JPH10120491A - Formation of crystal film - Google Patents

Formation of crystal film

Info

Publication number
JPH10120491A
JPH10120491A JP27440296A JP27440296A JPH10120491A JP H10120491 A JPH10120491 A JP H10120491A JP 27440296 A JP27440296 A JP 27440296A JP 27440296 A JP27440296 A JP 27440296A JP H10120491 A JPH10120491 A JP H10120491A
Authority
JP
Japan
Prior art keywords
film
substrate
forming
amorphous phase
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27440296A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Hiroshi Tsutsui
博司 筒井
Shinichi Mizuguchi
信一 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27440296A priority Critical patent/JPH10120491A/en
Publication of JPH10120491A publication Critical patent/JPH10120491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a crystal film excellent in crystallinity, i.e., a polycrystal or single crystal thin film at a low substrate temperature of <=400 deg.C even on a substrate of noncrystalline insulating material. SOLUTION: This method for forming a crystal film comprises heating a quartz substrate 113 to 250-350 deg.C by a heater 114, introducing SiH4 gas and dilution gas H2 into a vacuum vessel 102, setting the inner pressure at 0.1-2.0Torr by adjusting a valve 116, generating plasma between an electrode 103 and grid electrode 118 and forming a 0.3-1nm thick noncrystalline silicon film on the substrate 113. Then, by introducing high-purity He gas from a cylinder 108 into the vacuum vessel, applying high frequency power under a pressure of 0.1-2.0Torr, generating plasma between the electrodes, changing the atomic arrangement of an a-Si:H film to what is much nearer to a crystal by contacting He atoms in a metastable state with the surface of the a-Si:H film and introducing high-purity SiF4 , high purity SiH4 gas and dilution gas H2 into the vacuum vessel, the objective crystalline Si film is grown on the a-Si:H film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体薄膜を構成
要素とする半導体装置やディスプレイデバイスなどに使
用される多結晶や単結晶の結晶膜を形成する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a polycrystalline or single-crystal film used for a semiconductor device or a display device using a semiconductor thin film as a component.

【0002】[0002]

【従来の技術】ガラスや石英などの絶縁物基板上に結晶
膜を形成する手法としては、先ず非晶質膜または多結晶
膜を形成した後、レーザや電子ビームを照射する、また
はストリップヒータで加熱して単結晶化する、あるいは
より大きな粒径(グレインサイズ)の多結晶に再結晶化
する方法が提案されている。
2. Description of the Related Art As a method of forming a crystalline film on an insulating substrate such as glass or quartz, an amorphous film or a polycrystalline film is first formed, and then a laser or an electron beam is irradiated, or a strip heater is used. A method has been proposed in which a single crystal is formed by heating, or recrystallized into a polycrystal having a larger particle size (grain size).

【0003】また、絶縁物基板上に直接結晶膜を成膜す
る手法としては、減圧下での化学的気相成長(減圧CV
D)で500℃以上の比較的高基板温度において多結晶
膜を気相成長させる方法が一般的である。さらに、プラ
ズマを使用した化学的気相成長(プラズマCVD)で
は、原料ガスを水素で高希釈することにより、200〜
400℃と、より低基板温度で微結晶膜が得られること
が報告されている(特開昭63−16616号公報)。
As a technique for forming a crystal film directly on an insulator substrate, chemical vapor deposition under reduced pressure (decompression CV)
In D), a method of vapor-phase growing a polycrystalline film at a relatively high substrate temperature of 500 ° C. or higher is generally used. Furthermore, in chemical vapor deposition (plasma CVD) using plasma, the raw material gas is highly diluted with hydrogen to form a 200-
It has been reported that a microcrystalline film can be obtained at a lower substrate temperature of 400 ° C. (JP-A-63-16616).

【0004】[0004]

【発明が解決しようとする課題】レーザや電子ビームを
照射する手法では、照射するエネルギを調節することに
より、再結晶化したい層のみを加熱することができ、下
地や周辺の膜やデバイス構造にあまり影響を与えること
なく、結晶膜を形成できる。しかし、基板の面積が大き
くなると、ビームの走査に時間がかかること、照射位置
を合わせる精度が悪くなるという問題がある。一方、ス
トリップヒータで加熱する手法では、大面積の基板でも
ヒータの長さを長くすれば結晶化の処理時間を増加させ
なくてもすむが、再結晶化したい層だけ加熱することは
できず、ほぼ基板全体を加熱してしまうため、下地やす
でに形成済みのデバイスに対して影響を与えてしまう問
題がある。
In the method of irradiating a laser or an electron beam, only the layer desired to be recrystallized can be heated by adjusting the irradiation energy, so that the underlying or peripheral film or device structure can be heated. The crystal film can be formed without much influence. However, when the area of the substrate is large, there is a problem that it takes a long time to scan the beam and the accuracy of adjusting the irradiation position is deteriorated. On the other hand, in the method of heating with the strip heater, even if the substrate has a large area, if the length of the heater is increased, the crystallization processing time does not need to be increased, but it is not possible to heat only the layer to be recrystallized. Since almost the entire substrate is heated, there is a problem that the underlying substrate and already formed devices are affected.

【0005】絶縁物基板上に直接結晶膜を成膜する手法
は、先に結晶膜を形成してデバイスに加工して行くた
め、上記のような高温の加熱工程が入らず、所望のデバ
イス特性を得易いという長所がある。しかし、減圧CV
Dでは、下地が絶縁物であるために、単結晶膜の形成は
不可能であり、基板温度も比較的低いため多結晶の粒径
も小さく良質な結晶膜は得られにくいという問題があ
る。また、プラズマCVD法では、大面積の基板上にも
成膜可能であるという特長はあるが、結晶基板上ではエ
ピタキシャル成長が可能であるが、絶縁物基板上ではや
はり基板温度が低いため、多結晶よりもさらに粒径の小
さい微結晶膜しか得られないという問題がある。
In the method of forming a crystal film directly on an insulator substrate, a crystal film is formed first and then processed into a device. There is an advantage that it is easy to obtain. However, decompression CV
In the case of D, there is a problem that a single crystal film cannot be formed because the base material is an insulator, and the substrate temperature is relatively low, so that it is difficult to obtain a high quality crystal film having a small polycrystal grain size. Further, the plasma CVD method has a feature that a film can be formed on a large-sized substrate, but epitaxial growth can be performed on a crystal substrate. There is a problem that only a microcrystalline film having a smaller particle size can be obtained.

