JPH10111188A - Automatic thermocouple calibration device - Google Patents

Automatic thermocouple calibration device

Info

Publication number
JPH10111188A
JPH10111188A JP8284576A JP28457696A JPH10111188A JP H10111188 A JPH10111188 A JP H10111188A JP 8284576 A JP8284576 A JP 8284576A JP 28457696 A JP28457696 A JP 28457696A JP H10111188 A JPH10111188 A JP H10111188A
Authority
JP
Japan
Prior art keywords
thermocouple
calibrated
temperature
standard
electric furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8284576A
Other languages
Japanese (ja)
Other versions
JP2898928B2 (en
Inventor
Fumio Harada
富美雄 原田
Jiyun Oide
順 尾出
Yoshiyuki Hikichi
良行 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMAZU KINZOKU KK
Original Assignee
SHIMAZU KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMAZU KINZOKU KK filed Critical SHIMAZU KINZOKU KK
Priority to JP28457696A priority Critical patent/JP2898928B2/en
Publication of JPH10111188A publication Critical patent/JPH10111188A/en
Application granted granted Critical
Publication of JP2898928B2 publication Critical patent/JP2898928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermocouple calibrating device wherein a calibration value with high precision is obtained and its complex calculation is easily performed by using a comparison-calibration method wherein fixed-point calibration method is taken. SOLUTION: The device comprises an electric furnace 2 where a standard thermocouple which is going to be a reference and a to-be-calibrated thermocouple are set, an electric furnace control part which controls the electric furnace 2 to a set temperature, a calculation part 3, a display 5, and a printer 6. The calculation part 3, based on a calibration data near the known fixed-point temperature of the standard thermocouple and a calibration measurement value from the standard thermocouple and the to-be-calibrated thermocouple in the electric furnace 2, obtains a deviation approximate expression of the standard thermocouple and the to-be-calibrated thermocouple. In addition, the display 5 is allowed to display a in-furnace temperature, an error curve of each thermo couple, and a thermo-electromotive force table, and the printer 6 prints out a heard copy of them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電対の校正装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermocouple calibration device.

【0002】[0002]

【従来の技術】従来、熱電対の校正は日本電気計器検定
所で、比較検定法を使って検定を行い、合格した熱電対
を基準とし、それと校正すべき熱電対とを同時に電気炉
等に入れて、試験温度に対応した熱起電力を測定し、比
較校正法により校正を行っていた。
2. Description of the Related Art Conventionally, thermocouples are calibrated by the Nippon Electric Instrument Calibration Laboratory using a comparative verification method, and based on the passed thermocouple as a reference, the thermocouple to be calibrated and the thermocouple to be calibrated are simultaneously placed in an electric furnace or the like. Then, the thermoelectromotive force corresponding to the test temperature was measured, and calibration was performed by the comparative calibration method.

【0003】しかし、比較校正法を使って検定を行った
熱電対の日本電気計器検定所での最高精度保証は±0.01
mVで、R熱電対では温度に換算すると±0.6〜0.7℃ と
精度は粗く、これを基準として校正を行っている一般使
用の熱電対の精度は更に低いものとなっている。
[0003] However, the maximum accuracy guaranteed by the Nippon Keiki Keiki Testing Laboratory for thermocouples verified using the comparative calibration method is ± 0.01.
When converted to a temperature of mV, the accuracy of the R thermocouple is as coarse as ± 0.6 to 0.7 ° C., and the accuracy of a general-purpose thermocouple calibrated based on this is even lower.

【0004】しかも測定値から誤差特性をJISの熱起
電力表(起電力/温度対応表)に即した形で得るために
はやっかいな計算が必要で、従来これを手計算によって
行ってきたため大変な手間がかかっていた。最近はコン
ピュータの使用が一般化している状況もあって、コンピ
ュータを活用した計算も試みられているが、熱電対校正
用に開発されたソフトはなく、個々に苦労して計算して
いるのが現状である。
In addition, complicated calculations are required to obtain the error characteristics from the measured values in accordance with the JIS thermoelectromotive force table (electromotive force / temperature correspondence table). It took a lot of trouble. In recent years, the use of computers has become common, and calculations using computers have been attempted.However, there is no software developed for thermocouple calibration, and each individual has to work hard. It is the current situation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、現代の
科学技術の進歩に対応して、温度測定に求められる精度
の要求は高くなってきており、必然的に測定器自体の信
頼性の向上、すなわち校正の精度を高める要求が強くな
っている。従って、従来の比較校正法によるだけでは十
分でなく、更に定点校正法を加味した温度補正を取り入
れることが有効となるが、これには極めて複雑な演算処
理が必要となる。
However, in response to the progress of modern science and technology, the demand for accuracy required for temperature measurement is increasing, and the reliability of the measuring instrument itself is inevitably improved, that is, There is an increasing demand for higher calibration accuracy. Therefore, it is not sufficient to use the conventional comparative calibration method alone, and it is effective to incorporate a temperature correction in consideration of the fixed-point calibration method, but this requires extremely complicated arithmetic processing.

【0006】そこで、本発明の目的は定点校正法を加味
した比較校正法によって、精度の高い校正値を得ると共
に、その複雑な演算を容易に実行できる熱電対校正装置
を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermocouple calibrator which can obtain a highly accurate calibration value by a comparative calibration method in which a fixed-point calibration method is added and can easily execute complicated calculations. is there.

