JP2732270B2 - Temperature control method - Google Patents

Temperature control method

Info

Publication number
JP2732270B2
JP2732270B2 JP63295403A JP29540388A JP2732270B2 JP 2732270 B2 JP2732270 B2 JP 2732270B2 JP 63295403 A JP63295403 A JP 63295403A JP 29540388 A JP29540388 A JP 29540388A JP 2732270 B2 JP2732270 B2 JP 2732270B2
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
sub
temperature detecting
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63295403A
Other languages
Japanese (ja)
Other versions
JPH02140812A (en
Inventor
修 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOKURA DENKI KK
Original Assignee
OOKURA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOKURA DENKI KK filed Critical OOKURA DENKI KK
Priority to JP63295403A priority Critical patent/JP2732270B2/en
Publication of JPH02140812A publication Critical patent/JPH02140812A/en
Application granted granted Critical
Publication of JP2732270B2 publication Critical patent/JP2732270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、温度制御方式に関し、更に詳しくは物質の
熱処理等に使用される熱処理炉の温度をある値に制御す
るための温度制御方式に於いて、制御用熱電対の劣化を
検出し補正若しくは劣化警報の出力を行ってより良い制
御精度を得るのに適した温度制御方式に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control method, and more particularly, to a temperature control method for controlling a temperature of a heat treatment furnace used for heat treatment of a substance to a certain value. The present invention also relates to a temperature control method suitable for detecting deterioration of a control thermocouple and outputting a correction or a deterioration alarm to obtain better control accuracy.

従来の技術 従来におけるこの種の温度制御方式は、熱電対で検出
した温度をとり込み、任意の設定値と比較してその差が
0となる様に加熱若しくは冷却して温度制御行ってい
る。
2. Description of the Related Art In a conventional temperature control method of this type, a temperature detected by a thermocouple is taken, and compared with an arbitrary set value, the temperature is controlled by heating or cooling so that the difference becomes zero.

発明が解決しようとする課題 従来の温度制御では温度検出用の熱電対が劣化すると
制御温度は劣化の程度によりそのまま制御温度が変化す
る欠点があった。即ち、熱電対の劣化が−5℃となると
制御温度が+5℃変化することとなる。一般に熱電対の
劣化は使用温度が高いほど又使用時間が長いほど劣化が
大きくなりR熱電対の例では1400℃で半年使用すると−
20℃、1600℃で半年使用すると−60℃の劣化が生ずると
の報告例がある。
Problems to be Solved by the Invention In conventional temperature control, when a thermocouple for detecting temperature deteriorates, there is a disadvantage that the control temperature changes as it is depending on the degree of deterioration. That is, when the deterioration of the thermocouple becomes −5 ° C., the control temperature changes by + 5 ° C. Generally, the deterioration of the thermocouple increases as the operating temperature increases or as the operating time increases. In the example of the R thermocouple, when the thermocouple is used at 1400 ° C. for six months,
There is a report that deterioration at -60 ° C occurs when used at 20 ° C and 1600 ° C for half a year.

本発明は従来の上記実情に鑑みてなされたものであ
り、従って本発明の目的は、従来の技術に内在する上記
欠点を解消し、制御用熱電対の劣化を検出して補正若し
くは劣化警報の出力を行ってより良い制御精度を得るこ
とを可能とした新規な温度制御方式を提供することにあ
る。
The present invention has been made in view of the above-described conventional circumstances, and accordingly, an object of the present invention is to solve the above-described drawbacks inherent in the conventional technology, detect deterioration of a control thermocouple, and perform correction or deterioration alarm. It is an object of the present invention to provide a novel temperature control method that can output and obtain better control accuracy.

