JP3749201B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP3749201B2
JP3749201B2 JP2002146488A JP2002146488A JP3749201B2 JP 3749201 B2 JP3749201 B2 JP 3749201B2 JP 2002146488 A JP2002146488 A JP 2002146488A JP 2002146488 A JP2002146488 A JP 2002146488A JP 3749201 B2 JP3749201 B2 JP 3749201B2
Authority
JP
Japan
Prior art keywords
substrate
printed wiring
wiring board
prepreg
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002146488A
Other languages
Japanese (ja)
Other versions
JP2003338686A (en
Inventor
昭博 佐藤
秀俊 村上
Original Assignee
株式会社 大昌電子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 大昌電子 filed Critical 株式会社 大昌電子
Priority to JP2002146488A priority Critical patent/JP3749201B2/en
Publication of JP2003338686A publication Critical patent/JP2003338686A/en
Application granted granted Critical
Publication of JP3749201B2 publication Critical patent/JP3749201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主に電子機器等に用いられ、表面に導体パターンを備えた絶縁基板を、複数積層してなるプリント配線板の製造方法に関するものである。
【0002】
【従来の技術】
現在、プリント配線板は、生産性の向上、量産品質の確保、信頼性の向上等を目的として、テレビ等の量産機器からロケット等の高い信頼性を要求される機器まで、あらゆる電子機器に使用されている。近年、電子機器の小型化、高密度実装化が進み、それに伴いプリント配線板の更なる高精度化及び高密度化が要求されており、これに対処するため、絶縁基板の表裏両面だけでなく、その内部にも導体パターンが形成された多層プリント配線板が提供されるようになった。
【0003】
一般に、この多層プリント配線板は、次のように形成される。
まず、予め、大形の絶縁基板表面に、複数の導体パターンを備えた大形の内層基板を複数形成しておき、該大形の内層基板表面に、プリプレグと、他の上記大形の内層基板とを順次載置する。その後、これらの表面の周縁部、すなわち上記導体パターンが形成されていない上記大形の絶縁基板表面周縁部に、加熱手段を当接させ、上記周縁部を加熱し、該部の上記プリプレグを硬化させ、仮止めを行う。その後、この仮止めされた上記内層基板表面にプリプレグと、導電材料箔とを順次載置した後、油圧プレス等の圧着手段により、これらの表面全体を加圧、加熱して、上記プリプレグ全体を溶融、硬化させ、大形の基板が形成される。更に、該大形の基板表面に設けられた導電材料箔をサブトラクティブ法等の適宜方法により、複数の導体パターンを形成し、その後、ソルダーレジストパターンを形成する等の工程を経た後、所定の位置で切断することにより、上記プリント配線板が形成される。
【0004】
ここで、上記仮止めは、上記大形の内層基板と、上記プリプレグと、上記導電材料箔とを、複数積層し単に載置した状態で、圧着手段により高温高圧下に置くと、溶融した上記プリプレグの流動等に起因して位置ずれ等を生じ、高精度に形成できないことから、ある程度積層した後、その位置を決めるためのものである。
【0005】
【発明が解決しようとする課題】
ところが、上記従来のプリント配線板の製造方法によれば、上記仮止めを行うに際し、上記内層基板表面において、上記絶縁基板周縁部に、直接、上記加熱手段を当接させるため、上記絶縁基板周縁部の表面粗さに起因して、その当接状態を一様に維持することが困難であった。これにより、上記プリプレグの上記絶縁基板周縁部での溶融、硬化状態が不均一になり、プリント配線板全体の積層方向の厚さを略均一に形成する、すなわち高精度に形成することが困難であるという問題があった。
【0006】
また、上記当接状態の不均一に起因して、上記プリプレグの溶融が進行した部分においては、この溶融した樹脂が、上記導体パターンの近傍、すなわち上記切断により上記プリント配線板となる部分にまで流れ込む場合があった。この場合、上記プリント配線板を構成する絶縁基板の硬化状態が不均一になり、製品において生ずる熱ひずみに起因して、層間剥離を発生する問題があった。
【0007】
さらに、上記溶融、硬化状態が不均一である場合はもとより、均一である場合であっても、上記プリプレグの上記絶縁基板周縁部においては、該部以外とその硬化状態に差異が生じている。このため、上記圧着手段により、圧着した後の工程において、上記大形の基板に生じる熱ひずみに起因して、上記硬化状態の差異がある部分に亀裂が生じ、更には、上記絶縁基板間で剥離が生ずるという問題があった。
【0008】
本発明は、このような事情を考慮してなされたもので、上記プリント配線板を製造するに際し、製造不良を発生させることなく、良好に形成することが可能なプリント配線板の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決して、このような目的を達成するために、本発明は以下の手段を提案している。
