JPH1013024A - Method for manufacturing multilayer printed wiring board - Google Patents
Method for manufacturing multilayer printed wiring boardInfo
- Publication number
- JPH1013024A JPH1013024A JP16737796A JP16737796A JPH1013024A JP H1013024 A JPH1013024 A JP H1013024A JP 16737796 A JP16737796 A JP 16737796A JP 16737796 A JP16737796 A JP 16737796A JP H1013024 A JPH1013024 A JP H1013024A
- Authority
- JP
- Japan
- Prior art keywords
- printed wiring
- wiring board
- multilayer printed
- manufacturing
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はプリント配線板の製
造方法に関し、特に内層用プリント配線板及び多層プリ
ント配線板、もしくは内層用プリント配線板及び金属箔
を、熱硬化性樹脂もしくは熱可塑性樹脂で出来たプリプ
レグを介して積層し加熱加圧して多層化する多層印刷配
線板の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a printed wiring board, and more particularly to a method for manufacturing a printed wiring board for an inner layer and a multilayer printed wiring board, or a printed wiring board for an inner layer and a metal foil using a thermosetting resin or a thermoplastic resin. The present invention relates to a method for manufacturing a multilayer printed wiring board in which layers are formed via a prepreg formed and heated and pressed to form a multilayer.
【0002】[0002]
【従来の技術】近年、電子機器にも多品種小量化が生じ
ており、高機能化が進展するに伴い、電子部品の外形サ
イズの小型化、又この電子部品を登載保持し部品間を接
続するプリント配線板の高密度化が進んでいる。とくに
プリント配線板を高密度化するための方法として多層プ
リント配線板の採用が進んでいる。この多層プリント配
線板の一般的な製造方法の内、内層用プリント配線板を
多層化する工法について図6(a)〜(f),図7及び
図8を用いて説明する。図6(a),(b)に示すよう
な例えばガラス繊維強化エポキシ板よりなる絶縁板1の
両面に導箔2を形成した両面銅張積層板3を例えば塩化
第二銅水溶液の様な銅を腐食溶解させるエッチング液に
て不要部分を除去し、図6(c),(d)に示すような
導体回路4を形成した内層用プリント配線板5を作成す
る。これを図6(e)に示すように例えば銅箔2と内層
用プリント配線板5の各層間に例えば熱硬化性樹脂であ
る未硬化のエポキシ樹脂をガラス布に含浸させて作られ
たプリプレグ6を挟み、積層体7を形成する。次に図7
に示すように積層体7を複数枚重ね、上下及び各々の間
に鏡板8をはさみ、さらにこの上下に積層治具9を置
き、図8に示すようにブック10を形成する。このブッ
ク10は、例えば、電気ヒータにて制御加熱される熱板
11の間に挿入されその上下より圧力伝達板12により
制御加圧され、前記プリプレグ6が加熱溶融され各内層
用プリント配線板と銅箔とが接着され、図6(f)に示
すような、多層プリント配線板13が形成される。2. Description of the Related Art In recent years, the variety of electronic devices has been reduced, and with the advancement of functions, the external size of electronic components has been reduced, and the electronic components have been mounted and held to connect the components. The density of printed wiring boards is increasing. In particular, multilayer printed wiring boards have been increasingly used as a method for increasing the density of printed wiring boards. Among the general methods for manufacturing a multilayer printed wiring board, a method for forming a multilayer printed wiring board for an inner layer will be described with reference to FIGS. 6 (a) to 6 (f), FIG. 7 and FIG. As shown in FIGS. 6A and 6B, a double-sided copper-clad laminate 3 in which conductive foils 2 are formed on both sides of an insulating plate 1 made of, for example, a glass fiber reinforced epoxy plate is used. Unnecessary portions are removed with an etchant that corrodes and dissolves the substrate, thereby producing an inner-layer printed wiring board 5 on which the conductor circuits 4 are formed as shown in FIGS. 6C and 6D. As shown in FIG. 6 (e), for example, a prepreg 6 made by impregnating a glass cloth with an uncured epoxy resin which is a thermosetting resin, for example, between each layer of the copper foil 2 and the printed wiring board 5 for the inner layer. Are sandwiched to form a laminate 7. Next, FIG.
As shown in FIG. 8, a plurality of laminated bodies 7 are stacked, a head plate 8 is sandwiched between upper and lower parts and between them, and a laminating jig 9 is placed on the upper and lower sides to form a book 10 as shown in FIG. For example, the book 10 is inserted between a hot plate 11 controlled and heated by an electric heater, and is pressurized and controlled by a pressure transmitting plate 12 from above and below, and the prepreg 6 is heated and melted, and each inner layer printed wiring board is The copper foil is bonded to form a multilayer printed wiring board 13 as shown in FIG.