課題を解決するための手段 上記目的を達成する為に、本発明に係る温度制御装置
は、主温度検出素子と副温度検出素子の出力信号をとり
込みこれらの温度検出素子の設置初期値の関連データを
基準として経時的に変化する同様の関連データから主温
度検出素子の劣化を求め主温度検出素子の補正信号若し
くはアラーム信号を出力するコントローラを備えて構成
されるか、あるいは熱処理炉の炉壁に固定され一部が炉
外に露出された保護管を有し外保護管の軸方向に所定の
間隔をおいて片側固定支持部を持つ少なくとも1個の主
温度検出素子及び少なくとも2個の副温度検出素子を密
封して構成された温度検出器と、該温度検出器の前記主
温度検出素子と副温度検出素子の出力信号をとり込みこ
れらの温度検出素子の設置初期の関連データを基準とし
て経時的に変化する同様の関連データから主温度検出素
子の補正信号若しくはアラーム信号を出力するコントロ
ーラとを備えて構成される。
Means for Solving the Problems In order to achieve the above object, a temperature control device according to the present invention takes in output signals of a main temperature detecting element and a sub temperature detecting element, and relates to a relation between initial setting values of these temperature detecting elements. A controller for determining the deterioration of the main temperature detecting element from similar data that changes with time based on the data and outputting a correction signal or an alarm signal for the main temperature detecting element, or a furnace wall of a heat treatment furnace. At least one main temperature detecting element and at least two sub-temperature detecting elements, each of which has a protection tube partially fixed to the outside of the furnace and has a fixed support on one side at a predetermined interval in the axial direction of the outer protection tube. A temperature detector configured by sealing a temperature detection element, and output signals of the main temperature detection element and the sub-temperature detection element of the temperature detector are taken in and based on relevant data at the initial stage of installation of these temperature detection elements. And a controller that outputs a correction signal or an alarm signal for the main temperature detecting element based on similar data that changes over time as a standard.

発明の原理 第2図のように熱電対を設置すると炉壁を境として炉
内と外で熱傾斜を持つ。この熱傾斜は熱流の流れによる
もので熱電対が設置されれば決まるものである。
Principle of the Invention When a thermocouple is installed as shown in FIG. 2, a thermal gradient is formed inside and outside the furnace with the furnace wall as a boundary. This thermal gradient is caused by the flow of the heat flow, and is determined when a thermocouple is installed.

主熱電対14、副熱電対15、副熱電対16はこの熱傾斜を
測定するものであり、副熱電対15は外気温度と炉内温度
の中間温度が望ましい。副熱電対15が主熱電対14に近い
温度であると主熱電対14の劣化と同時に副熱電対15も劣
化して主熱電対14の劣化検出が出来ない。逆に副熱電対
15が副熱電対16と近い温度では主熱電対14の劣化が検出
出来ない。副熱電対15は主熱電対14より低い温度の測定
のために、熱的劣化が主熱電対14に比べて無視できる。
The main thermocouple 14, the sub thermocouple 15, and the sub thermocouple 16 measure the thermal gradient, and the sub thermocouple 15 is desirably at an intermediate temperature between the outside air temperature and the furnace temperature. If the temperature of the sub thermocouple 15 is close to the temperature of the main thermocouple 14, the deterioration of the main thermocouple 14 and the deterioration of the sub thermocouple 15 at the same time will make it impossible to detect the deterioration of the main thermocouple 14. Conversely, sub thermocouple
At a temperature where 15 is close to the sub-thermocouple 16, deterioration of the main thermocouple 14 cannot be detected. The secondary thermocouple 15 has a lower temperature than the main thermocouple 14 because of the measurement at a lower temperature than the main thermocouple 14.

R熱電対の半年での経時劣化実験では1600℃で−60
℃、1400℃で−20℃との報告があり、低い温度では急速
に劣化が少なくなる。
In the aging test of R thermocouple for half a year, -60 ℃ at 1600 ℃
There is a report of -20 ° C at 1400 ° C and 1400 ° C.

副熱電対15の温度を中間温度に調整するには熱電対の
支持部13を調整して熱電対保護管12の炉内挿入長さを変
えれば良い。
To adjust the temperature of the sub thermocouple 15 to an intermediate temperature, the length of the thermocouple protection tube 12 inserted into the furnace may be changed by adjusting the thermocouple support 13.

実施例 次に本発明をその好ましい一実施例について図面を参
照しながら具体的に説明する。
Next, a preferred embodiment of the present invention will be specifically described with reference to the drawings.

第1図は本発明に係る温度制御方式の一実施例を示す
概略ブロック構成図である。
FIG. 1 is a schematic block diagram showing an embodiment of a temperature control system according to the present invention.