請求項1に係る発明は、第1の絶縁基板表面の内方に第1の導体パターンを形成した第1の基板を各別に複数製作する工程と、該第1の基板同士の間に、第1のプリプレグを載置した後、前記第1の基板及び前記第1のプリプレグ表面上の外方周縁部を加熱手段にて加熱することにより、前記外方周縁部の前記第1のプリプレグを溶融、硬化させ、前記外方周縁部において前記第1の基板同士を仮止めする工程と、前記第1の導体パターンと前記外方周縁部との間の所定位置を切断する工程を含むプリント配線板の製造方法であって、前記第1の絶縁基板の少なくとも一方の面の外方周縁部には、1つ又は複数の突起体を、それぞれ略同等の高さで形成し、加熱の際に、前記突起体の上に前記加熱手段を載置すると共に、前記第1の絶縁基板表面の前記突起体と前記所定位置との間に、前記第1の絶縁基板の側面と略平行に連設する壁面体を形成することを特徴とする。
【0010】
この発明に係るプリント配線板の製造方法によれば、上記突起体が上記加熱手段と当接することになるため、上記加熱手段と、上記第1の基板との間隙を、上記外方周縁部において略一定に保つことが可能になり、該外方周縁部を一様に加熱することが可能になる。すなわち、上記第1のプリプレグの溶融、硬化状態を上記外方周縁部で略均一になすことが可能になる。さらに、上記加熱手段は、上記突起体と点接触することになるため、上記加熱手段から上記第1の基板及び上記第1のプリプレグへの加熱を効率良く、確実になすことが可能になる。
また、この発明に係るプリント配線板の製造方法によれば、上記第1の基板同士の間に上記第1のプリプレグを設け、これらの表面の上記外方周縁部を加熱して上記第1の基板同士を貼着するに際し、溶融した上記第1のプリプレグの、上記第1の導体パターン側への流入が上記壁面体により阻止されることになる。従って、大形のプリント配線板から、所定の位置で切断することにより、プリント配線板を形成するに際し、上記突起体と上記所定位置との間に上記壁面体を設けておけば、上記プリント配線板を構成する絶縁基板において、その硬化状態を均一になすことが可能になることから、プリント配線板が受ける熱ひずみに起因した層間剥離を抑制することが可能になる。
【0013】
請求項2に係る発明は、請求項1に記載のプリント配線板の製造方法であって、前記第1の基板を各別に複数製作し、該第1の基板同士の間に、該第1の基板の他方の面と当接するように第1のプリプレグを載置し、前記加熱手段を、前記突起体と当接させ、前記第1の基板及び前記第1のプリプレグ表面上の前記外方周縁部を加熱し、該外方周縁部の前記第1のプリプレグを溶融、硬化させ、前記第1の基板同士の前記外方周縁部を仮止めして第2の基板を形成することを特徴とする。
【0014】
この発明に係るプリント配線板の製造方法によれば、上記加熱手段を上記複数の突起体と当接させ、上記外方周縁部の上記第1のプリプレグを加熱、溶融させることになる。このため、上記外方周縁部における上記第1のプリプレグの溶融、硬化状態を均一になすことが可能になる。従って、上記第1の基板の積層方向の厚さを略均一に形成することが可能になるため、プリント配線板を高精度に製造することが可能になる。
【0019】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1は、この発明の一実施形態として示したプリント配線板の製造方法を説明するための説明図、図2は、図1(A)に示す工程における平面図、図3は、図1(E)に示す工程における平面図を示すものである。
【0020】
まず、表面に銅箔が貼着された第1の絶縁基板1表面に、サブトラクティブ法等の適宜方法により、図1(A)、図2に示すように、複数の内層導体パターン2を形成するとともに、第1の絶縁基板1の一方の面には、上記複数の内層導体パターン2の外方周縁部の各所に、複数の突起体3をそれぞれ略同等の高さで形成する。この際、内層導体パターン2と、突起体3との間に、第1の絶縁基板1の側面と略平行に連設する壁面体4を形成し、内層基板10を形成する。
【0021】
この内層基板10を各別に複数形成した後、図1(B)に示すように、内層基板10の他方の面、すなわち突起体3が形成されていない面同士の間に、第1のプリプレグ11を載置し、その後、突起体3に加熱手段20を当接させる。この際、内層基板10及び第1のプリプレグ11の表面において、内層導体パターン2の外方周縁部を加熱し、該部の第1のプリプレグ11を溶融、硬化させ、該部の内層基板10同士を貼着し、仮止め基板12を形成する。
この際、加熱手段20と、内層基板10表面との間隙は、加熱手段20が突起体3と当接しているため、上記外方周縁部全域において略均一となっている。さらに、壁面体4が、内層導体パターン2と、突起体3との間に設けられているため、上記溶融した第1のプリプレグ11は、壁面体4から内層導体パターン2側へは流入しない。
【0022】
そして、加熱手段20を突起体3から離反させた後、図1(C)に示すように、仮止め基板12の表面に、第2のプリプレグ13と、銅箔14とを順次載置した後、図示しない圧着手段により、これらの表面を加圧、加熱する。これにより、第1、第2のプリプレグ11、13全体を溶融、硬化させ、それぞれ第2、第3の絶縁基板21、22を形成するとともに、上記内層基板10同士及び銅箔14をそれぞれ全面貼着して、積層基板15を形成する。
【0023】
その後、図1(D)、図3に示すように、積層基板15表面において、突起体3と内層導体パターン2との間に、積層基板15の側面に沿って列設する複数の貫通孔16を形成し、その後、無電解銅鍍金を施し、貫通孔16の内壁面に銅鍍金層17を形成する(この内壁面に銅鍍金層17を備えた貫通孔16を以下、「鍍金スルーホール23」という)。その後、積層基板15表面に、サブトラクティブ法等の適宜方法により、図1(E)に示すように、第3の絶縁基板22表面に、主外層導体パターン18と、貫通孔16の開口周縁部に副外層導体パターン19とを形成し、大形のプリント配線板30が形成される。ここで、副外層導体パターン19と、銅鍍金層17とは導通している。
【0024】
そして、大形のプリント配線板30表面に、ソルダーレジストパターンを形成する等の所定の加工を施した後、図1(E)、図3に示すように、内層導体パターン2及び主外層導体パターン18と、副外層導体パターン19との間における所定の位置L1で切断するとともに、上記導体パターン2、18の外方周縁部の所定の位置L2を切断することにより、プリント配線板40が形成される。