【0003】(1)ここで多層プリント配線板の製造方
法の公知例として実開昭58−178596号公報の記
載例について説明する。この多層プリント板の製造方法
は図10(a)に示すように位置合わせ用の孔を有する
2枚の内層用プリント配線板5の間にプリプレグ6と溶
接する金属14をはさみ、位置合わせ治具15にセット
してから溶接部に高周波を発生する加熱コイル16を近
づけて誘導加熱により金属14を加熱溶接すると、図1
0(b)に示すような2枚の位置の合った内層用プリン
ト配線板を仮止めされた4層プリント配線板17が得ら
れる。次いで位置合わせ治具15からこの仮止めされた
4層のプリント配線板17をはずし、図10(c)に示
すように上下にプリプレグ6と銅箔2を重ねて加熱、加
圧して図10(d)に示されるような6層の多層プリン
ト配線板13が得られる。(1) Here, as a known example of a method for manufacturing a multilayer printed wiring board, an example described in Japanese Utility Model Laid-Open No. 58-178596 will be described. As shown in FIG. 10 (a), a method for manufacturing this multilayer printed board is such that a metal 14 to be welded to a prepreg 6 is sandwiched between two printed wiring boards 5 for inner layers having holes for alignment, and a positioning jig is used. When the metal 14 is heated and welded by induction heating with the heating coil 16 for generating high frequency being brought close to the welded portion after setting to 15, FIG.
A four-layer printed wiring board 17 in which two aligned printed wiring boards for inner layers are temporarily fixed as shown in FIG. Next, the temporarily fixed four-layer printed wiring board 17 is removed from the positioning jig 15, and the prepreg 6 and the copper foil 2 are vertically stacked and heated and pressed as shown in FIG. As a result, a multilayer printed wiring board 13 having six layers as shown in d) is obtained.
【0004】(2)また、加熱方法の公知例として特開
平5−31808号公報の記載例について説明する。こ
の公報の記載例は、プラスチック接合製品の製造方法で
あるが、接合面に導電層を一体成形し、これを高周波発
信器と磁場を発生させる加熱コイルとを有する電磁誘導
加熱式の接合装置にて導電層を加熱し接合する方法であ
る。(2) As a known example of a heating method, an example described in JP-A-5-31808 will be described. The example described in this publication is a method for manufacturing a plastic bonded product, in which a conductive layer is integrally formed on a bonding surface, and this is applied to an electromagnetic induction heating type bonding apparatus having a high-frequency oscillator and a heating coil for generating a magnetic field. This is a method of heating and joining the conductive layers.
【0005】[0005]
【発明が解決しようとする課題】しかし、従来例におい
ては図7、8に示すように複数の積層体7を鏡板8、積
層治具9と重ね合わせたブック10を、上下方向のみか
ら熱板11により加熱するため熱板11に近い積層体7
は図9に示すように熱板の昇温プロファイルに近くなる
が、熱板から遠い重ね合わせの中央部分の積層板では昇
温プロファイルに時間遅れが生じ、プリプレグの硬化条
件が変わってくることから、各多層プリント配線板の板
厚のばらつきの悪化や、単一の多層プリント配線板内の
板厚のばらつきの悪化や、プリプレグの硬化度のばらつ
きの悪化による以降の工程での加工条件(例えば穴明け
条件等)の制約により、プリント配線板の特性の悪化
や、歩留まりの低下や、生産性の低下が生じている。ま
た、従来の公知例(1)では前記問題点におけるプリプ
レグを硬化するための加熱方法についての記述はなされ
ておらず、この点の改善はなされていない。また、公知
例(2)の方法では、接合面つまりプリプレグ上に導電
層を直接形成するため、この導電層と他の内層用プリン
ト配線板の回路とが干渉し合い、多層プリント配線板と
して機能できなくなる。However, in the prior art, as shown in FIGS. 7 and 8, a book 10 in which a plurality of laminated bodies 7 are superimposed on a head plate 8 and a laminating jig 9 is placed on a hot plate only from the vertical direction. The laminate 7 close to the hot plate 11 for heating by 11
9 is close to the heating profile of the hot plate as shown in FIG. 9, but in the laminated plate in the central portion of the superposition far from the hot plate, a time delay occurs in the heating profile and the curing condition of the prepreg changes, The processing conditions in the subsequent steps due to the worsening of the thickness variation of each multilayer printed wiring board, the worsening of the thickness variation within a single multilayer printed wiring board, and the worsening of the variation of the degree of curing of the prepreg (for example, Due to restrictions on drilling conditions), the characteristics of the printed wiring board are deteriorated, the yield is reduced, and the productivity is reduced. Further, in the conventional example (1), there is no description about a heating method for curing the prepreg in the above problem, and no improvement is made on this point. In the method of the known example (2), since the conductive layer is formed directly on the bonding surface, that is, on the prepreg, the conductive layer interferes with the circuit of another inner-layer printed wiring board, and functions as a multilayer printed wiring board. become unable.
【0006】本発明の目的は、プリプレグの硬化条件の
変化がなく、各多層プリント配線板の板厚のばらつきの
悪化や、単一の多層プリント配線板の板厚のばらつきの
悪化や、プリプレグの硬化度のばらつきの悪化による以
降の工程での加工条件の制約により、プリプレグ配線板
の特性の悪化や、歩留の低下や、生産性の低下のないプ
リント配線板の製造方法を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to reduce the variation in the thickness of each multilayer printed wiring board, the variation in the thickness of a single multilayer printed wiring board, and the prepreg. To provide a method for manufacturing a printed wiring board that does not deteriorate the characteristics of the prepreg wiring board, reduce the yield, or reduce the productivity due to the restriction of the processing conditions in the subsequent steps due to the deterioration in the degree of curing. is there.