【0006】以上のように従来の手法では、絶縁物基板
上に結晶性に優れた結晶膜、すなわち単結晶あるいは粒
径の大きい多結晶膜を大面積で、かつ400℃以下の低
温で形成することが不可能であった。
As described above, according to the conventional method, a crystalline film having excellent crystallinity, that is, a single crystal or a polycrystalline film having a large grain size is formed on an insulating substrate over a large area at a low temperature of 400 ° C. or less. It was impossible.

【0007】前記従来技術の課題を解決するため、本願
発明である結晶膜の形成方法は、絶縁物基板上に400
℃以下の低温で、結晶性に優れた結晶膜、すなわち単結
晶あるいは粒径の大きい多結晶膜を大面積に形成する方
法を提供することを目的とするものである。
In order to solve the problems of the prior art, a method of forming a crystal film according to the present invention employs a method of forming a crystal film on an insulating substrate.
It is an object of the present invention to provide a method for forming a crystalline film having excellent crystallinity, that is, a single crystal or a polycrystalline film having a large grain size over a large area at a low temperature of not more than ° C.

【0008】[0008]

【課題を解決するための手段】本願発明である結晶膜の
形成方法は、基板上に少なくとも非晶質相を含む膜を形
成した後、少なくとも準安定状態にある粒子を前記非晶
質相を含む膜に接触させて前記非晶質相を含む膜の原子
配列を変化させ、前記非晶質相を含む膜を構成する原子
を少なくとも含有する粒子を前記非晶質相に接触させて
前記非晶質相を含む膜上に結晶膜を形成することを特徴
とする結晶膜の形成方法。
According to a method of forming a crystalline film of the present invention, a film containing at least an amorphous phase is formed on a substrate, and then at least particles in a metastable state are removed from the amorphous phase. The film containing the amorphous phase to change the atomic arrangement of the film containing the amorphous phase, and bringing the particles containing at least atoms constituting the film containing the amorphous phase into contact with the amorphous phase to form the non-crystalline film. A method for forming a crystal film, comprising forming a crystal film on a film containing a crystalline phase.

【0009】また、上記結晶膜の形成方法において、非
晶質相を含む膜の厚みが1nm以上100nm以下であ
ることを特徴とする。
In the above method for forming a crystalline film, the thickness of the film containing an amorphous phase is 1 nm or more and 100 nm or less.

【0010】また、上記結晶膜の形成方法において、非
晶質相を含む膜を形成する前に、基板表面に水素ラジカ
ルを少なくとも接触させることを特徴とする。
In the above-mentioned method for forming a crystalline film, at least hydrogen radicals are brought into contact with the substrate surface before forming the film containing an amorphous phase.

【0011】また、上記結晶膜の形成方法において、準
安定状態にある粒子が希ガス原子であることを特徴とす
る。
In the above method for forming a crystal film, the particles in a metastable state are rare gas atoms.

【0012】また、上記結晶膜の形成方法において、結
晶膜を形成する前に、非晶質相を含む膜の形成と準安定
状態にある粒子の接触を複数回繰り返すことを特徴とす
る。
Further, in the above-mentioned method for forming a crystal film, before forming the crystal film, formation of a film containing an amorphous phase and contact of particles in a metastable state are repeated a plurality of times.

【0013】また、上記結晶膜の形成方法において、非
晶質相を含む膜の厚みが順に減少する、あるいは一定で
あることを特徴とする。
Further, in the above-mentioned method for forming a crystalline film, the thickness of the film containing the amorphous phase is sequentially reduced or constant.

【0014】また、上記結晶膜の形成方法において、結
晶膜を構成する原子がシリコンであることを特徴とす
る。
Further, in the above-described method for forming a crystal film, the atoms constituting the crystal film are silicon.

【0015】また、上記結晶膜の形成方法において、高
周波電源を接続したカソード電極と前記カソード電極と
離して基板が配置され、かつ前記カソード電極と前記基
板の間に接地または負にバイアスされたグリッド電極を
配置した真空容器内に、準安定準位を有する原子からな
る結晶化処理用ガスを導入し、前記カソード電極と基板
の間にグロー放電を発生させて前記結晶化処理用ガスよ
り生成した準安定粒子を前記基板表面に接触させて前記
非晶質膜の原子配列を変化させることを特徴とする。
In the above-mentioned method for forming a crystal film, a cathode electrode to which a high-frequency power source is connected, a substrate disposed apart from the cathode electrode, and a grid grounded or negatively biased between the cathode electrode and the substrate. A crystallization processing gas composed of atoms having a metastable level was introduced into the vacuum vessel in which the electrodes were disposed, and a glow discharge was generated between the cathode electrode and the substrate to generate the crystallization processing gas. Metastable particles are brought into contact with the substrate surface to change the atomic arrangement of the amorphous film.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1から図3を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0017】(実施の形態1)図1は本発明に係る結晶
膜の形成方法の一実施例を示す形成装置の概略図であ
る。電源101は、高周波(1kHz〜1GHz)また
はマイクロ波(1GHz以上)電源であり、真空容器1
02内の電極103にマッチング回路104を介して接
続されている。
(Embodiment 1) FIG. 1 is a schematic view of a forming apparatus showing one embodiment of a method for forming a crystal film according to the present invention. The power supply 101 is a high-frequency (1 kHz to 1 GHz) or microwave (1 GHz or more) power supply.
02 is connected to the electrode 103 in the circuit 102 via a matching circuit 104.

【0018】電極103にはシャワー状に多数の孔が設
けてあり、原料ガスボンベ105,106、希釈用ガス
ボンベ107、結晶化処理用ガスボンベ108、不純物
ガスボンベ119,120からこれらのガスがマスフロ
ーコントローラー(MFC)109〜112,121,
122によって所定の流量に調節されてこれらの孔から
真空容器102内に導入される(図1では6本のガスボ
ンベ及びガス系統しか示していないが、これらは形成す
る膜の種類に応じて増減する)。
The electrode 103 is provided with a large number of holes in the form of a shower. ) 109-112, 121,
The flow rate is adjusted to a predetermined value by 122 and introduced into the vacuum vessel 102 from these holes (only six gas cylinders and gas systems are shown in FIG. 1, but these increase or decrease according to the type of film to be formed). ).