【0007】[0007]

【課題を解決するための手段】本発明は、まず、日本電
気計器検定所において精度の高い定点温度(亜鉛、アル
ミニウム、銀と銅又は金の定点測定:保証精度±0.1
℃)での校正で得たR型標準熱電対の測定データを基
に、JISの熱起電力表より4定点温度における偏差値
(単位mV)を求め、この標準熱電対の熱起電力偏差を
高次の多項式にて近似し、係数を求める。そしてこの偏
差近似式とJISの起電力表とより、この標準熱電対の
起電力表を計算して作成する。次に、この標準熱電対を
基準として用い、被校正熱電対の校正を行う。測定精度
を高めるための温度環境設定に、管状精密電気炉を使用
し、複数の定点温度(計算を容易とし補間精度を均一に
するため、定点温度は等間隔であることが望ましい。)
を設定し、電気炉を順次各定点温度(厳密には定点近傍
温度)に温度制御し、当該温度における基準熱電対と被
校正熱電対の起電力を測定し、この値と基準の標準熱電
対の定点温度における偏差値を用いて、定点温度におけ
る被校正熱電対のJIS起電力表との偏差データを求め
る。そして、この定点温度における偏差データを、標準
熱電対の場合と同様に高次の多項式で近似し、係数を求
め、被校正熱電対の特性を示す偏差式を得る。この偏差
式とJISの熱起電力表より、誤差回帰計算を行って被
校正熱電対の熱起電力表を得るものである。
Means for Solving the Problems First, the present invention provides a highly accurate fixed point temperature (fixed point measurement of zinc, aluminum, silver and copper or gold: guaranteed accuracy of ± 0.1
° C), a deviation value (unit: mV) at four fixed-point temperatures is obtained from the JIS thermoelectromotive force table based on the measurement data of the R-type standard thermocouple obtained by the calibration at (° C), and the thermoelectromotive force deviation of this standard thermocouple is calculated. Approximate by a higher-order polynomial and find the coefficient. Then, an electromotive force table of the standard thermocouple is calculated and created from the deviation approximation formula and the JIS electromotive force table. Next, the calibration of the thermocouple to be calibrated is performed using the standard thermocouple as a reference. A tubular precision electric furnace is used to set the temperature environment for improving the measurement accuracy, and a plurality of fixed-point temperatures (the fixed-point temperatures are desirably equidistant for easy calculation and uniform interpolation accuracy).
The temperature of the electric furnace is sequentially controlled at each fixed point temperature (strictly speaking, the temperature near the fixed point), the electromotive force of the reference thermocouple and the thermocouple to be calibrated at the temperature is measured, and this value and the reference standard thermocouple are measured. The deviation data from the JIS electromotive force table of the thermocouple to be calibrated at the fixed point temperature is obtained using the deviation value at the fixed point temperature. Then, the deviation data at the fixed point temperature is approximated by a higher-order polynomial as in the case of the standard thermocouple, coefficients are obtained, and a deviation expression showing the characteristics of the thermocouple to be calibrated is obtained. An error regression calculation is performed based on the deviation formula and the JIS thermoelectromotive force table to obtain a thermoelectromotive force table of the thermocouple to be calibrated.

【0008】[0008]