【0025】
以上説明したように、本実施形態によるプリント配線板の製造方法によれば、内層基板10において、内層導体パターン2の外方周縁部の各所に、複数の突起体3をそれぞれ略同等の高さで形成する。このため、図1(B)に示す仮止め基板12を形成するに際し、加熱手段20は突起体3と当接しており、加熱手段20と、内層基板10表面との間隙は、仮止め基板12表面の周縁部全域において略均一となる。従って、第1のプリプレグ11の上記周縁部における溶融、硬化状態を均一になすことが可能になる。これにより、形成されるプリント配線板40の積層方向の厚さを略均一に形成することが可能になる。
【0026】
また、内層基板10表面において、内層導体パターン2と、突起体3との間に、第1の絶縁基板1の側面と略平行に連設する壁面体4を形成しているため、図1(B)、(C)に示す仮止め基板12、積層基板15を形成するに際し、溶融した第1、第2のプリプレグ11、13は、壁面体4から内層導体パターン2側、すなわち上記切断により形成されるプリント配線板40へは流入しないことになる。従って、仮止め基板12形成時に硬化する部分は、プリント配線板40を構成する第2の絶縁基板21には含まれないことになるため、該絶縁基板21の硬化状態を略均一にすることが可能になる。これにより、プリント配線板40の使用時に生ずる熱ひずみに起因した層間剥離の発生を抑制することが可能になる。
【0027】
さらに、図1(E)に示す大形のプリント配線板30表面においては、内層導体パターン2と、突起体3との間に、大形のプリント配線板30の側面に沿って列設する複数の鍍金スルーホール23が形成される。これにより、大形のプリント配線板30形成後の所定の工程において、大形のプリント配線板30に生ずる熱ひずみに起因した、上記周縁部での第1の絶縁基板1と第2の絶縁基板21との層間剥離に対して、銅鍍金層17がその抗力となる。従って、仮止め基板12形成時において生ずる、第2の絶縁基板21の上記周縁部と、該部以外との硬化状態の差異に起因した、上記周縁部での第1の絶縁基板1と第2絶縁基板21との層間剥離を抑制することが可能になる。
また、第3の絶縁基板22表面において、鍍金スルーホール23の開口周縁部には、銅鍍金層17と導通した副外層導体パターン19が形成されているため、より一層の上記剥離抑制効果が得られる。
【0028】
なお、本実施の形態においては、内層基板10表面に、突起体3及び壁面体4を形成するに際し、絶縁基板1表面に貼着された銅箔に基づいて、内層導体パターン2と同時に形成したが、本実施の形態に限らず、加熱手段20が内層基板10表面と当接する突起体及び溶融したプリプレグが導体パターン側に流入しない壁面体であれば、その機能に変わりはない。
【0029】
【発明の効果】
以上の説明から明らかなように、請求項1に係る発明によれば、上記第1のプリプレグの溶融、硬化状態を上記外方周縁部で略均一になすことが可能になる。さらに、上記加熱手段は、上記突起体と点接触することになるため、上記加熱手段から上記第1の基板及び上記第1のプリプレグへの加熱を効率良く、確実になすことが可能になる。
また、請求項1に係る発明によれば、プリント配線板を構成する各絶縁基板において、その硬化状態を均一になすことが可能になることから、プリント配線板が受ける熱ひずみに起因した層間剥離を抑制することが可能になる。
【0031】
請求項に係る発明によれば、上記外方周縁部における上記第1のプリプレグの溶融、硬化状態を均一になすことが可能になる。従って、上記第1の基板の積層方向の厚さを略均一に形成することが可能になるため、プリント配線板を高精度に製造することが可能になる。
【図面の簡単な説明】
【図1】 本発明の一実施形態として示したプリント配線板の製造方法を説明するための説明図である。
【図2】 図1(A)の平面図である。
【図3】 図1(E)の平面図である。
【符号の説明】
1 第1の絶縁基板 2 内層導体パターン(第1の導体パターン) 3 突起体 4 壁面体 10 内層基板(第1の基板) 11 第1のプリプレグ 12 仮止め基板(第2の基板) 13 第2のプリプレグ 14 銅箔(導電材料箔) 15 積層基板 16 貫通孔 17 銅鍍金層(鍍金層) 18 主外層導体パターン(第2の導体パターン) 19 副外層導体パターン(第3の導体パターン) 20 加熱手段 21 第2の絶縁基板 22 第3の絶縁基板 40 プリント配線板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a printed wiring board, which is mainly used in electronic equipment and the like, and is formed by laminating a plurality of insulating substrates having a conductor pattern on the surface.
[0002]
[Prior art]
Currently, printed wiring boards are used in all types of electronic equipment, from mass production equipment such as TVs to equipment that requires high reliability such as rockets, for the purpose of improving productivity, ensuring mass production quality, and improving reliability. Has been. In recent years, miniaturization and high-density mounting of electronic devices have progressed, and accordingly, there has been a demand for higher precision and higher density of printed wiring boards. A multilayer printed wiring board having a conductor pattern formed therein is also provided.