【0019】結晶層を形成するための基板113は、ヒ
ーター114上に配置され所定の温度に加熱される。な
お、図1中、115は真空ポンプ、116は排気用バル
ブ、117は水冷装置である。水冷装置117は結晶膜
形成後の基板温度の冷却速度を速めるためのもので、必
ずしも必要とするものでない。また、真空容器102内
には基板113へ入射するイオン数を調節するための外
部電源を接続したメッシュ状のグリッド電極118を配
置している。
A substrate 113 for forming a crystal layer is placed on a heater 114 and heated to a predetermined temperature. In FIG. 1, reference numeral 115 denotes a vacuum pump, 116 denotes an exhaust valve, and 117 denotes a water cooling device. The water cooling device 117 is for increasing the cooling rate of the substrate temperature after the formation of the crystal film, and is not always necessary. A mesh-shaped grid electrode 118 connected to an external power supply for adjusting the number of ions incident on the substrate 113 is arranged in the vacuum vessel 102.

【0020】この装置を使ってシリコン結晶膜を以下の
手順で形成した。先ず、石英基板113をヒータ114
上にセットし、真空容器102内を高真空に排気し、基
板113を250〜300℃に加熱した。尚、基板温度
を400℃以下にして結晶膜を形成することが望まし
い。
Using this apparatus, a silicon crystal film was formed in the following procedure. First, the quartz substrate 113 is
The inside of the vacuum vessel 102 was evacuated to a high vacuum, and the substrate 113 was heated to 250 to 300 ° C. Note that it is desirable to form a crystal film at a substrate temperature of 400 ° C. or lower.

【0021】次に、高純度のSiH4ガスをボンベ105
よりMFC109を通して、希釈用ガスのH2をボンベ
107よってMFC111を通して真空容器102内に
導入し、バルブ116によって所定の圧力(0.1〜
2.0Torr)になるように調整した。
Next, high purity SiH 4 gas is supplied to the cylinder 105.
Through the MFC 109, H 2 as a dilution gas is introduced into the vacuum vessel 102 through the MFC 111 by the cylinder 107, and the predetermined pressure (0.1 to
2.0 Torr).

【0022】電極103に13.56MHzの高周波電
力を電極103の単位面積当り0.01〜0.2W/c
2で印加し、電極103とグリッド電極118間にプ
ラズマを発生させ、図2(a)に示すように基板113
上に非晶質のシリコン(以下、a−Si:Hと略記す
る)膜201を0.3〜1nm形成した。この時、グリ
ッド電極118に印加する電圧は−300〜0Vとしa
−Si:H膜201にイオンが入射しないようにすると
ともに、流量比SiH4/H2は5/1〜1/100とし
た。
A high frequency power of 13.56 MHz is applied to the electrode 103 in a range of 0.01 to 0.2 W / c per unit area of the electrode 103.
m 2 to generate plasma between the electrode 103 and the grid electrode 118, and as shown in FIG.
An amorphous silicon (hereinafter abbreviated as a-Si: H) film 201 was formed thereon in a thickness of 0.3 to 1 nm. At this time, the voltage applied to the grid electrode 118 is -300 to 0 V and a
-The ions were prevented from being incident on the Si: H film 201, and the flow rate ratio SiH 4 / H 2 was 5/1 to 1/100.

【0023】次に、これらのガスの導入を止めて高純度
Heガスをボンベ108よりMFC112を通して真空
容器102内に導入し、上記と同様の圧力(0.1〜
2.0Torr)で0.05〜1W/cm2の密度で高周
波電力を印加し、電極103とグリッド電極118間に
プラズマを10秒〜10分間発生させ、a−Si:H膜
201表面に準安定状態にあるHe原子を接触させてa
−Si:H膜201の自由表面側の原子配列をより結晶
に近いものに変化させた。
Next, the introduction of these gases is stopped, and high-purity He gas is introduced from the cylinder 108 through the MFC 112 into the vacuum vessel 102, and the same pressure (0.1 to
High-frequency power is applied at a density of 0.05 to 1 W / cm 2 at 2.0 Torr, and plasma is generated between the electrode 103 and the grid electrode 118 for 10 seconds to 10 minutes, and a plasma is generated on the surface of the a-Si: H film 201. Contact a stable He atom with a
The atomic arrangement on the free surface side of the -Si: H film 201 was changed to one closer to a crystal.

【0024】次に、Heガスの導入を止めて高純度Si
4をボンベ106よりMFC110を通して、高純度
のSiH4ガスをボンベ105よりMFC109を通し
て、希釈用ガスのH2をボンベ107よりMFC111
を通して真空容器102内に導入し、上記と同様の圧力
(0.1〜2.0Torr)で0.01〜0.2W/cm2
の密度で高周波電力を印加し、電極103とグリッド電
極118間にプラズマを発生させ、図2(b)に示すよ
うに結晶性Si膜202を100nm〜10μm成長さ
せた。この時流量比SiF4/SiH4は1/10〜10
/1、SiH4/H2は1/10〜1/100とした。
Next, the introduction of He gas is stopped and the high purity Si gas is removed.
F 4 passes through the MFC 110 from the cylinder 106, high-purity SiH 4 gas passes through the MFC 109 from the cylinder 105, and H 2 as a dilution gas flows from the cylinder 107 into the MFC 111.
And introduced into the vacuum vessel 102 at a pressure similar to the above (0.1 to 2.0 Torr) and 0.01 to 0.2 W / cm 2.
A high-frequency power was applied at a density of .mu.m to generate plasma between the electrode 103 and the grid electrode 118, and a crystalline Si film 202 was grown to a thickness of 100 nm to 10 .mu.m as shown in FIG. At this time, the flow ratio SiF 4 / SiH 4 is 1/10 to 10
/ 1 and SiH 4 / H 2 were 1/10 to 1/100.