【発明の実施の形態】本発明の校正動作を図1の全体シ
ステム図と図2のフローチャートを参照して説明する。
日本電気計器検定所での標準熱電対の校正試験は実際の
金属凝固点を用いた定点校正を行ったものであるから、
定点温度の精度は極めて高い測定値が得られている。ま
ず演算部側ではステップ11で日本電気計器検定所で得
た定点温度(Zn,Al,Ag,Cuの凝固点)の熱電
対の起電力測定データを入力手段にて入力し、ステップ
12では、演算部3においてJISの熱起電力表との4
定点温度における偏差(単位mV)を求め、この標準熱
電対の熱起電力偏差を高次の多項式にて近似し、係数を
求める。そしてこの偏差近似式とJISの起電力表とよ
り、この標準熱電対の起電力表を計算して作成しメモリ
に記憶する(ステップ13)。ステップ14でプリンタ
6に打ち出したものが図3のデータシートである。偏差
式は基準として用いる標準熱電対の出力起電力をJIS
の熱起電力表に対して補正するためのものである。一方
電気炉側ではステップ1でまず標準熱電対と被校正熱電
対を管状精密電気炉2内に設置する。ステップ2で測定
値を得る複数の定点温度(例えば200℃,400℃,600
℃,800℃,1000℃と等間隔の値が望ましい)を決め、
複数の定点温度をどの様な順序で実現するかを設定す
る。なお、図3のデータシートにおいて上段の表はZ
n,Al,Ag,Cuの凝固点における標準熱電対のデ
ータであり、左欄のmV単位の値は日本電気計器検定所で
検定を受けた標準熱電対の起電力値、ITS−90とあ
る欄の値はJISの熱起電力の標準値、偏差とある欄の
値は標準熱電対の起電力値とJISの熱起電力表の標準
値の偏差であり、誤差とある右欄の値は標準熱電対の起
電力値をJISの熱起電力表上でそのまま読み取った場
合の温度誤差を表している。中段のグラフは基準熱電対
の温度に対応させた温度誤差特性を示すグラフである。
そして下段の表は横方向に10℃間隔、縦方向に100 ℃間
隔で配置した0℃〜1090℃各温度における基準熱電
対の熱起電力の値である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The calibration operation of the present invention will be described with reference to the overall system diagram of FIG. 1 and the flowchart of FIG.
Since the calibration test of the standard thermocouple at the Nippon Electric Keiki Inspection Laboratory is a fixed point calibration using the actual metal freezing point,
An extremely high measurement value is obtained for the accuracy of the fixed point temperature. First, the calculation unit inputs electromotive force measurement data of a thermocouple at a fixed point temperature (freezing point of Zn, Al, Ag, and Cu) obtained by the Nippon Electric Keiki Inst. In part 3 with the JIS thermoelectromotive force table
A deviation (unit: mV) at the fixed point temperature is obtained, and the thermoelectromotive force deviation of the standard thermocouple is approximated by a higher-order polynomial to obtain a coefficient. Then, based on the deviation approximation formula and the JIS electromotive force table, the electromotive force table of the standard thermocouple is calculated and created and stored in the memory (step 13). The data sheet output to the printer 6 in step 14 is the data sheet of FIG. The deviation equation is based on the output electromotive force of a standard thermocouple used as a reference.
This is for correcting the thermoelectromotive force table of FIG. On the other hand, on the electric furnace side, a standard thermocouple and a thermocouple to be calibrated are first set in the tubular precision electric furnace 2 in step 1. Multiple fixed-point temperatures (eg, 200 ° C, 400 ° C, 600
℃, 800 ℃, 1000 ℃ is desirable at equal intervals)
Set the order in which multiple fixed-point temperatures are realized. In the data sheet of FIG. 3, the upper table is Z
It is the data of the standard thermocouple at the freezing point of n, Al, Ag, and Cu. The value of the mV unit of the left column is the electromotive force value of the standard thermocouple verified by Nippon Electric Keiki Inspection, and the column with ITS-90. Is the standard value of the thermoelectric power of JIS, and the deviation and the value in a certain column are the deviation between the electromotive force value of the standard thermocouple and the standard value of the thermoelectromotive force table of JIS. It shows the temperature error when the electromotive force value of the thermocouple is read as it is on the JIS thermoelectromotive force table. The middle graph is a graph showing a temperature error characteristic corresponding to the temperature of the reference thermocouple.
The lower table shows the values of the thermoelectromotive force of the reference thermocouples at the respective temperatures of 0 ° C. to 1090 ° C. arranged at intervals of 10 ° C. in the horizontal direction and at 100 ° C. in the vertical direction.

【0009】ステップ3で電気炉のヒータをONし、測
定値を取り込む定点温度に上げて行く。ステップ4で炉
内温度が定点温度に安定(±0.3℃/5分間)したなら
ば、ステップ5で標準熱電対の作動状態が安定(±0.5
μV/20分間)したのを確認して、ステップ6で基準と
なる標準熱電対と被校正熱電対双方の測定値(熱起電力
μV)を取り込む。ステップ7ではデータの取り込み動
作中の安定を確認し、標準熱電対の値が±0.5 μVを外
れたときにはステップ6に戻りデータの取り込みをやり
直す。安定状態で値がとれたときは、ステップ8におい
てすべての定点温度での測定が終了したのを確認するま
でステップ4に戻りデータの取り込みを繰り返す。最後
の測定が終了したらステップ9でヒータをOFFとし、
温度が下がったらステップ10で被校正熱電対を取り外
し、電気炉を用いた定点温度での測定を終了する。
In step 3, the heater of the electric furnace is turned on to raise the temperature to a fixed point temperature at which measured values are taken. If the furnace temperature stabilizes at the fixed point temperature (± 0.3 ° C./5 minutes) in step 4, the operation state of the standard thermocouple is stabilized in step 5 (± 0.5
(μV / 20 minutes), and the measured values (thermoelectromotive force μV) of both the standard thermocouple and the thermocouple to be calibrated are taken in step 6. In step 7, the stability during the data fetch operation is confirmed, and when the value of the standard thermocouple deviates from ± 0.5 μV, the process returns to step 6 and data fetch is performed again. When the value is obtained in a stable state, the process returns to step 4 until the measurement at all fixed-point temperatures is completed in step 8, and the acquisition of data is repeated. When the last measurement is completed, the heater is turned off in step 9 and
When the temperature is lowered, the thermocouple to be calibrated is removed in step 10 and the measurement at the fixed point temperature using the electric furnace is completed.