第1図を参照するに、参照番号1は物体の熱処理に使
用される熱処理炉(例えば電気炉)を示し、該熱処理炉
の炉壁11には一部が炉外(外気)に露出された保護管12
が支持部13により固定されている。熱処理炉1内にはま
た炉加熱用ヒータ2が配置されている。保護管12の端子
部12aからは信号線3により例えば熱電対の如き温度検
出素子の検出出力が後述されるコントローラ4に結合さ
れている。ヒータ2には電源5の電圧をコントローラ4
によって制御された電圧が供給されている。第2図
(a)、(b)は保護管12の近傍に具体的な構成図、測
定温度曲線図である。図示された実施例は温度検出素子
として熱電対を用いた場合のものである。
Referring to FIG. 1, reference numeral 1 denotes a heat treatment furnace (for example, an electric furnace) used for heat treatment of an object, and a part of a furnace wall 11 of the heat treatment furnace is exposed outside the furnace (outside air). Protection tube 12
Are fixed by the support portion 13. Inside the heat treatment furnace 1, a heater 2 for heating the furnace is also arranged. From the terminal portion 12a of the protection tube 12, a detection output of a temperature detecting element such as a thermocouple is connected to a controller 4 described later by a signal line 3. The voltage of the power supply 5 is supplied to the heater 2 by the controller 4.
Is controlled. 2 (a) and 2 (b) are a specific configuration diagram and a measured temperature curve diagram in the vicinity of the protection tube 12. FIG. In the illustrated embodiment, a thermocouple is used as a temperature detecting element.

第2図(a)を参照するに、参照番号11は物質の熱処
理に用いられる熱処理炉の炉壁を示し、該炉壁11には測
定データの取出しをする端子部12aを有する保護管12が
支持部13により支持固定されている。保護管12は、端子
部12aを含む一部が炉壁11の外部(外気)に露出されて
いる。
Referring to FIG. 2 (a), reference numeral 11 indicates a furnace wall of a heat treatment furnace used for heat treatment of a substance. The furnace wall 11 has a protective tube 12 having a terminal portion 12a for taking out measurement data. It is supported and fixed by the support portion 13. A part of the protection tube 12 including the terminal portion 12a is exposed to the outside (outside air) of the furnace wall 11.

保護管12内には、計測用主熱電対14と、熱電対使用外
気を測定する副熱電対16とそれらの中間に配置された副
熱電対15が図示の如く配設されている。
In the protective tube 12, a main thermocouple 14 for measurement, a sub thermocouple 16 for measuring outside air used by the thermocouple, and a sub thermocouple 15 arranged therebetween are arranged as shown in the figure.

熱電対の劣化の原因は種々考えられているが、主には
使用温度と使用時間に起因している。第2図(a)、
(b)からも判るように、主熱電対14は他の熱電対(副
熱電対15、副熱電対16)より高温にさらされているため
にその劣化は速い。
Although various causes of deterioration of the thermocouple have been considered, they are mainly caused by the use temperature and the use time. FIG. 2 (a),
As can be seen from (b), the main thermocouple 14 is exposed to a higher temperature than the other thermocouples (the sub-thermocouples 15 and the sub-thermocouples 16), so that their deterioration is faster.

第3図は本発明に使用されるコントローラの一実施例
を示すブロック構成図である。
FIG. 3 is a block diagram showing an embodiment of a controller used in the present invention.

温度検出するための主熱電対14と主熱電対14の劣化を
補正するための複数の副熱電対(図示された本実施例で
は15、16の2本)の出力はアナログマルチプレクサ41、
A/Dコンバータ43、I/Oインタフェイス回路44を介してマ
イクロプロセッサ(μP)45に入力され、熱電対設置時
の初期関連データが設定されてそれらはメモリRAM47上
に格納される。このストアされた初期関連データを基準
として経時的に得られる主熱電対14と2組の副熱電対1
5、16の現関連データからμP45の演算により熱電対の劣
化補正演算を行う。熱電対劣化の補正演算結果にもとず
く劣化信号8はI/Oインタフェイス回路44を介して出力
される。
The outputs of the main thermocouple 14 for detecting the temperature and a plurality of sub thermocouples (two of the thermocouples 15 and 16 in the illustrated embodiment) for correcting the deterioration of the main thermocouple 14 are analog multiplexer 41,
The data is input to a microprocessor (μP) 45 via an A / D converter 43 and an I / O interface circuit 44, and initial related data at the time of installing the thermocouple is set and stored in a memory RAM 47. A main thermocouple 14 and two sub thermocouples 1 obtained over time based on the stored initial related data.
The deterioration correction calculation of the thermocouple is performed by the calculation of μP45 from the current related data of 5 and 16. The deterioration signal 8 based on the thermocouple deterioration correction calculation result is output via the I / O interface circuit 44.