【0025】この結晶性Si膜202をラマン分光およ
び透過電子顕微鏡(TEM)にて評価したところ、ラマ
ン分光では520cmー1付近に結晶Siに起因するピー
クが観測され、結晶の粒径は少なくとも20μm以上
で、単結晶に近いものも得られていることが分かった。
When this crystalline Si film 202 was evaluated by Raman spectroscopy and transmission electron microscopy (TEM), a peak due to crystalline Si was observed near 520 cm -1 in Raman spectroscopy, and the crystal grain size was at least 20 μm. From the above, it was found that a material close to a single crystal was obtained.

【0026】比較のために、Heプラズマを発生させず
に、a−Si:H層201表面に準安定状態のHe原子
を一切接触させなかった場合も行ってみたが、a−S
i:H層201上に成長した膜を上記と同様に評価して
みたところ、ラマン分光では520cmー1付近のピーク
は見られず、非晶質であることがわかった。
For comparison, a test was also performed in the case where the surface of the a-Si: H layer 201 was not brought into contact with any metastable He atoms without generating He plasma.
When the film grown on the i: H layer 201 was evaluated in the same manner as above, no peak near 520 cm -1 was observed in Raman spectroscopy, indicating that the film was amorphous.

【0027】以上の結果から、準安定状態のHe原子
(励起準位231,210)を非晶質膜201の表面に
接触させることにより、これらの原子のもつエネルギ
(19.82eV,20.61eV)が膜201表面に与えられ、表面
が実効的に加熱されるため原子配列が非晶質から結晶に
より近づくためと思われる。また、準安定He原子はグ
リッド電極118と電極103の間の発光しているプラ
ズマ領域で生成されるが、寿命が231で6×10
ー5秒,210で2×10ー2秒と長いため、拡散によって
十分膜201表面に到達できる。
From the above results, by bringing the He atoms in the metastable state (excitation levels 2 3 S 1 , 2 1 S 0 ) into contact with the surface of the amorphous film 201, the energy (19.82 eV, 20.61 eV) is applied to the surface of the film 201, and the surface is effectively heated. Moreover, metastable He atoms are generated in the plasma region that emits light between the grid electrode 118 and the electrode 103, the life is 2 3 S 1 at 6 × 10
Since -5 seconds and 2 1 S 0 are as long as 2 × 10 -2 seconds, they can sufficiently reach the surface of the film 201 by diffusion.

【0028】なお、グリッド電極118と基板との距離
は、準安定原子の種類によって異なり、Heの場合は5
mm以上50mm以下にするのが望ましい。また、膜表
面を加熱する方法として、適度のエネルギで加速したイ
オンを入射してもよいが、イオンの場合はその運動エネ
ルギによって原子をはじき飛ばしたり、位置をずらした
りして原子配列を乱す問題がある。従って、せっかく結
晶に近い原子配列を構成しても、イオンの入射の際に原
子配列を乱してしまうため、結局原子配列は結晶構造に
あまり近づかないという結果になってしまう。一方、準
安定原子の場合は拡散によって膜201表面に入射する
ため、大きな運動エネルギを持たず、原子配列を乱すこ
とは無い。そのため、結晶構造に近い原子配列ができ易
い。
The distance between the grid electrode 118 and the substrate differs depending on the type of metastable atom.
It is desirable that the thickness be not less than mm and not more than 50 mm. As a method of heating the film surface, ions accelerated with an appropriate energy may be incident.However, in the case of ions, there is a problem that the kinetic energy causes the atoms to be repelled or displaced to disturb the atomic arrangement. is there. Therefore, even if an atomic arrangement close to a crystal is formed, the atomic arrangement is disturbed when ions are incident, and as a result, the atomic arrangement does not approach the crystal structure very much. On the other hand, in the case of metastable atoms, since they enter the surface of the film 201 by diffusion, they do not have large kinetic energy and do not disturb the atomic arrangement. Therefore, it is easy to form an atomic arrangement close to the crystal structure.

【0029】また、プラズマ領域で発生する準安定原子
の密度は、良質の結晶構造を得るために少なくとも10
10cmー3以上であることが望ましく、好ましくは1012
cm ー3程度である。
Also, metastable atoms generated in the plasma region
Of at least 10 to obtain a good crystal structure.
Tencmー 3Or more, preferably 1012
cm ー 3It is about.

【0030】基板113は、石英基板のほかに、ガラス
基板、サファイア基板、SiOx,SiNx,SiCx
GeOx,GeNx,GeCx,AlOx,AlNx,B
x,BNxなどの無機絶縁物を形成したSiやGaAs
ウェーハや導電性基板などの絶縁性基板でも、金属基板
やガラス基板上にITOやSnO2のZnOなどの透明
導電膜を形成した導電性基板でも上記と同様の効果が得
られる。基板温度は、150℃以上400℃以下で有れ
ば、上記と同様の結果を得ることができた。
The substrate 113 is a quartz substrate, a glass substrate, a sapphire substrate, SiO x , SiN x , SiC x ,
GeO x , GeN x , GeC x , AlO x , AlN x , B
Si or GaAs on which inorganic insulators such as C x and BN x are formed
The same effects as described above can be obtained by using an insulating substrate such as a wafer or a conductive substrate, or a conductive substrate having a transparent conductive film such as ITO or SnO 2 ZnO formed on a metal substrate or a glass substrate. When the substrate temperature was 150 ° C. or more and 400 ° C. or less, the same result as described above could be obtained.

【0031】結晶膜202の伝導性を制御する場合は、
n型伝導を付与するときはPH3,PF3,PF5,PC
2F,PCl23,PCl3,PBr3,AsH3,As
3,AsF5,AsCl3,AsBr3,SbH3,Sb
3,SbCl3,H2Se等の不純物ガスをボンベ11
9より成膜時に供給すればよく、p型伝導を付与すると
きはB26,BF3,BCl3,BBr3,(CH33
l,(C253Al,(iC493Al,(CH33
In,(CH33Ga,(C253In,(C 253
Ga等のガスをボンベ120より供給すればよい。
When controlling the conductivity of the crystal film 202,
PH for imparting n-type conductionThree, PFThree, PFFive, PC
lTwoF, PClTwoFThree, PClThree, PBrThree, AsHThree, As
FThree, AsFFive, AsClThree, AsBrThree, SbHThree, Sb
FThree, SbClThree, HTwoImpurity gas such as Se
It can be supplied at the time of film formation from step 9.
Kiha BTwoH6, BFThree, BClThree, BBrThree, (CHThree)ThreeA
l, (CTwoHFive)ThreeAl, (iCFourH9)ThreeAl, (CHThree)Three
In, (CHThree)ThreeGa, (CTwoHFive)ThreeIn, (C TwoHFive)Three
A gas such as Ga may be supplied from the cylinder 120.