【0010】一方各定点温度における基準熱電対と被校
正熱電対のデータが取り込まれるとステップ15で演算
部3は次のように動作する。まず電気炉で実現した定点
温度は電気炉の温度計(R熱電対)で測り定点温度に制
御したものであるから、正確な定点温度Tではなくその
近傍温度T+△(これは正負の符号をとり得る微小値)
である。ステップ16において定点温度Tにおける基準
熱電対の起電力値aがRAMより読み出される(これは
日本電気計器検定所にて校正を受けたデータを基に演算
算出したものであるから信頼性が高く定点温度における
起電力と看做すことが出来る。)とともに、定点近傍温
度T+△にて測定された基準熱電対の起電力値a′と被
校正熱電対の起電力値b′の差b′−a′を算出する。
この両者の差は定点温度Tにおいても近傍のT+△にお
いても等しいと看做せるので、定点温度Tにおける被校
正熱電対の起電力bはa+(b′−a′)ということに
なる。そこで、この起電力値に対応する温度値をROM
に蓄積されているJISの熱起電力表から読み出す。そ
してその値と定点温度Tとの差を算出して被校正熱電対
の定点温度Tにおける温度誤差として割り出し、順次各
定点温度に温度制御し、定点温度における被校正熱電対
のJIS起電力表との偏差データを求める。そして、こ
の複数の定点温度における偏差データを、標準熱電対の
場合と同様に高次の多項式で近似し、係数を求め、被校
正熱電対の特性を示す偏差式を得る。この偏差式とJI
Sの熱起電力表より、誤差回帰計算を行って被校正熱電
対の熱起電力表を得るものである。ステップ17でそれ
らの値を校正データとして磁気ディスク等の電子記録媒
体に格納する。ステップ18において、これを読みだし
て定点温度の偏差値をプリントアウトしたものが図4で
ある。因にこの図4では、基準熱電対温度と基準熱電対
起電力はメモリより読みだした基準となる標準熱電対の
起電力表の値であり、試験熱電対起電力の値は定点近傍
温度の電気炉内で測定された基準熱電対の起電力値a′
と被校正熱電対の起電力値b′の差(b′−a′)を、
定点温度における基準熱電対の起電力値に加算して算出
した被校正熱電対の定点温度における起電力値である。
この値に対するJISの熱起電力表から読み出した温度
値が試験熱電対温度として記載され、この値と定点温度
との差が被校正熱電対の温度誤差として記載されてい
る。
On the other hand, when the data of the reference thermocouple and the thermocouple to be calibrated at each fixed-point temperature are fetched, the arithmetic unit 3 operates in step 15 as follows. First, the fixed-point temperature realized in the electric furnace was measured with an electric furnace thermometer (R thermocouple) and controlled to the fixed-point temperature, so it was not the exact fixed-point temperature T but its nearby temperature T + △ (this is the sign of the plus or minus sign). Possible small value)
It is. In step 16, the electromotive force value a of the reference thermocouple at the fixed point temperature T is read out from the RAM (this is calculated and calculated based on the data calibrated by the Nippon Electric Keiki Inspection Center, so the reliability is high and the fixed point And the difference b'- between the electromotive force a 'of the reference thermocouple measured at the temperature near the fixed point T + △ and the electromotive force b' of the thermocouple to be calibrated. a 'is calculated.
Since the difference between the two can be considered to be equal both at the fixed point temperature T and at the nearby T + △, the electromotive force b of the thermocouple to be calibrated at the fixed point temperature T is a + (b′−a ′). Therefore, the temperature value corresponding to this electromotive force value is stored in the ROM
Is read from the JIS thermoelectromotive force table stored in the table. Then, the difference between the value and the fixed-point temperature T is calculated and determined as a temperature error at the fixed-point temperature T of the thermocouple to be calibrated, and the temperature is sequentially controlled to each fixed-point temperature. Find the deviation data of Then, the deviation data at the plurality of fixed-point temperatures is approximated by a higher-order polynomial as in the case of the standard thermocouple, coefficients are obtained, and a deviation expression indicating the characteristics of the thermocouple to be calibrated is obtained. This deviation formula and JI
An error regression calculation is performed from the thermoelectromotive force table of S to obtain a thermoelectromotive force table of the thermocouple to be calibrated. In step 17, those values are stored as calibration data in an electronic recording medium such as a magnetic disk. FIG. 4 shows the result of reading out the values at step 18 and printing out the deviation value of the fixed point temperature. In FIG. 4, the reference thermocouple temperature and the reference thermocouple electromotive force are the values of the electromotive force table of the standard thermocouple read from the memory, and the test thermocouple electromotive force is the value of the temperature near the fixed point. The electromotive force value a 'of the reference thermocouple measured in the electric furnace
The difference (b'-a ') between the electromotive force value b' of the thermocouple to be calibrated and
This is the electromotive force value at the fixed point temperature of the thermocouple to be calibrated, which is calculated by adding to the electromotive force value of the reference thermocouple at the fixed point temperature.
The temperature value read from the JIS thermoelectromotive force table for this value is described as a test thermocouple temperature, and the difference between this value and the fixed point temperature is described as a temperature error of the thermocouple to be calibrated.

【0011】複数の定点温度における熱起電力の偏差デ
ータが得られると、これを基に被校正熱電対の偏差特性
を示す近似式(高次の多項式)が計算され、図3の基準
とした標準熱電対のデータシートと同様に被校正熱電対
の誤差特性のグラフ表示や熱起電力表を得ることが出来
る。またオプションとして、被校正熱電対に対してIS
O−9000対応の成績表を添付することもできる。
When deviation data of the thermoelectromotive force at a plurality of fixed-point temperatures is obtained, an approximate expression (higher-order polynomial) indicating the deviation characteristic of the thermocouple to be calibrated is calculated based on the data, and is used as a reference in FIG. Similar to the data sheet of the standard thermocouple, a graph display of the error characteristics of the thermocouple to be calibrated and a thermoelectromotive force table can be obtained. Also, as an option, the IS
A grade sheet corresponding to O-9000 can be attached.