[0003]
Generally, this multilayer printed wiring board is formed as follows.
First, a plurality of large inner layer substrates having a plurality of conductor patterns are formed in advance on the surface of a large insulating substrate, and a prepreg and other large inner layers are formed on the surface of the large inner layer substrate. A board | substrate is mounted in order. Thereafter, the heating means is brought into contact with the peripheral portion of the surface, that is, the peripheral portion of the surface of the large insulating substrate on which the conductive pattern is not formed, the peripheral portion is heated, and the prepreg of the portion is cured. And temporarily fix. After that, the prepreg and the conductive material foil are sequentially placed on the temporarily fixed inner layer substrate surface, and then the entire surface of the prepreg is pressed and heated by a pressure bonding means such as a hydraulic press. It is melted and cured to form a large substrate. Further, the conductive material foil provided on the surface of the large substrate is subjected to a process such as forming a plurality of conductor patterns by an appropriate method such as a subtractive method, and then forming a solder resist pattern, and then a predetermined pattern. The printed wiring board is formed by cutting at a position.
[0004]
Here, the temporary fixing is the above-mentioned large inner layer substrate, the prepreg, and the conductive material foil stacked in a plurality of layers and simply placed, and when placed under high temperature and high pressure by a crimping means, the molten This is for determining the position after stacking to some extent because a positional shift or the like is caused due to the flow of the prepreg and the like and it cannot be formed with high accuracy.
[0005]
[Problems to be solved by the invention]
However, according to the conventional method for manufacturing a printed wiring board, when the temporary fixing is performed, the heating means is brought into direct contact with the peripheral portion of the insulating substrate on the surface of the inner layer substrate. Due to the surface roughness of the part, it was difficult to maintain the contact state uniformly. As a result, the melted and cured state of the prepreg at the peripheral edge portion of the insulating substrate becomes non-uniform, and it is difficult to form the thickness of the entire printed wiring board in the stacking direction substantially uniformly, that is, with high accuracy. There was a problem that there was.