【0007】[0007]
【課題を解決するための手段】本発明は、両面に形成さ
れた導電回路を有する内層用プリント配線板あるいは片
面に導電回路を有する内層用プリント配線板の少くとも
1枚を、2枚の導箔あるいは前記内層用プリント配線板
を外側に配置し、各金属箔及び前記内層用プリント配線
板の間にプリプレグを介し、1対の鏡板にて挟持し、こ
れを1つあるいは複数積み重ね、圧力伝達板の間に挟み
加熱加圧して多層化する工程を持つ多層プリント配線板
の製造工程を有する多層プリント配線板の製造方法にお
いて、高周波誘導加熱にて前記鏡板を直接加熱し多層化
する工程を含むことを特徴とする。According to the present invention, at least one printed circuit board for an inner layer having conductive circuits formed on both sides or a printed circuit board for an inner layer having a conductive circuit on one side is formed by two conductors. The foil or the printed wiring board for the inner layer is disposed outside, and a prepreg is interposed between each metal foil and the printed wiring board for the inner layer, sandwiched by a pair of end plates, one or more of which are stacked, and between the pressure transmitting plates. A method of manufacturing a multilayer printed wiring board having a manufacturing step of a multilayer printed wiring board having a step of forming a multilayer by sandwiching, heating and pressing, comprising a step of directly heating the head plate by high frequency induction heating to form a multilayer. I do.
【0008】ここで、前記鏡板が金属で出来ているか、
複数の金属を張り合わせた構造か、1種類以上の金属と
1種類以上の絶縁体を張り合わせた構造か、厚み方向の
金属の配置比率を部分的に変化させ、複数の金属を張り
合わせた構造もしくは1種類以上の金属と1種類以上の
絶縁体を張り合わせた構造を有する。Here, whether the end plate is made of metal,
A structure in which a plurality of metals are bonded, a structure in which one or more types of metal and one or more types of insulators are bonded, or a structure in which a plurality of metals are bonded by partially changing the arrangement ratio of metals in the thickness direction; It has a structure in which more than one kind of metal and one or more kinds of insulators are attached.
【0009】本発明によれば、積層体の両側に鏡板が設
置されている。この鏡板は高周波から誘導された渦電流
及びヒステリシス損により直接加熱され、この鏡板で生
じた熱が積層体に伝導により伝わり、積層体は加熱され
る。このように発熱部が積層体の極めて近い部分にある
ため、熱伝導における時間遅れが極めて少ない昇温プロ
ファイルが得られる。また、鏡板を貫く磁束はどの位置
でも均一なため、鏡板の厚みを一定とした場合は各鏡板
で生する渦電流及びヒシステリシス損は同じになり、各
鏡板とも発熱量は等しくなる。このためブックの上下の
どの位置に置いても同一の昇温プロファイルが得られ、
プリプレグの硬化条件が同一となり、多層プリント配線
板の板厚のばらつき、樹脂の硬化度ばらつきが減少す
る。According to the present invention, end plates are provided on both sides of the laminate. The head plate is directly heated by eddy currents and hysteresis loss induced from high frequency, and the heat generated in the head plate is transmitted to the laminate by conduction, and the laminate is heated. As described above, since the heat generating portion is located very close to the laminate, a temperature rising profile with a very small time delay in heat conduction can be obtained. Further, since the magnetic flux penetrating the head plate is uniform at any position, when the thickness of the head plate is constant, the eddy current and the hysteresis loss generated in each head plate are the same, and the heat generation amount is equal for each head plate. For this reason, the same heating profile can be obtained regardless of the position above and below the book.
The curing conditions of the prepreg are the same, and the variation in the thickness of the multilayer printed wiring board and the variation in the degree of curing of the resin are reduced.
【0010】[0010]
【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。Embodiments of the present invention will now be described with reference to the drawings.
【0011】図1(a)〜(f)及び図2は本発明の第
1〜第3の実施の形態の多層プリント配線板の製造方法
を説明する工程順に示した断面図及びその図1(f)の
工程を説明する断面図、図3(a)は図1に示す第1の
実施の形態のプリント配線板の製造方法に用いる金属製
鏡板の斜視図、図4は本発明の第1の実施の形態による
プリント配線板を説明する積層体の温度プロファイルで
ある。本発明の第1の実施の形態のプリント配線板の製
造方法は、まず図1(a),(b)に示すように大きさ
200×200mm、導箔厚35μm、基材厚200μ
mの両面銅張積層板3にドライフィルムエッチングレジ
ストにて回路のエッチングマスクを形成した後、塩化第
2鉄水溶液にてエッチングを行い、その後エッチングマ
スクを剥離した。こうして図1(c),(d)に示すよ
うな導体回路4を持つ内層用プリント配線板5が得られ
た。この内層用プリント配線板5とプリプレグ6と銅箔
2を重ね、図1(e)に示すような、積層体7が得られ
た。この積層体7を50枚と図3(a)に示すような大
きさ200×200mm、厚み1.2mmの純銅製鏡板
8を51枚、外側に鏡板8が来るように交互に重ね、図
2に示すように圧力伝達板12の間に設置し、高周波誘
導加熱コイル16の内部にコイルより生ずる磁束と鏡板
8の平面部分が垂直になるようにセットした。この加熱
コイル16に周波数150KHzの高周波電流を 0〜25分:70KW 25〜50分:35KW 50〜110分:10KW の条件で印加した。このとき、内部の積層体7の昇温プ
ロファイルは圧力伝達板12の近傍と、重ね中央部とで
は図4に示すような昇温プロファイルが得られた。この
昇温プロファイルで同一時刻で最大3℃の温度差が生じ
ていた。これは従来例の熱板を使用した積層時の温度差
15℃の1/5の値であった。そして、図1(f)に示
すような多層プリント配線板13が得られた。この多層
プリント配線板の板厚は、全板厚の3%のばらつきを持
っていたが、これは従来例の多層プリント配線板の板厚
のばらつき6%の半分であった。FIGS. 1 (a) to 1 (f) and 2 are sectional views showing steps of a method for manufacturing a multilayer printed wiring board according to first to third embodiments of the present invention, and FIGS. FIG. 3 (a) is a perspective view of a metal end plate used in the method of manufacturing the printed wiring board according to the first embodiment shown in FIG. 1, and FIG. 4 is a temperature profile of a laminate for explaining a printed wiring board according to the embodiment. First, the method for manufacturing a printed wiring board according to the first embodiment of the present invention has a size of 200 × 200 mm, a conductive foil thickness of 35 μm, and a base material thickness of 200 μm as shown in FIGS. 1 (a) and 1 (b).