【0012】[0012]

【実施例】図5は管状精密電気炉を用いた本発明の熱電
対自動校正炉を示す。Aは平面図、Bは管軸方向側面
図、Cは管長手方向側面図である。熱伝対自動校正炉11
は白金炉13、カンタル炉14、15、架台12より構成され、
大きさは1200mm×710mm×1750mmである。16は熱電対保
持棒、17は白金炉用均熱管、18、19はカンタル炉用均熱
管である。図6は本発明の電気炉制御装置20を示し、21
はプログラム調節計、22はヒータ電流計、23は温度用記
録計、24は受電ランプ、25は一次電圧計、26はブレーカ
である。21、22、26は1つのユニットに組み込まれてお
り、3つの炉に対しそれぞれ設けられている。図7は本
発明のデータ処理装置であって、31はディスプレイ、32
はレーザプリンタ、33は演算部を構成するコンピュー
タ、35はスキャナ、36は無停電電源、37は入力手段(キ
ーボード)である。
FIG. 5 shows a thermocouple automatic calibration furnace according to the present invention using a tubular precision electric furnace. A is a plan view, B is a tube axial direction side view, and C is a tube longitudinal direction side view. Thermocouple automatic calibration furnace 11
Is composed of platinum furnace 13, Kanthal furnaces 14, 15 and gantry 12,
The size is 1200mm x 710mm x 1750mm. 16 is a thermocouple holding rod, 17 is a soaking tube for a platinum furnace, and 18 and 19 are soaking tubes for a Kanthal furnace. FIG. 6 shows an electric furnace control device 20 according to the present invention.
Is a program controller, 22 is a heater ammeter, 23 is a temperature recorder, 24 is a power receiving lamp, 25 is a primary voltmeter, and 26 is a breaker. 21, 22, 26 are integrated into one unit and are provided for each of the three furnaces. FIG. 7 shows a data processing apparatus of the present invention, in which 31 is a display, 32
Is a laser printer, 33 is a computer constituting an arithmetic unit, 35 is a scanner, 36 is an uninterruptible power supply, and 37 is an input means (keyboard).

【0013】白金炉の加熱温度範囲は200〜1500 ℃、炉
内温度安定性は±0.15 ℃/60分、均熱性は炉内温度140
0℃で炉芯中央±100mmの範囲で±0.5℃以内、発熱体は
白金とロジウムの合金(80 Pt 20 Rh)で8mm W×0.2mmt
を使用している。本白金炉の制御用熱電対はR熱電対
で3本使用しており、加熱方式は横型3分割ヒータ加熱
方式で、大きさは炉外形 320mmφ×780mm、均熱管17の
内径は20mmφで、校正できる熱電対の数は外径4.0mmφ
の絶縁管を使用したとき最大3本までである。
The heating temperature range of the platinum furnace is 200 to 1500 ° C., the furnace temperature stability is ± 0.15 ° C./60 minutes, and the soaking temperature is 140 ° C.
Within ± 0.5 ° C within ± 100mm of core center at 0 ° C, heating element is 8mm W × 0.2mmt with platinum-rhodium alloy (80 Pt 20 Rh)
You are using This platinum furnace uses three R thermocouples as control thermocouples. The heating method is a horizontal three-segment heater heating method. The size of the furnace is 320 mmφ x 780 mm. The inner diameter of the soaking tube 17 is 20 mmφ. The number of possible thermocouples is 4.0 mmφ in outer diameter
The maximum number is 3 when using the insulating tube.

【0014】カンタル炉の加熱温度範囲は、200〜1100
℃、炉内温度安定性は±0.15℃/60分、均熱性は炉内温
度1100℃で、炉芯中央±100mmの範囲で±0.5℃以内、発
熱体はカンタルA-1 6.0mmφを使用している。本カンタ
ル炉の制御用熱電対はR熱電対で各3本使用しており、
加熱方式は横型3分割ヒータ加熱方式で、大きさは炉外
形 200mmφ×780mm、均熱管18、19の内径は40mmφで、校
正できる熱電対の数はシース外径1.0mmφの場合、最大
6本までである。制御盤の制御方式は調節計通信統括制
御方式で、電源は交流3相200V,50Hzで、温度記録計
には過昇温警報設定機能付きの記録計を採用する。
The heating temperature range of the Kanthal furnace is 200 to 1100
℃, furnace temperature stability is ± 0.15 ℃ / 60min, soaking temperature is 1100 ℃, furnace temperature is within ± 0.5 ℃ within ± 100mm, and heating element is Kanthal A-1 6.0mmφ. ing. The control thermocouple of this Kanthal furnace is R thermocouple and each uses 3 thermocouples.
The heating method is a horizontal three-division heater heating method, the size of the furnace is 200 mmφ x 780 mm, the inner diameter of the soaking tubes 18 and 19 is 40 mmφ, and the number of thermocouples that can be calibrated is up to 6 when the sheath outer diameter is 1.0 mmφ. It is. The control system of the control panel is a controller communication general control system, the power supply is AC three-phase 200V, 50Hz, and the temperature recorder adopts a recorder with an overheat alarm setting function.