【0032】使用できる原料ガスとしては、上記のSi
4やSiF4のほかにSi26,Si38,Si
410,SiH4ーnn,SiH4ーnCln(但し、n=1,2,
3),Si2 6,SiCl4などのシリコン化合物ガスが
挙げられる。
The source gas that can be used is the above-mentioned Si.
HFourAnd SiFFourBesides SiTwoH6, SiThreeH8, Si
FourHTen, SiH4-nFn, SiH4-nCln(However, n = 1,2,
3), SiTwoF 6, SiClFourSuch as silicon compound gas
No.

【0033】上記の例はシリコンの結晶膜を形成する場
合であるが、ダイヤモンド、ゲルマニウム、シリコンカ
ーバイド、シリコンゲルマニウムでも原料ガスを変える
だけで同様に結晶膜を得ることができる。
In the above example, a silicon crystal film is formed. However, a crystal film can be obtained in the same manner by changing the raw material gas also in the case of diamond, germanium, silicon carbide, and silicon germanium.

【0034】ダイヤモンドの場合は、CH4,C26
38,C410,C24,C36,C48,C22
34,C46,C66などの炭化水素ガス、CH
3F,CH3Cl,CH3Br,CH3I,C25Cl,C
25Br,C25Iなどのハロゲン化アルキル、C35
F,C35Cl,C35Brなどのハロゲン化アリル、
CClF3,CF4,CHF3,C26,C38などのフ
ロンガス、C66-mm(m=1〜6)の弗化ベンゼン
等の炭素化合物ガスを原料ガスとして使用すればよく、
ゲルマニウムの場合は、GeH4,Ge26,Ge
38,GeF4,GeCl4,GeBr4,GeI4,Ge
2,GeCl2,GeBr2,GeI2,GeHF3,G
eH22,GeH3F,GeHCl3,GeH2Cl2,G
eH3Cl,GeHBr3,GeH2Br2,GeH3
r,GeHI3,GeH22,GeH3Iなどのゲルマニ
ウム化合物ガスが原料ガスとして使用できる。
In the case of diamond, CH 4 , C 2 H 6 ,
C 3 H 8, C 4 H 10, C 2 H 4, C 3 H 6, C 4 H 8, C 2 H 2,
C 3 H 4, hydrocarbon gas such as C 4 H 6, C 6 H 6, CH
3 F, CH 3 Cl, CH 3 Br, CH 3 I, C 2 H 5 Cl, C
2 H 5 Br, alkyl halides, such as C 2 H 5 I, C 3 H 5
Allyl halides such as F, C 3 H 5 Cl, C 3 H 5 Br,
Source gases include CFC 3 , CF 4 , CHF 3 , C 2 F 6 , C 3 F 8 and other fluorocarbon gases, and C 6 H 6 -m F m (m = 1 to 6) such as carbon compound gases such as fluorinated benzene. Just use
In the case of germanium, GeH 4 , Ge 2 H 6 , Ge
3 H 8 , GeF 4 , GeCl 4 , GeBr 4 , GeI 4 , Ge
F 2 , GeCl 2 , GeBr 2 , GeI 2 , GeHF 3 , G
eH 2 F 2 , GeH 3 F, GeHCl 3 , GeH 2 Cl 2 , G
eH 3 Cl, GeHBr 3 , GeH 2 Br 2 , GeH 3 B
Germanium compound gas such as r, GeHI 3 , GeH 2 I 2 , GeH 3 I can be used as a source gas.

【0035】シリコンカーバイドの場合は、上記のシリ
コン化合物ガスおよび炭素化合物ガスを原料ガスとして
使用すればよく、シリコンゲルマニウムの場合は上記の
シリコン化合物ガス及びゲルマニウム化合物ガスを原料
ガスとして使用すればよい。
In the case of silicon carbide, the above-mentioned silicon compound gas and carbon compound gas may be used as source gases, and in the case of silicon germanium, the above-mentioned silicon compound gas and germanium compound gas may be used as source gases.

【0036】GaAs,GaPやGaNなどの化合物半
導体でも、同様に原料ガスを変えることで上記と同様の
効果を得ることができる。
In the case of compound semiconductors such as GaAs, GaP and GaN, the same effects as described above can be obtained by changing the source gas in the same manner.

【0037】結晶化処理用ガスとして使用できるガス
は、準安定状態を持っているガスであればよく、例えば
上記のHeのほかに、Ne,Ar,Kr,Xe,H2
2,が挙げられる。また、これらのガスを混合して使
用してもよい。希釈ガスもこれらのガスが使用できる。
The gas that can be used as the crystallization treatment gas may be any gas having a metastable state. For example, in addition to the above He, Ne, Ar, Kr, Xe, H 2 ,
N 2 . Further, these gases may be mixed and used. These gases can also be used as a diluting gas.

【0038】(実施の形態2)実施の形態1に記載した
結晶膜の形成において、石英基板113上にa−Si:
H201を形成する前に、H2ガスのみを真空容器10
2内に導入し、0.1〜1.0Torrの圧力下で高周波
電力を0.01〜0.1W/cm2の電力密度で電極10
3に印加し、プラズマを発生させて石英基板113表面
に水素ラジカルを接触させて清浄化を行った。この場
合、a−Si:H層201上に形成した結晶性Si膜2
02は、結晶粒径が50μm以上と大きくなることを確
認した。
(Embodiment 2) In the formation of the crystal film described in Embodiment 1, a-Si:
Before forming H201, only H 2 gas is supplied to the vacuum vessel 10
2 and a high frequency power of 0.01 to 0.1 W / cm 2 under a pressure of 0.1 to 1.0 Torr and a power density of 0.01 to 0.1 W / cm 2.
3 was applied to generate plasma, and hydrogen radicals were brought into contact with the surface of the quartz substrate 113 for cleaning. In this case, the crystalline Si film 2 formed on the a-Si: H layer 201
No. 02 confirmed that the crystal grain size was as large as 50 μm or more.