After forming a circuit etching mask with a dry film etching resist on the double-sided copper-clad laminate 3 of m, etching was performed with an aqueous ferric chloride solution, and then the etching mask was peeled off. Thus, the printed wiring board 5 for the inner layer having the conductor circuit 4 as shown in FIGS. 1C and 1D was obtained. The printed wiring board 5 for the inner layer, the prepreg 6 and the copper foil 2 were stacked to obtain a laminate 7 as shown in FIG. As shown in FIG. 3 (a), fifty of the laminated bodies 7 and 51 of pure copper end plates 8 of 200 × 200 mm in size and 1.2 mm in thickness as shown in FIG. As shown in (1), it was set between the pressure transmitting plates 12 and set so that the magnetic flux generated by the coils inside the high-frequency induction heating coil 16 and the plane portion of the end plate 8 were perpendicular to each other. A high-frequency current having a frequency of 150 KHz was applied to the heating coil 16 under the following conditions: 0 to 25 minutes: 70 KW, 25 to 50 minutes: 35 KW, 50 to 110 minutes: 10 KW. At this time, the temperature rise profile of the internal laminated body 7 was obtained in the vicinity of the pressure transmitting plate 12 and at the center of the stack as shown in FIG. In this heating profile, a maximum temperature difference of 3 ° C. occurred at the same time. This was 1 / of the temperature difference of 15 ° C. during lamination using the conventional hot plate. Then, a multilayer printed wiring board 13 as shown in FIG. 1 (f) was obtained. The thickness of the multilayer printed wiring board had a variation of 3% of the total thickness, but this was half of the variation of 6% of the thickness of the conventional multilayer printed wiring board.
【0012】図3(b)は本発明の第2の実施の形態の
プリント配線板の製造方法に用いる鏡板の斜視図であ
る。本発明の第2の実施の形態のプリント配線板の製造
方法は、図3(b)に示す鏡板8を用いて行う。鏡板8
は、図3(b)に示すように大きさ200×200m
m、厚み1.2mmの純銅板18の両面に、厚み0.1
mmのステンレス鋼SUS316L19が張り付けてあ
る。まず、図1(a)〜(e)に示すように、内層用プ
リント配線板5を作成し、プリプレグ6、銅箔2を積み
重ねて、積層体7を作成した。この積層体7を50枚と
図3(b)の鏡板8、51枚とを交互に重ねて図2に示
すように圧力伝達板12の間に設置し、高周波誘導加熱
コイル16の内部にコイルより生ずる磁束と鏡板8の平
面部分が垂直になるようにセットした。この加熱コイル
16に周波数150KHzの高周波電流を 0〜25分:70KW 25〜50分:35KW 50〜110分:10KW の条件で印加した。このときも、内部の積層体7の昇温
プロファイルは圧力伝達板12の近傍と、重ね中央部と
では図4に示すような昇温プロファイルが得られた。こ
の昇温プロファイルで同一時刻で最大3℃の温度差が生
じていた。これは従来例の熱板を使用した積層時の温度
差15℃の1/5の値であった。そして、図1(f)に
示すような多層プリント配線板13が得られた。この多
層プリント配線板の板厚は、全板厚の3%のばらつきを
持っていたが、これは従来例の多層プリント配線板の板
厚のばらつき6%の半分であった。この、鏡板8は、表
面硬度が純銅製に比べ2〜3倍となっているため傷つき
にくく、第1の実施の形態の純銅製鏡板8が3回使用し
た時点で傷及び変形により、使用不能となったのに対し
て、1000回使用後でも傷や変形が無かった。また発
熱量は、ステンレス部分による増加分は0.4%であり
純銅製鏡板8と差がなく、温度プロファイルにも差はな
かった。また、この実施の形態で使用した鏡板8に厚み
0.04mmのフッ素樹脂コーティングを行ったが全く
同様な結果が得られた。このフッ素樹脂コーティングに
より、プリプレグの樹脂の付着が発生せず、樹脂を除去
するための研磨等の実施が不要となった。FIG. 3B is a perspective view of a mirror plate used in a method for manufacturing a printed wiring board according to a second embodiment of the present invention. The method for manufacturing a printed wiring board according to the second embodiment of the present invention is performed using a mirror plate 8 shown in FIG. End plate 8
Has a size of 200 × 200 m as shown in FIG.