又、熱電対劣化補正された温度と設定値からPID制御
系の演算された制御出力hはD/Aコンバータ48を介して
出力される。尚、ROM46にはプログラム等が格納されて
いる。
The control output h calculated by the PID control system from the temperature and the set value corrected for the thermocouple deterioration is output via the D / A converter 48. The ROM 46 stores programs and the like.

第3図では主熱電対14と副熱電対15、16の冷接点補正
回路は省略されている。
In FIG. 3, the cold junction correction circuits of the main thermocouple 14 and the sub thermocouples 15 and 16 are omitted.

操作スイッチ42は熱電対設置時の初期指令信号あるい
は温度制御に必要な設置値、PID演算定数等を設定する
ための入力用スイッチである。
The operation switch 42 is an input switch for setting an initial command signal when the thermocouple is installed, an installation value necessary for temperature control, a PID calculation constant, and the like.

第3図に示されたコントローラでは主熱電対14と副熱
電対15、16の3組の入力をとり込んでいるが、制御は主
熱電対14で行い、副熱電対15、16は主熱電対14の劣化補
正用として用いられる。即ち新品の熱電対設置時の主熱
電対14と副熱電対15、16の関連をRAM47上に記憶してお
く。熱電対を高温下で長時間使用し主熱電対14が劣化す
ると主熱電対14と副熱電対15、16の温度バランスが新品
時(又は熱電対設置初期時)と変化してくる。これらの
ソフトウェア処理の一例を第4図に示す。
Although the controller shown in FIG. 3 takes in three sets of inputs, a main thermocouple 14 and sub thermocouples 15 and 16, control is performed by the main thermocouple 14, and sub thermocouples 15 and 16 are controlled by the main thermocouple. Used for correction of deterioration of pair 14. That is, the relationship between the main thermocouple 14 and the sub thermocouples 15 and 16 when a new thermocouple is installed is stored in the RAM 47. When the thermocouple is used for a long time at a high temperature and the main thermocouple 14 is deteriorated, the temperature balance between the main thermocouple 14 and the sub-thermocouples 15 and 16 changes from the time when the thermocouple is new (or when the thermocouple is initially installed). An example of these software processes is shown in FIG.

ここで主熱電対14と2つの副熱電対15、16の初期関連
データと高温度で長時間使用した現関連データの処理の
一例として比例関係で補正すると次のようになる。但
し、主電対14、副熱電対15、副熱電対16の初期値をT1,T
2,T3とし、劣化後の値をT1′,T2′,T3′とする。ここで
主熱電対14の劣化分をαとし、副熱電対15、16の劣化は
無視出来るものとすると、初期値における(T1−T2):
(T2−T3)の関係を劣化後の値T1′,T2′,T3′と劣化分
αで示すと、{(T1′+α)−T2′}:(T2′−T3′)
となる。即ち、(1)式の関係が得られる。
Here, as an example of the processing of the initial related data of the main thermocouple 14 and the two sub thermocouples 15 and 16 and the current related data used for a long time at a high temperature, the correction is performed in a proportional relation as follows. However, the main thermocouple 14, sub thermocouple 15, T 1, the initial value of the sub thermocouple 16 T
2 , T 3 , and the degraded values are T 1 ′, T 2 ′, T 3 ′. Here, assuming that the deterioration of the main thermocouple 14 is α and the deterioration of the sub thermocouples 15 and 16 is negligible, (T 1 −T 2 ) at the initial value:
If the relationship of (T 2 −T 3 ) is represented by the values T 1 ′, T 2 ′, T 3 ′ after deterioration and the deterioration amount α, then ((T 1 ′ + α) −T 2 ′): (T 2 ′) −T 3 ′)
Becomes That is, the relationship of the expression (1) is obtained.

(T1−T2):(T2−T3)={(T1′+α)−T2′}:(T2′−T3′) …(1) この式より となる。(T 1 −T 2 ): (T 2 −T 3 ) = {(T 1 ′ + α) −T 2 ′}: (T 2 ′ −T 3 ′) (1) Becomes

第4図に表示された補正データとは劣化分αを示す。
αは上記比例部分で求める方法と実験的に劣化データを
もとにウエイト付、例えばある常数を乗算して求め、よ
り劣化データの精度をあげる方法も可能である。
The correction data displayed in FIG. 4 indicates the deterioration amount α.
It is also possible to obtain α by a method of obtaining the above-mentioned proportional portion or a method of experimentally adding a weight based on the deterioration data, for example, by multiplying by a certain constant to further improve the accuracy of the deterioration data.