【0039】(実施の形態3)実施の形態1に記載した
結晶膜の形成において、石英基板113上に形成するa
−Si:H層201の膜厚を0.3nmから一連に増加
させた場合について調べてみた。その結果、a−Si:
H層201の膜厚が10nmを越えるとHeプラズマに
よる結晶化処理の後にも、a−Si:H層201の石英
基板113側に非晶質領域が残ることが判明した。
(Embodiment 3) In the formation of the crystal film described in Embodiment 1, a
The case where the film thickness of the -Si: H layer 201 was sequentially increased from 0.3 nm was examined. As a result, a-Si:
When the thickness of the H layer 201 exceeds 10 nm, it has been found that an amorphous region remains on the quartz substrate 113 side of the a-Si: H layer 201 even after the crystallization treatment by He plasma.

【0040】(実施の形態4)実施の形態1に記載した
結晶膜の形成において、石英基板113上に形成するa
−Si:H層201の膜厚を概ね10nmとし、Heプ
ラズマによる結晶化処理を行った後、図2(c)に示す
ように再度a−Si:H層203を約5nm積層しHe
プラズマによる結晶化処理を行った。この場合、a−S
i:H層201上に形成した結晶性Si膜202は、結
晶粒径が50μm以上と大きくなることを確認した。
(Embodiment 4) In the formation of the crystal film described in Embodiment 1, a
After setting the film thickness of the -Si: H layer 201 to approximately 10 nm and performing crystallization treatment using He plasma, as shown in FIG.
A crystallization treatment by plasma was performed. In this case, a-S
It was confirmed that the crystalline Si film 202 formed on the i: H layer 201 had a large crystal grain size of 50 μm or more.

【0041】また、積層するa−Si:H層の数を増や
すと、結晶性Si膜202の結晶粒径は大きくなること
も確認した。さらに、積層するa−Si:Hの膜厚を順
次減少させて行くことで、結晶粒径の増加が顕著になる
ことも確認した。但し、第1層目のa−Si:H層20
1膜厚が2nm以下の場合は、順次積層するa−Si:
H層の膜厚を減少させても効果は顕著ではなく、積層す
るa−Si:H層の膜厚は一定であってもよい。
It has also been confirmed that the crystal grain size of the crystalline Si film 202 increases as the number of a-Si: H layers stacked increases. Furthermore, it was also confirmed that the crystal grain size was significantly increased by sequentially reducing the film thickness of the stacked a-Si: H. However, the first layer a-Si: H layer 20
When the thickness of one film is 2 nm or less, a-Si is sequentially laminated.
The effect is not remarkable even if the thickness of the H layer is reduced, and the thickness of the laminated a-Si: H layer may be constant.

【0042】(実施の形態5)図3に断面図で示した液
晶表示装置は、アクティブマトリックス型(以下、AM
LCと称する)のものである。AMLCは、液晶層を駆
動するための薄膜トランジスタ(以下、TFTと称す
る)あるいはダイオード、金属−絶縁体−金属(MI
M)素子などの能動素子を各画素に配置したものであ
る。但し、図3ではTFTを使用した例を示す。この場
合は、多結晶半導体(例えば、多結晶シリコンまたは単
結晶シリコン)を半導体層301として用いたTFTを
透明絶縁性基板(例えば、ホウ珪酸ガラス基板または石
英基板など)302上にマトリックス状に形成したもの
である。
(Embodiment 5) The liquid crystal display device shown in the sectional view of FIG.
LC). AMLC is a thin film transistor (hereinafter, referred to as TFT) or a diode for driving a liquid crystal layer, or a metal-insulator-metal (MI).
M) An active element such as an element is arranged in each pixel. However, FIG. 3 shows an example using a TFT. In this case, a TFT using a polycrystalline semiconductor (for example, polycrystalline silicon or single crystal silicon) as the semiconductor layer 301 is formed in a matrix on a transparent insulating substrate (for example, a borosilicate glass substrate or a quartz substrate) 302. It was done.

【0043】TFTの形成はまず、透明絶縁性基板30
2上にゲート電極303を例えばCrまたはAl+Z
r、Al+Ta,Al−WなどのAl合金またはAl/
Cr積層で形成し、その後、SiNxゲート絶縁膜30
4をプラズマCVD法で形成した。次に、a−Si:H
層を1nm積層し、Heプラズマ中で準安定He原子と
の接触により該a−Si:H層を結晶化処理し、さらに
SiH4とH2の混合ガスを用いたプラズマCVD法で1
00nm厚の半導体層301を形成した。
First, the TFT is formed by setting the transparent insulating substrate 30
A gate electrode 303, for example, Cr or Al + Z
r, Al alloy such as Al + Ta, Al-W or Al /
Cr layer, and then the SiN x gate insulating film 30
4 was formed by a plasma CVD method. Next, a-Si: H
The a-Si: H layer is crystallized by contacting with metastable He atoms in He plasma, and the layer is further subjected to plasma CVD using a mixed gas of SiH 4 and H 2.
A semiconductor layer 301 having a thickness of 00 nm was formed.

【0044】さらに、SiNx半導体保護層305をプラ
ズマCVD法で形成した後、半導体層301および半導
体保護層305をパターニングした。次にオーミック性
を改善するためにプラズマCVD法においてSiH4とH
2とPH3の混合ガスを用いて上記の半導体層301と同
様にn型半導体層306を形成した後、ソース電極30
7・ドレイン電極308(例えばAlやMo、Mo/A
l/Mo多層構造からなる)を一括形成し、最後にIT
O透明電極309を形成し、TFTを作製した。
Further, after forming the SiN x semiconductor protective layer 305 by the plasma CVD method, the semiconductor layer 301 and the semiconductor protective layer 305 were patterned. Next, in order to improve the ohmic property, SiH 4 and H are used in the plasma CVD method.
After forming an n-type semiconductor layer 306 in the same manner as the semiconductor layer 301 using a mixed gas of 2 and PH 3 , the source electrode 30
7. Drain electrode 308 (for example, Al, Mo, Mo / A
l / Mo multi-layer structure), and finally IT
An O transparent electrode 309 was formed, and a TFT was manufactured.

