of the alloy 5 with the metal film 4, so that the internal electrode 2 and the external electrode 3 are reliably electrically connected. In the present invention, the third electrode layer 3c is formed of Ag by sputtering, but may be formed by using solder plating.

【0016】本発明の実施例では、内部電極としてAg
−Pd系,Pdを、金属膜としてAgを使用したが、拡
散係数が内部電極より金属膜が大きければどのような金
属材料を使用しも良い。ここで拡散係数について説明す
ると、金属の拡散係数は一般に次の式で与えられる。 D=D0exp(−Q/RT)・・・(1) D:拡散係数(cm2/sec) D0:拡散の振動数項(cm2/sec) Q:活性化エネルギー(kcal/mol) R:気体定数(1.986cal/K・mol) T:絶対温度(K) ただし、拡散の振動数項D0,活性化エネルギーQは自
己拡散の実験によって決定された金属材料固有の数値で
ある。
In the embodiment of the present invention, Ag is used as the internal electrode.
Although Ag is used as the metal film for the Pd-based and Pd-based materials, any metal material may be used as long as the metal film has a diffusion coefficient larger than that of the internal electrode. Here, the diffusion coefficient will be described. The diffusion coefficient of a metal is generally given by the following equation. D = D 0 exp (−Q / RT) (1) D: Diffusion coefficient (cm 2 / sec) D 0 : Diffusion frequency term (cm 2 / sec) Q: Activation energy (kcal / mol) ) R: Gas constant (1.986 cal / K · mol) T: Absolute temperature (K) However, the frequency term D 0 of diffusion and the activation energy Q are values specific to metallic materials determined by self-diffusion experiments. .

【0017】本発明で使用されたAg,Pdについて拡
散係数を計算すると、Ag;D0=0.395(cm2/sec),Q=4
4.09(kcal/mol)であり、Pd;D0=0.205(cm2/sec),Q
=63.6(kcal/mol)であり、T=1125Kとして式(1)にそ
れぞれ代入すると拡散係数が得られる。AgはD=0.38
7(cm2/sec)、PdはD=0.199(cm2/sec)となりAgの拡
散係数がPdより大きいことが判る。従って、上記の式
で算出される拡散係数の値を参照に適宜金属材料を選択
することができる。
When the diffusion coefficients of Ag and Pd used in the present invention are calculated, Ag; D 0 = 0.395 (cm 2 / sec), Q = 4
4.09 (kcal / mol), Pd; D 0 = 0.205 (cm 2 / sec), Q
= 63.6 (kcal / mol), and substituting each into equation (1) as T = 1125K gives the diffusion coefficient. Ag is D = 0.38
At 7 (cm 2 / sec), Pd was D = 0.199 (cm 2 / sec), indicating that the diffusion coefficient of Ag was larger than Pd. Therefore, a metal material can be appropriately selected with reference to the value of the diffusion coefficient calculated by the above equation.

【0018】[0018]

【発明の効果】以上、説明したように本発明による積層
セラミックコンデンサの外部電極の形成方法によれば、
内部電極と異なる拡散係数を持つ金属膜との間に拡散が
発生して合金が形成されるので、本体片の側端面から十
分露出するようになり、内部電極と外部電極との接続が
確実になり、静電容量の損失、誘電正接(tanδ)の
増大等の問題を解決することができる。
As described above, according to the method for forming external electrodes of a multilayer ceramic capacitor according to the present invention,
Diffusion occurs between the internal electrode and the metal film having a different diffusion coefficient and an alloy is formed, so that it is sufficiently exposed from the side end surface of the main body piece, and the connection between the internal electrode and the external electrode is securely performed. Thus, problems such as loss of capacitance and increase in dielectric loss tangent (tan δ) can be solved.

【0019】特に、金属膜の拡散係数が内部電極材料よ
り大きいので、内部電極に金属膜が入り込み、内部電極
の一部が断線するこのなく内部電極を本体片の側端面か
ら確実に露出することができる。
In particular, since the diffusion coefficient of the metal film is larger than that of the internal electrode material, the metal film enters the internal electrode, and a part of the internal electrode is disconnected. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層セラミックコンデンサを製造する
工程の一部を示す説明図。
FIG. 1 is an explanatory view showing a part of a process of manufacturing a multilayer ceramic capacitor according to the present invention.