[0006]
Further, in the portion where the prepreg has been melted due to the non-uniform contact state, the melted resin reaches the vicinity of the conductor pattern, that is, the portion that becomes the printed wiring board by the cutting. There was a case. In this case, there has been a problem that delamination occurs due to the thermal strain generated in the product because the cured state of the insulating substrate constituting the printed wiring board becomes uneven.
[0007]
Further, even if the melted and cured state is not uniform, even if it is uniform, there is a difference in the cured state between the peripheral portion of the prepreg and the insulating substrate. For this reason, in the process after crimping by the crimping means, due to the thermal strain generated in the large substrate, a crack occurs in a portion having a difference in the cured state, and further, between the insulating substrates. There was a problem that peeling occurred.
[0008]
The present invention has been made in view of such circumstances, and provides a method for manufacturing a printed wiring board that can be satisfactorily formed without causing manufacturing defects when the printed wiring board is manufactured. The purpose is to do.
[0009]
[Means for Solving the Problems]
In order to solve the above problems and achieve such an object, the present invention proposes the following means.
According to a first aspect of the present invention, there is provided a step of manufacturing a plurality of first substrates each having a first conductor pattern formed inside the surface of the first insulating substrate, and a step between the first substrates. After placing one prepreg, the outer peripheral edge on the first substrate and the surface of the first prepreg is heated by a heating means, thereby melting the first prepreg at the outer peripheral edge. A printed wiring board comprising: curing, temporarily fixing the first substrates at the outer peripheral edge, and cutting a predetermined position between the first conductor pattern and the outer peripheral edge In the manufacturing method, one or a plurality of protrusions are formed at substantially the same height on the outer peripheral edge of at least one surface of the first insulating substrate, and when heating, with placing the heating means on said protrusion, said first insulating substrate Between the projections of the surface and the predetermined position, and forming a wall member which continuously arranged substantially in parallel with the side surface of the first insulating substrate.
[0010]
According to the method of manufacturing a printed wiring board according to the present invention, since the protrusion comes into contact with the heating unit, the gap between the heating unit and the first substrate is set at the outer peripheral edge. It becomes possible to keep substantially constant, and it becomes possible to heat this outer periphery part uniformly. That is, the melted and cured state of the first prepreg can be made substantially uniform at the outer peripheral edge. Furthermore, since the heating means makes point contact with the protrusions, the heating from the heating means to the first substrate and the first prepreg can be efficiently and reliably performed.
Moreover, according to the method for manufacturing a printed wiring board according to the present invention, the first prepreg is provided between the first substrates, and the outer peripheral edge portions of these surfaces are heated to thereby provide the first prepreg. When the substrates are bonded together, the wall surface body prevents the molten first prepreg from flowing into the first conductor pattern side. Therefore, when forming the printed wiring board by cutting the large printed wiring board at a predetermined position, if the wall surface body is provided between the protrusion and the predetermined position, the printed wiring Since it becomes possible to make the cured state uniform in the insulating substrate constituting the board, it is possible to suppress delamination caused by thermal strain applied to the printed wiring board.
[0013]
The invention according to claim 2 is the method for manufacturing a printed wiring board according to claim 1, wherein a plurality of the first substrates are manufactured separately, and the first substrate is interposed between the first substrates. The first prepreg is placed so as to come into contact with the other surface of the substrate, the heating means is brought into contact with the protrusion, and the outer peripheral edge on the surface of the first substrate and the first prepreg A first substrate is heated, the first prepreg at the outer peripheral edge is melted and cured, and the outer peripheral edge between the first substrates is temporarily fixed to form a second substrate. To do.
[0014]
According to the method for manufacturing a printed wiring board according to the present invention, the heating means is brought into contact with the plurality of protrusions, and the first prepreg at the outer peripheral edge is heated and melted. For this reason, it becomes possible to make the said 1st prepreg the melting | fusing and hardening state in the said outer periphery part uniform. Therefore, since the thickness of the first substrate in the stacking direction can be formed substantially uniformly, a printed wiring board can be manufactured with high accuracy.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram for explaining a method of manufacturing a printed wiring board shown as one embodiment of the present invention, FIG. 2 is a plan view in the process shown in FIG. 1 (A), and FIG. The top view in the process shown to E) is shown.