【0015】この実施例の装置は3台の炉を同時に駆動
制御することが出来、炉温状態を温度記録計で監視でき
るだけでなく、3台の炉内温度をマウス操作により、必
要に応じてディスプレイ上に表示させる機能を備えてい
る。各炉には複数個の被校正熱電対を接続(標準タイプ
は基準熱電対の他に被校正用の熱電対7本を接続可能)
することができ、各熱電対からの熱起電力信号をスキャ
ナ(この実施例では最大40チャンネル)を介して演算
処理部に順次取り込むことができる。校正できる熱電対
はR型に限らず、S,B,K,E,J,T,N等の各種
熱電対に対応できる。校正試験温度を(200℃,400℃,
600℃,800℃,1000℃)の5ステップを例として説明し
たが、これに限られることなく8ステップ等任意に設定
できる。測定により得られた複数の定点温度における偏
差値から高次の多項式からなる偏差式を求める方法は S
VD,Glvens,Householder,Lu decompositionなどの方
式が選択できる。例えば市販の計算ソフトLABVIEW(日
本ナショナルインスツルメンツ(株)社の登録商標)を
用い、Lu 分解法で行うことができる。
The apparatus of this embodiment can drive and control three furnaces at the same time, not only can monitor the temperature of the furnace with a temperature recorder, but also monitor the temperature inside the three furnaces by operating the mouse as needed. It has a function to display it on the display. Connect multiple thermocouples to be calibrated to each furnace (standard type can connect 7 thermocouples to be calibrated in addition to the standard thermocouple)
The thermo-electromotive force signals from each thermocouple can be sequentially taken into the arithmetic processing unit via a scanner (in this embodiment, up to 40 channels). The thermocouples that can be calibrated are not limited to the R-type thermocouples, and can correspond to various thermocouples such as S, B, K, E, J, T, and N. Calibration test temperature (200 ℃, 400 ℃,
5 steps (600 ° C., 800 ° C., 1000 ° C.) have been described as an example, but the present invention is not limited to this and can be set arbitrarily, such as 8 steps. The method of calculating the deviation formula consisting of higher-order polynomials from the deviation values at multiple fixed-point temperatures obtained by measurement is S
VD, Glavens, Householder, Lu decomposition and other methods can be selected. For example, it can be performed by the Lu decomposition method using commercially available calculation software LABVIEW (registered trademark of Japan National Instruments Co., Ltd.).

【0016】[0016]

【発明の効果】校正試験中の電気炉の安定状態や標準熱
電対の安定状態をディスプレイと記録計上にてグラフィ
カルに目視確認しながら作業を進めることができ、信頼
性の高い校正が実現できる。そして日本電気計器検定所
で得た精度の高い定点温度における熱起電力値を基に基
準となる標準熱電対の偏差を割り出すので、基準自体の
精度が高く校正精度が上がる。また、標準熱電対及び被
校正熱電対の特性を偏差式の形で得られるので、起電力
表にある値間の温度についても精度の良い近似が得ら
れ、正確な校正が実現でき、更に被校正熱電対を用いた
通常の測定でも正確な測定を可能にする。また、複雑な
演算をコンピュータを用いて行うので従来の校正時間に
比べ、時間を短縮できエネルギーの省力化が実現できる
等各段の効率が保証される。
According to the present invention, the operation can be performed while visually confirming the stable state of the electric furnace and the stable state of the standard thermocouple during the calibration test on a display and a recording device, and a highly reliable calibration can be realized. Then, since the deviation of the standard thermocouple as a reference is determined based on the thermoelectromotive force value at a fixed point temperature obtained by the Nippon Electric Keiki Inspection Laboratory, the accuracy of the reference itself is high and the calibration accuracy is improved. In addition, since the characteristics of the standard thermocouple and the thermocouple to be calibrated can be obtained in the form of a deviation equation, accurate approximations can be obtained for the temperatures between the values in the electromotive force table, and accurate calibration can be realized. Accurate measurement is possible even with normal measurement using a calibration thermocouple. In addition, since complicated calculations are performed using a computer, the efficiency of each stage is guaranteed, for example, the time can be reduced and energy can be saved as compared with the conventional calibration time.

【0017】[0017]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体システムを示すブロック図。FIG. 1 is a block diagram showing an overall system of the present invention.

【図2】本発明の校正動作のフローチャート。FIG. 2 is a flowchart of a calibration operation according to the present invention.

【図3】本発明の演算部で処理し、プリントアウトした
基準に用いる標準熱電対についてのデータシート。
FIG. 3 is a data sheet for a standard thermocouple used as a reference processed and printed out by the calculation unit of the present invention.

【図4】本発明の演算部で処理し、プリントアウトした
被校正標準熱電対の校正試験成績書。
FIG. 4 is a calibration test report of a standard thermocouple to be calibrated, which has been processed and printed out by the arithmetic unit of the present invention.

【図5】本発明に用いる熱電対自動校正炉の例で、Aは
平面図、Bは管軸方向側面図、Cは管長手方向側面図で
ある。
FIG. 5 is an example of a thermocouple automatic calibration furnace used in the present invention, wherein A is a plan view, B is a tube axial side view, and C is a tube longitudinal direction side view.

【図6】本発明の電気炉制御装置20を示す正面図。FIG. 6 is a front view showing the electric furnace control device 20 of the present invention.

【図7】本発明のデータ処理装置を示す正面図。FIG. 7 is a front view showing the data processing device of the present invention.