【0045】このTFTを評価したところ、半導体層3
01の電子の移動度は300〜500cm2/V・sであ
った。これは、レーザアニールで得られる多結晶Siを
半導体層としたTFTよりは3〜5倍向上していた。
When this TFT was evaluated, the semiconductor layer 3
The electron mobility of 01 was 300 to 500 cm 2 / V · s. This was 3 to 5 times higher than a TFT using polycrystalline Si as a semiconductor layer obtained by laser annealing.

【0046】その後、有機ポリマー(例えばポリイミド
またはポリビニルアルコール)からなる配向膜310を
0.01〜0.5μm厚で塗布、ラビングによる配向処
理をした。もう一方の透明絶縁性基板311には対向電
極312と遮光用のブラックマトリックス313を設
け、同様に配向膜314を塗布、配向処理を行うがこの
場合のラビングは先の基板とは約90゜ずれた方向に行
った。続いて、図3のように両基板の間にねじれネマテ
ィック液晶315を封入し、基板の前後に偏光板31
6,317を配置し、液晶表示装置を作製した。
Thereafter, an alignment film 310 made of an organic polymer (for example, polyimide or polyvinyl alcohol) was applied to a thickness of 0.01 to 0.5 μm and subjected to an alignment treatment by rubbing. The other transparent insulating substrate 311 is provided with a counter electrode 312 and a black matrix 313 for shielding light, and is similarly coated with an alignment film 314 and subjected to alignment processing. In this case, rubbing is shifted by about 90 ° from the previous substrate. I went in the direction. Subsequently, a twisted nematic liquid crystal 315 is sealed between the two substrates as shown in FIG.
6,317 were arranged to produce a liquid crystal display device.

【0047】この液晶表示装置の表示画像を評価したと
ころ、コントラストが150:1でXGAクラスの高精
細画像も従来のように分割駆動せずに動作できた。
When the display image of this liquid crystal display device was evaluated, it was possible to operate an XGA class high-definition image with a contrast of 150: 1 without divided driving as in the prior art.

【0048】[0048]

【発明の効果】以上説明したように、本発明に係る結晶
膜の形成方法によれば、結晶粒径が大きく結晶性の優れ
た結晶膜を、結晶でない絶縁物基板上でも低基板温度で
形成でき、安価で高速動作可能な半導体装置や液晶表示
装置が得られる。
As described above, according to the method for forming a crystal film according to the present invention, a crystal film having a large crystal grain size and excellent crystallinity can be formed on a non-crystal insulator substrate at a low substrate temperature. As a result, a semiconductor device or a liquid crystal display device which is inexpensive and can operate at high speed can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る結晶膜の形成方法において使用し
た製造装置の一実施例を示す概略図
FIG. 1 is a schematic view showing one embodiment of a manufacturing apparatus used in a method for forming a crystal film according to the present invention.

【図2】本発明に係る結晶膜の形成方法において作製し
た膜の一実施例を示す断面図
FIG. 2 is a cross-sectional view showing one embodiment of a film formed by the method for forming a crystal film according to the present invention.

【図3】本発明に係る結晶膜の形成方法において作製し
た液晶表示装置の一実施例を示す断面図
FIG. 3 is a cross-sectional view showing one embodiment of a liquid crystal display device manufactured by the method for forming a crystal film according to the present invention.

【符号の説明】[Explanation of symbols]

101 電源 102 真空容器 103 電極 104 マッチング回路 105,106 原料ガスボンベ 107 希釈用ガスボンベ 108 結晶化処理用ガスボンベ 109〜112 マスフローコントローラー(MFC) 113 基板 114 ヒーター 115 真空ポンプ 116 排気用バルブ 117 水冷装置 118 グリッド電極 119,120 不純物ガスボンベ 121,122 マスフローコントローラー 201,203 非晶質シリコン層 202 結晶性Si層 Reference Signs List 101 Power supply 102 Vacuum container 103 Electrode 104 Matching circuit 105, 106 Raw material gas cylinder 107 Dilution gas cylinder 108 Crystallization gas cylinder 109-112 Mass flow controller (MFC) 113 Substrate 114 Heater 115 Vacuum pump 116 Exhaust valve 117 Water cooling device 118 Grid electrode 119, 120 Impurity gas cylinder 121, 122 Mass flow controller 201, 203 Amorphous silicon layer 202 Crystalline Si layer

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/336 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/336