[0020]
First, as shown in FIG. 1 (A) and FIG. 2, a plurality of inner layer conductor patterns 2 are formed on the surface of the first insulating substrate 1 having a copper foil attached to the surface by an appropriate method such as a subtractive method. At the same time, a plurality of protrusions 3 are formed on one surface of the first insulating substrate 1 at approximately the same height at each of the outer peripheral edge portions of the plurality of inner layer conductor patterns 2. At this time, a wall surface body 4 is formed between the inner layer conductor pattern 2 and the protrusions 3 so as to be connected substantially parallel to the side surface of the first insulating substrate 1, thereby forming the inner layer substrate 10.
[0021]
After the plurality of inner layer substrates 10 are formed separately, as shown in FIG. 1B, the first prepreg 11 is formed between the other surfaces of the inner layer substrate 10, that is, the surfaces where the protrusions 3 are not formed. After that, the heating means 20 is brought into contact with the protrusion 3. At this time, on the surfaces of the inner layer substrate 10 and the first prepreg 11, the outer peripheral edge portion of the inner layer conductor pattern 2 is heated to melt and harden the first prepreg 11 of the portion, and the inner layer substrates 10 of the portion Is attached to form a temporary fixing substrate 12.
At this time, the gap between the heating means 20 and the surface of the inner layer substrate 10 is substantially uniform over the entire outer peripheral edge because the heating means 20 is in contact with the protrusion 3. Furthermore, since the wall surface body 4 is provided between the inner layer conductor pattern 2 and the protrusions 3, the melted first prepreg 11 does not flow from the wall surface body 4 to the inner layer conductor pattern 2 side.
[0022]
Then, after the heating means 20 is separated from the protrusion 3, the second prepreg 13 and the copper foil 14 are sequentially placed on the surface of the temporary fixing substrate 12 as shown in FIG. These surfaces are pressurized and heated by a crimping means (not shown). As a result, the entire first and second prepregs 11 and 13 are melted and cured to form second and third insulating substrates 21 and 22, respectively, and the inner layer substrates 10 and the copper foil 14 are respectively applied to the entire surface. The laminated substrate 15 is formed.
[0023]
Thereafter, as shown in FIGS. 1D and 3, a plurality of through holes 16 arranged along the side surface of the multilayer substrate 15 between the protrusions 3 and the inner conductor pattern 2 on the surface of the multilayer substrate 15. After that, electroless copper plating is performed to form a copper plating layer 17 on the inner wall surface of the through hole 16 (the through hole 16 provided with the copper plating layer 17 on the inner wall surface is hereinafter referred to as “plating through hole 23”. "). Thereafter, on the surface of the multilayer substrate 15 by an appropriate method such as a subtractive method, the main outer layer conductor pattern 18 and the opening peripheral edge of the through hole 16 are formed on the surface of the third insulating substrate 22 as shown in FIG. Then, the sub-outer layer conductor pattern 19 is formed, and a large printed wiring board 30 is formed. Here, the sub-outer layer conductor pattern 19 and the copper plating layer 17 are electrically connected.
[0024]
And after giving predetermined processes, such as forming a soldering resist pattern, to the surface of large printed wiring board 30, as shown in Drawing 1 (E) and Drawing 3, inner layer conductor pattern 2 and main outer layer conductor pattern A printed wiring board 40 is formed by cutting at a predetermined position L1 between the conductor pattern 18 and the sub-outer layer conductor pattern 19 and by cutting a predetermined position L2 of the outer peripheral edge of the conductor patterns 2 and 18. The
[0025]
As described above, according to the method for manufacturing a printed wiring board according to the present embodiment, the plurality of protrusions 3 are provided at substantially the same height at various locations on the outer peripheral edge of the inner layer conductor pattern 2 in the inner layer substrate 10. Form with. For this reason, when the temporary fixing substrate 12 shown in FIG. 1B is formed, the heating means 20 is in contact with the protrusion 3, and the gap between the heating means 20 and the surface of the inner layer substrate 10 is the temporary fixing substrate 12. It becomes substantially uniform over the entire periphery of the surface. Accordingly, it is possible to make the melted and cured state of the first prepreg 11 at the peripheral edge uniform. Thereby, it becomes possible to form the thickness of the printed wiring board 40 to be formed in a substantially uniform thickness.
[0026]
Further, since the wall surface body 4 is formed between the inner layer conductor pattern 2 and the protrusion 3 on the surface of the inner layer substrate 10 so as to be substantially parallel to the side surface of the first insulating substrate 1, FIG. In forming the temporary fixing substrate 12 and the laminated substrate 15 shown in B) and (C), the melted first and second prepregs 11 and 13 are formed from the wall surface body 4 on the inner layer conductor pattern 2 side, that is, by the above cutting. It does not flow into the printed wiring board 40. Accordingly, the portion that is cured when the temporary fixing substrate 12 is formed is not included in the second insulating substrate 21 that constitutes the printed wiring board 40, so that the cured state of the insulating substrate 21 can be made substantially uniform. It becomes possible. Thereby, it becomes possible to suppress the occurrence of delamination due to thermal strain that occurs when the printed wiring board 40 is used.