m, a thickness of 0.1 mm on both sides of a pure copper plate 18 having a thickness of 1.2 mm.
mm stainless steel SUS316L19 is attached. First, as shown in FIGS. 1A to 1E, a printed wiring board 5 for an inner layer was prepared, and a prepreg 6 and a copper foil 2 were stacked to form a laminate 7. As shown in FIG. 2, 50 of the laminates 7 and the head plates 8 and 51 of FIG. 3B are alternately stacked and placed between the pressure transmitting plates 12, and the coil is placed inside the high-frequency induction heating coil 16. The resulting magnetic flux was set to be perpendicular to the plane portion of the mirror plate 8. A high-frequency current having a frequency of 150 KHz was applied to the heating coil 16 under the following conditions: 0 to 25 minutes: 70 KW, 25 to 50 minutes: 35 KW, 50 to 110 minutes: 10 KW. Also at this time, as for the temperature rise profile of the internal laminated body 7, the temperature rise profile as shown in FIG. In this heating profile, a maximum temperature difference of 3 ° C. occurred at the same time. This was 1 / of the temperature difference of 15 ° C. during lamination using the conventional hot plate. Then, a multilayer printed wiring board 13 as shown in FIG. 1 (f) was obtained. The thickness of the multilayer printed wiring board had a variation of 3% of the total thickness, but this was half of the variation of 6% of the thickness of the conventional multilayer printed wiring board. Since the surface hardness of the end plate 8 is two to three times that of pure copper, the end plate 8 is hardly damaged. When the pure copper end plate 8 of the first embodiment is used three times, it cannot be used due to scratches and deformation. On the other hand, there was no scratch or deformation even after use 1000 times. The amount of heat generated by the stainless steel portion was 0.4%, which was not different from that of the pure copper end plate 8, and that there was no difference in the temperature profile. The mirror plate 8 used in this embodiment was coated with a 0.04 mm-thick fluororesin, and the same result was obtained. By this fluororesin coating, the resin does not adhere to the prepreg, and it becomes unnecessary to perform polishing or the like for removing the resin.
【0013】図3(c)は本発明の第3の実施の形態の
プリント配線板の製造方法に用いる鏡板の斜視図であ
る。本発明の第3の実施の形態のプリント配線板の製造
方法は、図3(c)に示す鏡板8を用いて行う。鏡板8
は、図3(c)に示すように大きさ200×200m
m、中央部の厚み1.19mm、周辺部の厚み1.24
mmで、中心部と周辺部の長さの比が4:1となり、断
面積が図3(b)と同じなるように作られた純銅板18
の両面に、総板厚が1.4mmになるよに凸型のステン
レス鋼SUS316L19が張り付けてある。まず、図
1(a)〜(e)に示すように、内層用プリント配線板
5を作成し、プリプレグ6、銅箔2を積み重ねて、積層
体7を作成した。この積層体7を50枚と図3(b)の
鏡板8、51枚とを交互に重ねて図2に示すように、圧
力伝達板12の間に設置し、高周波誘導加熱コイル16
の内部にコイルより生ずる磁束と鏡板8の平面部分が垂
直になるようにセットした。この加熱コイル16に周波
数150KHzの高周波電流を 0〜25分:73KW 25〜50分:40KW 50〜110分:18KW の条件で印加した。このとき、内部の積層体7の昇温プ
ロファイルは圧力伝達板12の近傍と、重ね中央部とで
は図4に示すような昇温プロファイルが得られた。この
昇温プロファイルで同一時刻で最大3℃の温度差が生じ
ていた。これは従来例の熱板を使用した積層時の温度差
15℃の1/5の値であった。また鏡板8の断面方向の
温度分布を測定したところ図5に示すように第2の実施
の形態では鏡板8中央部と周辺部の温度差が3℃ほどあ
ったが、本実施の形態では1℃以内であった。これは鏡
板8の純銅板8の部分を周辺部で厚くし発熱量を増やし
たことにより、鏡板8周辺部から外部へ逃げていく熱を
補うことで鏡板8の温度分布をより均一にする事が出来
たためである。そして、図1(f)に示すような多層プ
リント配線板13が得られた。この多層プリント配線板
13の板厚は、全板厚の2%のばらつきを持っていた
が、これは従来例の多層プリント配線板の板厚のばらつ
き6%の1/3であった。FIG. 3C is a perspective view of a mirror plate used in a method of manufacturing a printed wiring board according to a third embodiment of the present invention. The method for manufacturing a printed wiring board according to the third embodiment of the present invention is performed using a mirror plate 8 shown in FIG. End plate 8
Has a size of 200 × 200 m as shown in FIG.
m, thickness of center 1.19 mm, thickness of periphery 1.24
mm, the ratio of the length of the central part to the peripheral part is 4: 1, and the pure copper plate 18 made to have the same sectional area as that of FIG.