又、本実施例では副熱電対を2本にした例であるが副
熱電対の本数を変えて同等以上の精度を上げる効果を演
算で求めることも出来る。
In this embodiment, the number of the sub thermocouples is two, but the effect of increasing the accuracy of equal or higher by changing the number of the sub thermocouples can be obtained by calculation.

更に又、本発明に係る熱電対としては第2図のように
同一保護管内に主熱電対と副熱電対を封入したもので説
明したが、別々の熱電対で熱的に同等の関連を得る形に
設置した温度検出器で同様の効果を売ることも可能であ
る。
Further, the thermocouple according to the present invention has been described by enclosing the main thermocouple and the sub-thermocouple in the same protective tube as shown in FIG. 2, but the same thermocouple is obtained by separate thermocouples. It is possible to sell a similar effect with a temperature detector installed in the form.

本発明は主熱電対と副熱電対の信号をとり込みその初
期データを基準に経時的に得られる現データから主熱電
対の劣化を判定する機能を持った調節計が容易に得られ
る。
According to the present invention, it is possible to easily obtain a controller having a function of taking in signals of a main thermocouple and a sub thermocouple, and judging deterioration of the main thermocouple from current data obtained over time based on the initial data.

劣化データの利用方法として本発明では熱電対の劣化
補正と熱電対の劣化アラームの例を示しているがこれに
関してはいずれか一方のみを利用してもよい。
As a method of using the deterioration data, the present invention shows an example of the thermocouple deterioration correction and the thermocouple deterioration alarm, but only one of them may be used.

以上説明した実施例においては温度検出素子として熱
電対が使用されているが、熱電対の代わりに温度抵抗体
またはサーミスタ等を使用することができる。
In the embodiment described above, a thermocouple is used as the temperature detecting element, but a temperature resistor, a thermistor, or the like can be used instead of the thermocouple.

発明の効果 以上説明したように、本発明によれば、熱処理炉内に
配置された温度検出素子の劣化を容易にしかも的確に検
出できる効果が得られる。
Effect of the Invention As described above, according to the present invention, an effect is obtained in which deterioration of a temperature detecting element disposed in a heat treatment furnace can be easily and accurately detected.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る温度制御方式の一実施例の全体を
示すブロック構成図、第2図(a),(b)は熱処理炉
に固定された保護管近傍の拡大部分構成図、第3図はコ
ントローラの一実施例を示すブロック構成図、第4図は
本発明の動作フローチャートである。 1……熱処理炉、2……ヒータ、3……信号線、4……
コントローラ、6……電源線、11……炉壁、12……保護
管、13……支持部、14……主熱電対、15,16……副熱電
対、41……アナログマルチプレクサ、42……操作スイッ
チ、43……A/Dコンバータ、44,49……I/Oインタフェイ
ス回路、45……μP、46……ROM、47……RAM、48……D/
Aコンバータ、50……表示パネル
FIG. 1 is a block diagram showing an entire embodiment of a temperature control system according to the present invention, and FIGS. 2 (a) and 2 (b) are enlarged partial block diagrams showing the vicinity of a protection tube fixed to a heat treatment furnace. FIG. 3 is a block diagram showing an embodiment of the controller, and FIG. 4 is an operation flowchart of the present invention. 1 ... heat treatment furnace, 2 ... heater, 3 ... signal line, 4 ...
Controller, 6 Power line, 11 Furnace wall, 12 Protection tube, 13 Support, 14 Main thermocouple, 15, 16 Sub thermocouple, 41 Analog multiplexer, 42 ... Operation switches, 43 ... A / D converters, 44,49 ... I / O interface circuits, 45 ... μP, 46 ... ROM, 47 ... RAM, 48 ... D /
A converter, 50 ... Display panel