[0027]
Furthermore, on the surface of the large printed wiring board 30 shown in FIG. 1E, a plurality of lines arranged along the side surface of the large printed wiring board 30 between the inner layer conductor pattern 2 and the protrusions 3. The plated through hole 23 is formed. As a result, the first insulating substrate 1 and the second insulating substrate at the peripheral edge due to thermal strain generated in the large printed wiring board 30 in a predetermined process after the large printed wiring board 30 is formed. The copper plating layer 17 acts as a resistance against delamination with 21. Accordingly, the first insulating substrate 1 and the second insulating substrate 1 at the peripheral edge due to the difference in the cured state between the peripheral edge of the second insulating substrate 21 and the portion other than the peripheral edge that occurs when the temporary fixing substrate 12 is formed. It becomes possible to suppress delamination from the insulating substrate 21.
In addition, since the sub-outer layer conductor pattern 19 that is electrically connected to the copper plating layer 17 is formed on the peripheral edge of the opening of the plating through hole 23 on the surface of the third insulating substrate 22, a further effect of suppressing the peeling is obtained. It is done.
[0028]
In the present embodiment, when the protrusion 3 and the wall surface body 4 are formed on the surface of the inner layer substrate 10, the inner layer conductor pattern 2 is formed simultaneously with the copper foil adhered to the surface of the insulating substrate 1. However, the present invention is not limited to this embodiment, and the function of the heating means 20 is not changed as long as the protrusion is in contact with the surface of the inner layer substrate 10 and the wall surface body in which the molten prepreg does not flow into the conductor pattern side.
[0029]
【The invention's effect】
As is clear from the above description, according to the invention of claim 1, the melted and cured state of the first prepreg can be made substantially uniform at the outer peripheral edge. Furthermore, since the heating means makes point contact with the protrusions, the heating from the heating means to the first substrate and the first prepreg can be efficiently and reliably performed.
Further, according to the invention according to claim 1, since it becomes possible to make the cured state uniform in each insulating substrate constituting the printed wiring board, delamination due to thermal strain received by the printed wiring board Can be suppressed.
[0031]
According to the second aspect of the present invention, it is possible to make the first prepreg melted and cured in the outer peripheral edge portion uniform. Therefore, since the thickness of the first substrate in the stacking direction can be formed substantially uniformly, a printed wiring board can be manufactured with high accuracy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining a method of manufacturing a printed wiring board shown as an embodiment of the present invention.
FIG. 2 is a plan view of FIG.
FIG. 3 is a plan view of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st insulating substrate 2 Inner layer conductor pattern (1st conductor pattern) 3 Protrusion body 4 Wall surface body 10 Inner layer board | substrate (1st board | substrate) 11 1st prepreg 12 Temporary fix board | substrate (2nd board | substrate) 13 2nd Pre-preg 14 Copper foil (conductive material foil) 15 Laminated substrate 16 Through hole 17 Copper plating layer (plating layer) 18 Main outer layer conductor pattern (second conductor pattern) 19 Sub outer layer conductor pattern (third conductor pattern) 20 Heating Means 21 Second insulating substrate 22 Third insulating substrate 40 Printed wiring board

Claims (2)

第1の絶縁基板表面の内方に第1の導体パターンを形成した第1の基板を各別に複数製作する工程と、該第1の基板同士の間に、第1のプリプレグを載置した後、前記第1の基板及び前記第1のプリプレグ表面上の外方周縁部を加熱手段にて加熱することにより、前記外方周縁部の前記第1のプリプレグを溶融、硬化させ、前記外方周縁部において前記第1の基板同士を仮止めする工程と、前記第1の導体パターンと前記外方周縁部との間の所定位置を切断する工程を含むプリント配線板の製造方法であって、
前記第1の絶縁基板の少なくとも一方の面の外方周縁部には、1つ又は複数の突起体を、それぞれ略同等の高さで形成し、加熱の際に、前記突起体の上に前記加熱手段を載置すると共に、前記第1の絶縁基板表面の前記突起体と前記所定位置との間に、前記第1の絶縁基板の側面と略平行に連設する壁面体を形成することを特徴とするプリント配線板の製造方法。
After manufacturing a plurality of first substrates each having a first conductor pattern formed inside the surface of the first insulating substrate, and placing the first prepreg between the first substrates The outer peripheral edge on the surface of the first substrate and the first prepreg is heated by a heating means to melt and cure the first prepreg of the outer peripheral edge, and the outer peripheral edge A method of manufacturing a printed wiring board including a step of temporarily fixing the first substrates to each other and a step of cutting a predetermined position between the first conductor pattern and the outer peripheral edge,
One or a plurality of protrusions are formed at substantially the same height on the outer peripheral edge of at least one surface of the first insulating substrate, and the heating is performed on the protrusions during the heating. A heating means is mounted , and a wall surface body is formed between the protrusion on the surface of the first insulating substrate and the predetermined position so as to be connected substantially in parallel with the side surface of the first insulating substrate. A method for producing a printed wiring board.