A convex stainless steel SUS316L19 is attached to both sides of the substrate so that the total plate thickness becomes 1.4 mm. First, as shown in FIGS. 1A to 1E, a printed wiring board 5 for an inner layer was prepared, and a prepreg 6 and a copper foil 2 were stacked to form a laminate 7. As shown in FIG. 2, 50 laminated bodies 7 and the end plates 8 and 51 shown in FIG.
Was set so that the magnetic flux generated by the coil and the plane portion of the end plate 8 were perpendicular to each other. A high-frequency current having a frequency of 150 KHz was applied to the heating coil 16 under the following conditions: 0 to 25 minutes: 73 KW, 25 to 50 minutes: 40 KW, 50 to 110 minutes: 18 KW. At this time, the temperature rise profile of the internal laminated body 7 was obtained in the vicinity of the pressure transmitting plate 12 and at the center of the stack as shown in FIG. In this heating profile, a maximum temperature difference of 3 ° C. occurred at the same time. This was 1 / of the temperature difference of 15 ° C. during lamination using the conventional hot plate. When the temperature distribution in the cross section direction of the head plate 8 was measured, as shown in FIG. 5, the temperature difference between the center part and the peripheral part of the head plate 8 was about 3 ° C. in the second embodiment. It was within ° C. This is to make the temperature distribution of the head plate 8 more uniform by compensating for the heat that escapes from the periphery of the head plate 8 to the outside by increasing the calorific value by increasing the thickness of the pure copper plate 8 of the head plate 8 at the periphery. It is because was made. Then, a multilayer printed wiring board 13 as shown in FIG. 1 (f) was obtained. The thickness of the multilayer printed wiring board 13 had a variation of 2% of the total thickness, which was 3 of the variation of 6% of the thickness of the conventional multilayer printed wiring board.
【0014】図5は本発明の第2及び第3の実施の形態
の鏡板の断面方向の温度分布を示すプロファイルであ
る。図3(b)及び図3(c)に示す第2及び第3の実
施の形態に用いた鏡板の発熱部の厚みを局所的に変化さ
せることにより、図5に示すように鏡板面内での温度分
布を均一にでき、厚み精度をさらに良くすることが出来
る。FIG. 5 is a profile showing the temperature distribution in the sectional direction of the head plate according to the second and third embodiments of the present invention. By locally changing the thickness of the heat generating portion of the end plate used in the second and third embodiments shown in FIGS. 3B and 3C, as shown in FIG. Can be made uniform, and the thickness accuracy can be further improved.
【0015】[0015]
【発明の効果】第1の効果は、本発明により得られる多
層プリント配線板は厚み精度が従来の倍良くなっている
ことである。厚み精度が改善されることにより、厚み精
度をパラメーターとして持つプリント回路のインピーダ
ンスのばらつきが改善され、より高周波の信号を低ノイ
ズで流すことが出来るようになる。また、厚みが均一な
ため、プリント配線板への部品実装時の誤動作を低減す
ることが出来る。その理由は多層プリント配線板を加熱
加圧しプリプレグを溶融接着し多層化する製造工程にお
いて、多層プリント配線板に直接接する鏡板を高周波誘
導加熱法にて直接加熱することにより熱伝導に時間遅れ
が発生せず、プリプレグを溶融硬化させるために最適な
温度プロファイルが多層化される全ての多層プリント配
線板で得られることである。また、この鏡板の発熱部の
厚みを局所的に変化させることにより、鏡板面内での温
度分布を均一に出来、厚み精度をさらに良くすることが
出来るという効果がある。The first effect is that the multilayer printed wiring board obtained by the present invention has twice the thickness accuracy as the conventional one. By improving the thickness accuracy, the variation in impedance of a printed circuit having the thickness accuracy as a parameter is improved, and a higher frequency signal can be passed with low noise. Further, since the thickness is uniform, it is possible to reduce malfunctions when mounting components on the printed wiring board. The reason is that in the manufacturing process where the multilayer printed wiring board is heated and pressurized and the prepreg is melted and bonded to form a multilayer, the heat conduction is delayed by directly heating the end plate that is in direct contact with the multilayer printed wiring board by the high-frequency induction heating method. Instead, an optimal temperature profile for melt-curing the prepreg is obtained in all multilayer printed wiring boards. In addition, by locally changing the thickness of the heat generating portion of the end plate, there is an effect that the temperature distribution in the end plate surface can be made uniform and the thickness accuracy can be further improved.
【図1】(a)〜(f)は本発明の第1〜第3の実施の
形態の多層プリント配線板の製造方法を説明する工程順
に示した断面図である。FIGS. 1A to 1F are cross-sectional views illustrating a method of manufacturing a multilayer printed wiring board according to first to third embodiments of the present invention in the order of steps.
【図2】図1(f)の工程を説明する断面図である。FIG. 2 is a cross-sectional view illustrating the step of FIG.
【図3】(a)〜(c)はそれぞれ本発明の第1の実施
の形態〜第3の実施の形態に用いる鏡板の斜視図及び断
面図である。FIGS. 3 (a) to 3 (c) are a perspective view and a sectional view of a head plate used in the first to third embodiments of the present invention, respectively.
【図4】本発明の第1の実施の形態によるプリント配線
板を説明する積層体の温度プロファイルである。FIG. 4 is a temperature profile of a laminate for explaining the printed wiring board according to the first embodiment of the present invention.