【図2】本発明の積層セラミックコンデンサを製造する
工程の一部を示す説明図。
FIG. 2 is an explanatory view showing a part of a process of manufacturing the multilayer ceramic capacitor of the present invention.

【図3】従来の積層セラミックコンデンサを示す断面
図。
FIG. 3 is a sectional view showing a conventional multilayer ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 本体片 2 内部電極 3 外部電極 4 金属膜 5 合金部 1 body piece 2 internal electrode 3 external electrode 4 metal film 5 alloy part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックよりなる本体片の内部に複数枚
の内部電極を配設し、前記本体片から内部電極を露出さ
せた後、前記内部電極の露出面に内部電極材料と異なる
拡散係数を持つ金属膜を形成して熱処理を施した後、前
記内部電極と導通する外部電極を設けることを特徴とす
る積層セラミックコンデンサの外部電極の形成方法。
A plurality of internal electrodes are provided inside a main body piece made of ceramic, and after exposing the internal electrodes from the main body piece, a diffusion coefficient different from that of the internal electrode material is applied to an exposed surface of the internal electrode. A method for forming an external electrode of a multilayer ceramic capacitor, comprising: forming a metal film having a metal film, performing a heat treatment, and then providing an external electrode that is electrically connected to the internal electrode.
【請求項2】 前記金属膜の拡散係数が前記内部電極材
料より大きいことを特徴とする請求項1記載の積層セラ
ミックコンデンサの外部電極の形成方法。
2. The method according to claim 1, wherein the diffusion coefficient of the metal film is larger than the material of the internal electrode.
JP28705996A 1996-10-29 1996-10-29 Method of forming external electrodes of multilayer ceramic capacitor Expired - Fee Related JP3433029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28705996A JP3433029B2 (en) 1996-10-29 1996-10-29 Method of forming external electrodes of multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28705996A JP3433029B2 (en) 1996-10-29 1996-10-29 Method of forming external electrodes of multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH10135069A true JPH10135069A (en) 1998-05-22
JP3433029B2 JP3433029B2 (en) 2003-08-04

Family

ID=17712528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28705996A Expired - Fee Related JP3433029B2 (en) 1996-10-29 1996-10-29 Method of forming external electrodes of multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3433029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096406A (en) * 2012-11-07 2014-05-22 Tdk Corp Method of manufacturing electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096406A (en) * 2012-11-07 2014-05-22 Tdk Corp Method of manufacturing electronic component

Also Published As

Publication number Publication date
JP3433029B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JP2001217142A (en) Laminated thin-film capacitor and method for mounting it
JPH0356003B2 (en)
JPH03225810A (en) Structure of terminal electrode film in stacked capacitor and formation of the film
JP3121119B2 (en) Method of forming external electrodes of multilayer ceramic capacitor
JP2000340448A (en) Laminated ceramic capacitor
JPH1154365A (en) Multilayered ceramic electronic component
JP2020185648A (en) Cutting blade and electronic component manufacturing method
JP3433029B2 (en) Method of forming external electrodes of multilayer ceramic capacitor
JP2000106320A (en) Laminated ceramic capacitor
JP3092440B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH1140460A (en) Laminate ceramic electronic component
JP3524298B2 (en) Method of forming external electrodes of multilayer ceramic capacitor
JPH03178112A (en) Compound chip part
JPH08306576A (en) Electronic part and its manufacture
JP2001185440A (en) Laminated ceramic capacitor
JP2000164451A (en) Laminated ceramic capacitor
JPH10208979A (en) Laminated electronic component and manufacture thereof
JP2936887B2 (en) Manufacturing method of ceramic laminated device
JP3465598B2 (en) Chip type surge absorber
JPH09129495A (en) Laminated capacitor
JP3538308B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0945830A (en) Chip electronic component
JPH07106134A (en) Chip filter part
JPH04259206A (en) Manufacture of protective film for chip part
JPH046200Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120523

LAPS Cancellation because of no payment of annual fees