請求項1に記載のプリント配線板の製造方法であって、
前記第1の基板を各別に複数製作し、
該第1の基板同士の間に、該第1の基板の他方の面と当接するように第1のプリプレグを載置し、
前記加熱手段を、前記突起体と当接させ、前記第1の基板及び前記第1のプリプレグ表面上の前記外方周縁部を加熱し、該外方周縁部の前記第1のプリプレグを溶融、硬化させ、前記第1の基板同士の前記外方周縁部を仮止めして第2の基板を形成することを特徴とするプリント配線板の製造方法。
It is a manufacturing method of the printed wiring board according to claim 1,
A plurality of the first substrates are manufactured separately,
Between the first substrates, the first prepreg is placed so as to be in contact with the other surface of the first substrate,
The heating means is brought into contact with the protrusion, the outer peripheral edge portion on the surface of the first substrate and the first prepreg is heated, and the first prepreg at the outer peripheral edge portion is melted, A method of manufacturing a printed wiring board, comprising: curing and temporarily fixing the outer peripheral edges of the first substrates to form a second substrate.
JP2002146488A 2002-05-21 2002-05-21 Method for manufacturing printed wiring board Expired - Lifetime JP3749201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002146488A JP3749201B2 (en) 2002-05-21 2002-05-21 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002146488A JP3749201B2 (en) 2002-05-21 2002-05-21 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2003338686A JP2003338686A (en) 2003-11-28
JP3749201B2 true JP3749201B2 (en) 2006-02-22

Family

ID=29705460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002146488A Expired - Lifetime JP3749201B2 (en) 2002-05-21 2002-05-21 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP3749201B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4297380B2 (en) * 2007-03-29 2009-07-15 古河電気工業株式会社 Printed wiring board
CN116528496A (en) * 2023-04-23 2023-08-01 江门全合精密电子有限公司 Manufacturing method of high-thickness copper circuit board solder mask

Also Published As

Publication number Publication date
JP2003338686A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
US9713267B2 (en) Method for manufacturing printed wiring board with conductive post and printed wiring board with conductive post
US20110315745A1 (en) Carrier for manufacturing substrate and method of manufacturing substrate using the same
JP2008124398A (en) Semiconductor package and its manufacturing method
TWI466610B (en) Package structure and method for manufacturing same
JP2007214230A (en) Printed wiring board
KR20140108164A (en) Wiring substrate and method of manufacturing the same
JP5490525B2 (en) Component built-in type multilayer printed wiring board and method for manufacturing the same
JP2017135357A (en) Printed wiring board and method of manufacturing the same
KR20030085211A (en) Method for manufacturing a flexible printed circuit board with double side
JP3749201B2 (en) Method for manufacturing printed wiring board
US6713682B1 (en) Through hole conduction structure of flexible multilayer circuit board and forming method thereof
JP5695205B2 (en) Manufacturing method of component-embedded substrate and component-embedded substrate using the same
JP4779668B2 (en) Manufacturing method of laminated substrate
JP2000133943A (en) Manufacture of multilayered board
JP5549853B2 (en) Multi-wire wiring board and manufacturing method thereof
JP2008235640A (en) Circuit board and circuit board manufacturing method
KR100651323B1 (en) Semiconductor package board having warpage resistant material layers
JPH10313177A (en) Manufacture of multilayered printed wiring board
JP2002076577A (en) Printed wiring board and manufacturing method therefor
JP3665036B2 (en) Printed wiring board manufacturing method and printed wiring board
WO2012164720A1 (en) Substrate with built-in component, and method for producing said substrate
JP4294536B2 (en) Multilayer flexible circuit board and manufacturing method thereof
JP2007311723A (en) Multi-layer circuit board
JPH0129078B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3749201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term