【図5】本発明の第2及び第3の実施の形態の鏡板の断
面方向の温度分布を示すプロファイルである。FIG. 5 is a profile showing a temperature distribution in a sectional direction of the head plate according to the second and third embodiments of the present invention.
【図6】(a)〜(f)は従来の多層プリント配線板の
製造方法の一例を説明する工程順に示した断面図であ
る。6 (a) to 6 (f) are cross-sectional views shown in a process order illustrating an example of a conventional method for manufacturing a multilayer printed wiring board.
【図7】図6(f)の工程を説明する断面図である。FIG. 7 is a cross-sectional view illustrating the step of FIG. 6 (f).
【図8】図6(f)の工程を説明する断面図である。FIG. 8 is a cross-sectional view illustrating the step of FIG. 6 (f).
【図9】図6の製造方法で得られた多層プリント配線板
の温度プロファイルである。FIG. 9 is a temperature profile of the multilayer printed wiring board obtained by the manufacturing method of FIG. 6;
【図10】(a)〜(d)は従来の多層プリント配線板
の製造方法の他の例を説明する工程順に示した断面図で
ある。FIGS. 10A to 10D are cross-sectional views shown in the order of steps for explaining another example of a conventional method for manufacturing a multilayer printed wiring board.
1 絶縁板 2 銅箔 3 両面銅張積層板 4 導体回路 5 内層用プリント配線板 6 プリプレグ 7 積層体 8 鏡板 9 積層治具 10 ブック 11 熱板 12 圧力伝達板 13 多層プリント配線板 14 金属 15 位置合わせ用治具 16 加熱コイル 17 4層のプリント配線板 18 純鋼板 19 ステンレス鋼SUS316L REFERENCE SIGNS LIST 1 insulating plate 2 copper foil 3 double-sided copper-clad laminate 4 conductive circuit 5 printed wiring board for inner layer 6 prepreg 7 laminate 8 mirror plate 9 lamination jig 10 book 11 hot plate 12 pressure transmission plate 13 multilayer printed wiring board 14 metal 15 position Jig for alignment 16 Heating coil 17 4-layer printed wiring board 18 Pure steel plate 19 Stainless steel SUS316L
Claims (4)
用プリント配線板あるいは片面に導電回路を有する内層
用プリント配線板の少くとも1枚を、2枚の導箔あるい
は前記内層用プリント配線板を外側に配置し、各金属箔
及び前記内層用プリント配線板の間にプリプレグを介
し、1対の鏡板にて挟持し、これを1つあるいは複数積
み重ね、圧力伝達板の間に挟み加熱加圧して多層化する
工程を持つ多層プリント配線板の製造工程を有する多層
プリント配線板の製造方法において、高周波誘導加熱に
て前記鏡板を直接加熱して多層化する工程を含むことを
特徴とする多層プリント配線板の製造方法。1. An inner layer printed wiring board having conductive circuits formed on both sides or at least one inner layer printed wiring board having a conductive circuit formed on one side, comprising two conductive foils or the inner layer printed wiring board. Are arranged outside, and each metal foil and the printed wiring board for the inner layer are sandwiched by a pair of end plates via a prepreg, and one or more of these are stacked, sandwiched between pressure transmitting plates, and heated and pressed to form a multilayer. A method of manufacturing a multilayer printed wiring board having a process of manufacturing a multilayer printed wiring board having a process, comprising a step of directly heating the end plate by high-frequency induction heating to form a multilayer structure. Method.
とする請求項1記載の多層プリント配線板の製造方法。2. The method according to claim 1, wherein said mirror plate is made of metal.
上の金属と1種類以上の絶縁体を張り合わせた構造を持
っていることを特徴とする請求項1記載の多層プリント
配線板の製造方法。3. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein said end plate has a structure in which a plurality of metals or one or more types of metals and one or more types of insulators are bonded.