【符号の説明】[Explanation of symbols]

1、21 電気炉制御用のプログラム調節計 2、11 熱電対校正用電気炉 3、33 演算処理部(コンピュータ) 4、37 入力手段 5、31 ディスプレイ 6、32 プリンタ 13 白金炉 14、15 カンタル炉 22 ヒータ電流計 23 温度用記録計 1,21 Program controller for electric furnace control 2,11 Electric furnace for thermocouple calibration 3,33 Arithmetic processing unit (computer) 4,37 Input means 5,31 Display 6,32 Printer 13 Platinum furnace 14,15 Kanthal furnace 22 heater ammeter 23 temperature recorder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基準となる標準熱電対と被校正熱電対を
設置できる電気炉と、該電気炉を設定温度に制御する電
気炉制御部と、 演算部と、ディスプレイと、プリンタとを備え、 上記演算部は標準熱電対の既知の定点温度の校正データ
及び上記電気炉内の標準熱電対と被校正熱電対からの校
正測定値を基に標準熱電対と被校正熱電対の偏差近似式
を求める手段と、上記ディスプレイに炉内温度と各熱電
対の誤差曲線及び熱起電力表を表示可能とする手段と、
上記プリンタにそれらの諸データをハードコピーとして
プリントアウトできる手段とを有することを特徴とする
熱電対自動校正装置。
An electric furnace in which a standard thermocouple as a reference and a thermocouple to be calibrated can be installed, an electric furnace control unit for controlling the electric furnace to a set temperature, a calculation unit, a display, and a printer, The calculation unit calculates the approximation formula of the deviation between the standard thermocouple and the thermocouple to be calibrated based on the calibration data of the known fixed point temperature of the standard thermocouple and the calibration measurement value from the standard thermocouple and the thermocouple to be calibrated in the electric furnace. Means for obtaining, means for displaying the furnace temperature and the error curve of each thermocouple and the thermoelectromotive force table on the display,
Means for printing out the data as a hard copy to the printer.
【請求項2】 標準熱電対の複数の定点温度における校
正データを入力する手段と、該データを基にJISの熱
起電力表より偏差を求める手段と、該偏差値より高次の
多項式で近似して係数を求める手段と、該近似式とJI
S熱起電力表よりこの標準熱電対の熱起電力表を算出す
る手段とからなる請求項1記載の演算部。
2. A means for inputting calibration data at a plurality of fixed-point temperatures of a standard thermocouple, a means for obtaining a deviation from a thermoelectromotive force table of JIS based on the data, and an approximation by a higher-order polynomial from the deviation value. Means for determining the coefficient by using
2. The calculation unit according to claim 1, further comprising means for calculating a thermoelectromotive force table of the standard thermocouple from the S thermoelectromotive force table.
【請求項3】 同一温度における基準となる標準熱電対
と被校正熱電対の測定熱起電力データ及び該標準熱電対
の熱起電力表より被校正熱電対の偏差を求める手段と、
複数温度における該偏差値から高次の多項式で近似して
係数を求める手段と、該近似式とJIS熱起電力表より
この被校正熱電対の熱起電力表を算出する手段とからな
る請求項1記載の演算部。
3. A means for calculating a deviation of a thermocouple to be calibrated from measured thermoelectromotive force data of a standard thermocouple and a thermocouple to be calibrated at the same temperature and a thermoelectromotive force table of the standard thermocouple,
A means for calculating a coefficient by approximating the deviation value at a plurality of temperatures by a higher-order polynomial; and a means for calculating a thermoelectromotive force table of the thermocouple to be calibrated from the approximation formula and a JIS thermoelectromotive force table. The operation unit according to 1.
JP28457696A 1996-10-08 1996-10-08 Thermocouple automatic calibration device and calibration method Expired - Fee Related JP2898928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28457696A JP2898928B2 (en) 1996-10-08 1996-10-08 Thermocouple automatic calibration device and calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28457696A JP2898928B2 (en) 1996-10-08 1996-10-08 Thermocouple automatic calibration device and calibration method

Publications (2)

Publication Number Publication Date
JPH10111188A true JPH10111188A (en) 1998-04-28
JP2898928B2 JP2898928B2 (en) 1999-06-02

Family

ID=17680259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28457696A Expired - Fee Related JP2898928B2 (en) 1996-10-08 1996-10-08 Thermocouple automatic calibration device and calibration method

Country Status (1)

Country Link
JP (1) JP2898928B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793215A1 (en) * 2005-11-30 2007-06-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for determining a temperature by means of a thermocouple
CN103063329A (en) * 2012-12-28 2013-04-24 沪东重机有限公司 Calibration method for marine diesel engine temperature-measurement thermocouple
CN103071773A (en) * 2012-10-17 2013-05-01 南京梅山冶金发展有限公司 Breakout prediction thermocouple vapor detection device with arc aerosol nozzle
JP2013181931A (en) * 2012-03-05 2013-09-12 Hitachi High-Technologies Corp Temperature measuring device
CN103698056A (en) * 2013-12-16 2014-04-02 杭州华安医疗保健用品有限公司 Calibrated temperature error correction device and correction method
CN104458061A (en) * 2014-12-25 2015-03-25 上海冉曦电子仪器有限公司 Combined thermocouple calibration furnace
CN112629707A (en) * 2020-11-10 2021-04-09 贵州航宇科技发展股份有限公司 Heating furnace system precision testing method
CN112617299A (en) * 2021-01-19 2021-04-09 河南中烟工业有限责任公司 Method for detecting temperature of heating cigarette smoking set and method for analyzing temperature stability
CN113834579A (en) * 2021-09-22 2021-12-24 河南中孚实业股份有限公司 Constant temperature field collection system is used in verification of double-needle type thermocouple
CN113884222A (en) * 2021-09-30 2022-01-04 湖南省计量检测研究院 Calibration device and calibration method for ultra-short thermocouple