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主温度検出素子と、劣化が無視できる環境
下に設置された、外気温度に近い部分を測定する第1の
副温度検出素子と、前記主温度検出素子と前記第1の副
温度検出素子の中間温度を測定する第2の副温度検出素
子の少なくとも2個の副温度検出素子の出力信号を取り
込み、これらの温度検出素子の設置初期値の検出器出力
データを基準として、経時的に変化する同様の検出器出
力データから前記主温度検出素子の劣化分を求め、温度
制御は補正された温度をもとに行うことを特徴とした温
度制御方式。
1. A main temperature detecting element, a first sub-temperature detecting element installed in an environment where degradation is negligible, and measuring a portion close to an outside air temperature, the main temperature detecting element and the first sub-temperature detecting element. The output signals of at least two sub-temperature detecting elements of the second sub-temperature detecting element for measuring the intermediate temperature of the temperature detecting elements are fetched, and time based on the detector output data of the initial installation values of these temperature detecting elements is taken as a reference. A temperature control method characterized in that a deterioration amount of the main temperature detecting element is obtained from similar detector output data which changes periodically, and temperature control is performed based on the corrected temperature.
【請求項2】主温度検出素子と、劣化が無視できる環境
下に設置された、外気温度に近い部分を測定する第1の
副温度検出素子と、前記主温度検出素子と前記第1の副
温度検出素子の中間温度を測定する第2の副温度検出素
子の少なくとも2個の副温度検出素子の出力信号を取り
込み、これらの温度検出素子の設置初期値の検出器出力
データを基準として、経時的に変化する同様の検出器出
力データから前記主温度検出素子の劣化分を求め、温度
制御は前記主温度検出素子の出力で制御し、劣化分につ
いては劣化信号として出力することを特徴とした温度制
御方式。
2. A main temperature detecting element, a first sub-temperature detecting element installed in an environment where degradation is negligible and measuring a portion close to the outside air temperature, the main temperature detecting element and the first sub-temperature detecting element. The output signals of at least two sub-temperature detecting elements of the second sub-temperature detecting element for measuring the intermediate temperature of the temperature detecting elements are fetched, and time based on the detector output data of the initial installation values of these temperature detecting elements is taken as a reference. The deterioration amount of the main temperature detection element is obtained from the similar detector output data that changes gradually, the temperature control is controlled by the output of the main temperature detection element, and the deterioration amount is output as a deterioration signal. Temperature control method.
JP63295403A 1988-11-22 1988-11-22 Temperature control method Expired - Lifetime JP2732270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63295403A JP2732270B2 (en) 1988-11-22 1988-11-22 Temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295403A JP2732270B2 (en) 1988-11-22 1988-11-22 Temperature control method

Publications (2)

Publication Number Publication Date
JPH02140812A JPH02140812A (en) 1990-05-30
JP2732270B2 true JP2732270B2 (en) 1998-03-25

Family

ID=17820159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295403A Expired - Lifetime JP2732270B2 (en) 1988-11-22 1988-11-22 Temperature control method

Country Status (1)

Country Link
JP (1) JP2732270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628929A (en) * 1994-10-13 1997-05-13 Abbott Laboratories Thermal control apparatus and method

Also Published As

Publication number Publication date
JPH02140812A (en) 1990-05-30

Similar Documents

Publication Publication Date Title
US5228114A (en) Heat-treating apparatus with batch scheme having improved heat controlling capability
US7467547B2 (en) Fluid-measuring device and fluid-measuring method
US6609824B1 (en) Radiation thermometer
JP2732270B2 (en) Temperature control method
JPH08313466A (en) Detecting device of deterioration of thermocouple
JPH0577931B2 (en)
JPH10232170A (en) Device for estimating deterioration of thermocouple
JPH10111188A (en) Automatic thermocouple calibration device
JP2750720B2 (en) Temperature detector deterioration correction device
JP4161626B2 (en) air conditioner
JP4055588B2 (en) Temperature measuring apparatus and temperature measuring method
JP2789272B2 (en) Flow meter flow compensation method
JP2914186B2 (en) Control device for electrical equipment
RU2727564C1 (en) Self-calibrating temperature sensor
JPH09297070A (en) Temperature coefficient correction type temperature detecting device
JPS62162565A (en) Temperature-detecting system for thermal head
JP2001083019A (en) Temperature measurement apparatus
JP3469448B2 (en) Adjustment method of temperature control device of oxygen detection element
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JPH08105812A (en) Gas leak detector for gas-insulated electric equipment
JP2501892B2 (en) Thermocouple input measuring instrument
JP3246737B2 (en) Temperature measuring method, temperature measuring device and heat treatment device
JPH0625382B2 (en) Calibration method of radiation thermometer in continuous annealing furnace.
JPS6247528A (en) Correcting method for detected temperature of temperature sensor
SU570767A1 (en) Method of measuring deformation in condition of non-stationary temperatures