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上に少なくとも非晶質相を含む膜を形
成した後、少なくとも準安定状態にある粒子を前記非晶
質相を含む膜に接触させて前記非晶質相を含む膜の原子
配列を変化させ、前記非晶質相を含む膜を構成する原子
を少なくとも含有する粒子を前記非晶質相に接触させて
前記非晶質相を含む膜上に結晶膜を形成することを特徴
とする結晶膜の形成方法。
After forming a film containing at least an amorphous phase on a substrate, at least particles in a metastable state are brought into contact with the film containing the amorphous phase to form a film containing the amorphous phase. By changing the atomic arrangement, contacting particles containing at least atoms constituting the film containing the amorphous phase with the amorphous phase to form a crystalline film on the film containing the amorphous phase. Characteristic method of forming a crystalline film.
【請求項2】非晶質相を含む膜の厚みが0.3nm以上
10nm以下であることを特徴とする請求項1記載の結
晶膜の形成方法。
2. The method according to claim 1, wherein the thickness of the film containing the amorphous phase is 0.3 nm or more and 10 nm or less.
【請求項3】非晶質相を含む膜を形成する前に、基板表
面に水素ラジカルを少なくとも接触させることを特徴と
する請求項1記載の結晶膜の形成方法。
3. The method according to claim 1, wherein at least hydrogen radicals are brought into contact with the surface of the substrate before forming the film containing the amorphous phase.
【請求項4】準安定状態にある粒子が希ガス原子である
ことを特徴とする請求項1記載の結晶膜の形成方法。
4. The method according to claim 1, wherein the particles in the metastable state are rare gas atoms.
【請求項5】結晶膜を形成する前に、非晶質相を含む膜
の形成と準安定状態にある粒子の接触を複数回繰り返す
ことを特徴とする請求項1記載の結晶膜の形成方法。
5. The method according to claim 1, wherein the step of forming the film containing the amorphous phase and the contact of the particles in the metastable state are repeated a plurality of times before forming the crystal film. .
【請求項6】非晶質相を含む膜の厚みが順に減少する、
あるいは一定であることを特徴とする請求項5記載の結
晶膜の形成方法。
6. The thickness of a film containing an amorphous phase decreases in order.
6. The method according to claim 5, wherein the crystal film is constant.
【請求項7】結晶膜を構成する原子がシリコンであるこ
とを特徴とする請求項1記載の結晶膜の形成方法。
7. The method according to claim 1, wherein atoms constituting the crystal film are silicon.
【請求項8】高周波電源を接続したカソード電極と前記
カソード電極と離して基板が配置され、かつ前記カソー
ド電極と前記基板の間に接地または負にバイアスされた
グリッド電極を配置した真空容器内に、準安定準位を有
する原子からなる結晶化処理用ガスを導入し、前記カソ
ード電極と基板の間にグロー放電を発生させて前記結晶
化処理用ガスより生成した準安定粒子を前記基板表面に
接触させて前記非晶質膜の原子配列を変化させることを
特徴とする請求項1記載の結晶膜の形成方法。
8. A vacuum vessel having a cathode electrode to which a high-frequency power source is connected and a substrate separated from the cathode electrode, and a grounded or negatively biased grid electrode disposed between the cathode electrode and the substrate. Introducing a crystallization processing gas composed of atoms having metastable levels, generating glow discharge between the cathode electrode and the substrate to generate metastable particles generated from the crystallization processing gas on the substrate surface. 2. The method for forming a crystalline film according to claim 1, wherein the atomic arrangement of the amorphous film is changed by contact.
JP27440296A 1996-10-17 1996-10-17 Formation of crystal film Pending JPH10120491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27440296A JPH10120491A (en) 1996-10-17 1996-10-17 Formation of crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27440296A JPH10120491A (en) 1996-10-17 1996-10-17 Formation of crystal film

Publications (1)

Publication Number Publication Date
JPH10120491A true JPH10120491A (en) 1998-05-12

Family

ID=17541176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27440296A Pending JPH10120491A (en) 1996-10-17 1996-10-17 Formation of crystal film

Country Status (1)

Country Link
JP (1) JPH10120491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064854A1 (en) * 2001-02-15 2002-08-22 Kaneka Corporation Method of forming silicon thin film and silicon thin film solar cell
JP2009158950A (en) * 2007-12-03 2009-07-16 Semiconductor Energy Lab Co Ltd Method for forming crystalline semiconductor film, method for manufacturing thin film transistor and method for manufacturing display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064854A1 (en) * 2001-02-15 2002-08-22 Kaneka Corporation Method of forming silicon thin film and silicon thin film solar cell
US6849560B2 (en) 2001-02-15 2005-02-01 Kaneka Corporation Method of depositing silicon thin film and silicon thin film solar cell
AU2002232197B2 (en) * 2001-02-15 2005-12-15 Kaneka Corporation Method of forming silicon thin film and silicon thin film solar cell
AU2002232197C1 (en) * 2001-02-15 2006-11-09 Kaneka Corporation Method of forming silicon thin film and silicon thin film solar cell
JP2009158950A (en) * 2007-12-03 2009-07-16 Semiconductor Energy Lab Co Ltd Method for forming crystalline semiconductor film, method for manufacturing thin film transistor and method for manufacturing display device
US8591650B2 (en) 2007-12-03 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for forming crystalline semiconductor film, method for manufacturing thin film transistor, and method for manufacturing display device
TWI489525B (en) * 2007-12-03 2015-06-21 Semiconductor Energy Lab Method for forming crystalline semiconductor film, method for manufacturing thin film transistor, and method for manufacturing display device

Similar Documents

Publication Publication Date Title
KR100469134B1 (en) Inductive plasma chemical vapor deposition method and amorphous silicon thin film transistor produced using the same
JP2880322B2 (en) Method of forming deposited film
US6846728B2 (en) Semiconductor thin film, semiconductor device employing the same, methods for manufacturing the same and device for manufacturing a semiconductor thin film
EP0301463B1 (en) Thin film silicon semiconductor device and process for producing it
US7521341B2 (en) Method of direct deposition of polycrystalline silicon
US5177578A (en) Polycrystalline silicon thin film and transistor using the same
JPH06326024A (en) Manufacture of semiconductor substrate, and method of depositing amorphous film
JP3960792B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon thin film
JPH10120491A (en) Formation of crystal film
JPH10265212A (en) Production of microcrystal and polycrystal silicon thin films
JPH11150283A (en) Manufacture of polycrystalline silicon thin film
JPS62240768A (en) Formation of deposited film
JPH04318973A (en) Thin film transistor and manufacture thereof
JP3881715B2 (en) Crystalline semiconductor film forming method, active matrix device manufacturing method, and electronic device manufacturing method
JPH04298023A (en) Manufacture of single crystal silicon thin film
Masuda et al. Guiding principles for device-grade hydrogenated amorphous silicon films and design of catalytic chemical vapor deposition apparatus
JPH04318921A (en) Manufacture of polycrystalline silicon film
JP2706995B2 (en) Method for forming polycrystalline semiconductor film by microwave plasma CVD method
JP3130661B2 (en) Thin film transistor and method of manufacturing the same
Nojima et al. Growth of high-crystallinity silicon films by a combination of intermittent pulse heating and plasma-enhanced chemical vapor deposition
JP2649221B2 (en) Deposition film formation method
JP3406386B2 (en) Single wafer type plasma CVD equipment
JPS59124163A (en) Semiconductor element
KR100233146B1 (en) Method for fabricating polysilicon
JPH11150284A (en) Manufacture of polycrystalline silicon thin film