部分的に変化させていることを特徴とする請求項3記載
の多層プリント配線板の製造方法。4. The method according to claim 3, wherein an arrangement ratio of the metal in the thickness direction of the end plate is partially changed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16737796A JPH1013024A (en) | 1996-06-27 | 1996-06-27 | Method for manufacturing multilayer printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16737796A JPH1013024A (en) | 1996-06-27 | 1996-06-27 | Method for manufacturing multilayer printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1013024A true JPH1013024A (en) | 1998-01-16 |
Family
ID=15848594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16737796A Pending JPH1013024A (en) | 1996-06-27 | 1996-06-27 | Method for manufacturing multilayer printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1013024A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001019149A1 (en) * | 1999-09-02 | 2001-03-15 | Ibiden Co., Ltd. | Printed wiring board and method of producing the same and capacitor to be contained in printed wiring board |
WO2001019148A1 (en) * | 1999-09-02 | 2001-03-15 | Ibiden Co., Ltd. | Printed wiring board and method of producing the same |
JP2006521692A (en) * | 2003-03-27 | 2006-09-21 | ケムプレート・マテリアルズ・ソシエダッド・リミターダ | Printed circuit board manufacturing process and machine therefor |
KR100759193B1 (en) * | 2005-08-30 | 2007-09-14 | 주식회사 엘지화학 | Manufacturing method of multi-layered printed circuit board and multi-layered printed circuit board manufactured by the same |
JP2012256658A (en) * | 2011-06-08 | 2012-12-27 | Nikon Corp | Substrate bonding apparatus and method, and overlapped substrate |
CN103429014A (en) * | 2013-07-31 | 2013-12-04 | 深圳市博敏电子有限公司 | Multilayer board lamination device |
-
1996
- 1996-06-27 JP JP16737796A patent/JPH1013024A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7995352B2 (en) | 1999-09-02 | 2011-08-09 | Ibiden Co., Ltd. | Printed circuit board |
US8780573B2 (en) | 1999-09-02 | 2014-07-15 | Ibiden Co., Ltd. | Printed circuit board |
US9060446B2 (en) | 1999-09-02 | 2015-06-16 | Ibiden Co., Ltd. | Printed circuit board |
US7855894B2 (en) | 1999-09-02 | 2010-12-21 | Ibiden Co., Ltd. | Printed circuit board |
US7307852B2 (en) | 1999-09-02 | 2007-12-11 | Ibiden Co., Ltd. | Printed circuit board and method for manufacturing printed circuit board |
CN100381027C (en) * | 1999-09-02 | 2008-04-09 | 伊比登株式会社 | Printed wiring board and method of producing same |
CN100381026C (en) * | 1999-09-02 | 2008-04-09 | 伊比登株式会社 | Printed wiring board and method of producing same |
WO2001019149A1 (en) * | 1999-09-02 | 2001-03-15 | Ibiden Co., Ltd. | Printed wiring board and method of producing the same and capacitor to be contained in printed wiring board |
US8331102B2 (en) | 1999-09-02 | 2012-12-11 | Ibiden Co., Ltd. | Printed circuit board |
WO2001019148A1 (en) * | 1999-09-02 | 2001-03-15 | Ibiden Co., Ltd. | Printed wiring board and method of producing the same |
KR100890475B1 (en) * | 1999-09-02 | 2009-03-26 | 이비덴 가부시키가이샤 | Printed circuit board and method of manufacturing printed circuit board |
US8107253B2 (en) | 1999-09-02 | 2012-01-31 | Ibiden Co., Ltd. | Printed circuit board |
CN102653156A (en) * | 2003-03-27 | 2012-09-05 | 彻姆普拉特原料公司 | Process for manufacturing printed circuit boards and a machine for this purpose |
TWI393499B (en) * | 2003-03-27 | 2013-04-11 | Chemplate Materials S L | Process for manufacturing printed circuit boards and a machine for this purpose |
JP2006521692A (en) * | 2003-03-27 | 2006-09-21 | ケムプレート・マテリアルズ・ソシエダッド・リミターダ | Printed circuit board manufacturing process and machine therefor |
US7565736B2 (en) * | 2003-03-27 | 2009-07-28 | Chemplate Materials, S.L. | Process for manufacturing printed circuit boards and a machine for this purpose |
KR100759193B1 (en) * | 2005-08-30 | 2007-09-14 | 주식회사 엘지화학 | Manufacturing method of multi-layered printed circuit board and multi-layered printed circuit board manufactured by the same |
JP2012256658A (en) * | 2011-06-08 | 2012-12-27 | Nikon Corp | Substrate bonding apparatus and method, and overlapped substrate |
CN103429014B (en) * | 2013-07-31 | 2016-12-07 | 徐俊子 | A kind of multilayer board lamination device |
CN103429014A (en) * | 2013-07-31 | 2013-12-04 | 深圳市博敏电子有限公司 | Multilayer board lamination device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0828581B2 (en) | Multilayer printed wiring board and manufacturing method thereof | |
JPH1013024A (en) | Method for manufacturing multilayer printed wiring board | |
JP2001102696A (en) | Wiring board and manufacturing method therefor | |
EP0528963B1 (en) | Process for the production of a multilayer printed circuit board | |
JP3165890B2 (en) | Lay-up method of printed wiring board | |
JP5226469B2 (en) | Multi-layer printed board welding equipment | |
JP4681111B2 (en) | Multilayer circuit board manufacturing method and press apparatus | |
JPH10178241A (en) | Printed wiring board and method for manufacturing the same | |
JPS63199636A (en) | Laminated board | |
JP3879159B2 (en) | Manufacturing method of multilayer printed wiring board | |
JP3749201B2 (en) | Method for manufacturing printed wiring board | |
JPS63224934A (en) | Laminated board | |
JP5549853B2 (en) | Multi-wire wiring board and manufacturing method thereof | |
JP2001203453A (en) | Manufacturing method for multilayer laminated board | |
JPH05121876A (en) | Manufacture of multilayer printed wiring board | |
JP3069605B2 (en) | Lay-up method of printed wiring board | |
JP2004342978A (en) | Method for manufacturing multi-wire wiring board | |
JPS63199635A (en) | Laminated board | |
JPH06169172A (en) | Method for manufacturing multilayer printed board | |
JPH02229492A (en) | Manufacture of wiring board | |
JPS60236278A (en) | Plate for circuit | |
JPS6192848A (en) | Manufacture of laminated board for metallic base printed wiring board | |
JP2018163929A (en) | Multi-wire wiring board | |
JPS60241294A (en) | Method of producing multilayer printed circuit board | |
JPH11186722A (en) | Manufacture of metal-core multilayer shield board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19981222 |