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344641U (en) * 1989-09-06 1991-04-25
JPH0545520U (en) * 1991-11-22 1993-06-18 理化工業株式会社 Sensor correction device
JPH0634637A (en) * 1992-07-18 1994-02-10 Horiba Ltd Formation of calibration curve in gas analyzer
JPH07243917A (en) * 1994-03-08 1995-09-19 Tokai Konetsu Kogyo Co Ltd Calibrating method for thermocouple
JPH08178763A (en) * 1994-12-24 1996-07-12 Tanaka Kikinzoku Kogyo Kk Calibration of thermometer
JPH0996575A (en) * 1995-10-02 1997-04-08 Tanaka Kikinzoku Kogyo Kk Fixed-point calibrating method for noble-metal thermocouple

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344641U (en) * 1989-09-06 1991-04-25
JPH0545520U (en) * 1991-11-22 1993-06-18 理化工業株式会社 Sensor correction device
JPH0634637A (en) * 1992-07-18 1994-02-10 Horiba Ltd Formation of calibration curve in gas analyzer
JPH07243917A (en) * 1994-03-08 1995-09-19 Tokai Konetsu Kogyo Co Ltd Calibrating method for thermocouple
JPH08178763A (en) * 1994-12-24 1996-07-12 Tanaka Kikinzoku Kogyo Kk Calibration of thermometer
JPH0996575A (en) * 1995-10-02 1997-04-08 Tanaka Kikinzoku Kogyo Kk Fixed-point calibrating method for noble-metal thermocouple

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793215A1 (en) * 2005-11-30 2007-06-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for determining a temperature by means of a thermocouple
JP2013181931A (en) * 2012-03-05 2013-09-12 Hitachi High-Technologies Corp Temperature measuring device
CN103071773A (en) * 2012-10-17 2013-05-01 南京梅山冶金发展有限公司 Breakout prediction thermocouple vapor detection device with arc aerosol nozzle
CN103063329A (en) * 2012-12-28 2013-04-24 沪东重机有限公司 Calibration method for marine diesel engine temperature-measurement thermocouple
CN103698056A (en) * 2013-12-16 2014-04-02 杭州华安医疗保健用品有限公司 Calibrated temperature error correction device and correction method
CN104458061A (en) * 2014-12-25 2015-03-25 上海冉曦电子仪器有限公司 Combined thermocouple calibration furnace
CN112629707A (en) * 2020-11-10 2021-04-09 贵州航宇科技发展股份有限公司 Heating furnace system precision testing method
CN112617299A (en) * 2021-01-19 2021-04-09 河南中烟工业有限责任公司 Method for detecting temperature of heating cigarette smoking set and method for analyzing temperature stability
CN112617299B (en) * 2021-01-19 2023-06-02 河南中烟工业有限责任公司 Temperature detection method and temperature stability analysis method for heating cigarette smoking set
CN113834579A (en) * 2021-09-22 2021-12-24 河南中孚实业股份有限公司 Constant temperature field collection system is used in verification of double-needle type thermocouple
CN113884222A (en) * 2021-09-30 2022-01-04 湖南省计量检测研究院 Calibration device and calibration method for ultra-short thermocouple

Also Published As

Publication number Publication date
JP2898928B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US5228780A (en) Dual-mode self-validating resistance/Johnson noise thermometer system
Perkins et al. A high-temperature transient hot-wire thermal conductivity apparatus for fluids
JP3935915B2 (en) Method of operating high-speed precision temperature measuring device and human body temperature measuring system
US5038303A (en) Method and apparatus for measuring temperature using thermocouple
JP2898928B2 (en) Thermocouple automatic calibration device and calibration method
US4466749A (en) Microprocessor controlled thermocouple simulator system
EP0562039A1 (en) Infrared thermometer utilizing calibration mapping.
US20040057494A1 (en) Ear thermometer with improved temperature coefficient and method of calibration thereof
JPS60169729A (en) Calibrating method of temperature sensitive element and temperature measuring method using temperature sensitive element
JP2949314B2 (en) Calorimeter and method
Sostmann et al. Fundamentals of thermometry (Part I)
JP4160683B2 (en) Strain measurement system
JP2004028878A (en) Device and method for weathering fading test
Bethea et al. An automated thermocouple calibration system
JP2732270B2 (en) Temperature control method
JPH05288611A (en) Temperature measuring apparatus
Drnovsek et al. Reduction of uncertainties in temperature calibrations by comparison
CN108613751A (en) A kind of high-precision and high-stability temperature polling instrument and preparation method thereof, method for inspecting
JP2005061879A (en) Resistance measuring instrument
JPH08278203A (en) Infrared ray radiation thermometer
JP2729599B2 (en) Thermocouple temperature compensator
JP2532309B2 (en) Thermocouple temperature correction device
JP2501892B2 (en) Thermocouple input measuring instrument
JP3619356B2 (en) Data writing system
JPH02195217A (en) Apparatus for correcting deterioration of temperature detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees